Molecular Genetics and the Diagnosis of Hematological Malignancies

  • William N. Rezuke
  • Evelyn C. Abernathy
Part of the Pathology and Laboratory Medicine book series (PLM)


The hematological malignancies can be broadly categorized into the malignant lymphomas, which include the two major categories, non-Hodgkin’ s lymphoma (NHL) and Hodgkin’ s disease, the acute and chronic lymphoid leukemias, which may be of B- or T-cell type, acute myelogenous leukemia, the myelodysplastic syndromes, and the myeloproliferative disorders. The goal of this chapter is to focus on the hematopathological approach to the diagnosis of the various hematological disorders with emphasis on those disorders in which molecular genetic methods, specifically Southern blotting and polymerase chain reaction (PCR), are most commonly employed.


Minimal Residual Disease Mantle Cell Lymphoma Gene Rearrangement Breakpoint Cluster Region Molecular Genetic Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Harris, N. L., Jaffe, E. S., Stein, H., Banks, P. M., Chan, J. K. C., Cleary, M. L., et al. A revised European-American classification of lymphoid neoplasms: a proposal from the International Lymphoma Study Group. Blood 84:1361–1392, 1994.PubMedGoogle Scholar
  2. 2.
    Jaffe, E. S. The role of immunophenotypic markers in the classification of non-Hodgkin’ s lymphomas. Semin. Oncol. 17:11–19, 1990. 3. Cossman, J., Uppenkamp, M., Sundeen, J., Coupland, R., and Raffeld, M. Molecu-lar genetics and the diagnosis of lymphoma. Arch. Pathol. Lab. Med. 112:117–127, 1988.Google Scholar
  3. 4.
    Campana, D. and Pui, C.-H. Detection of minimal residual disease in acute leukemia: methodologic advances and clinical significance. Blood 85:1416–1434, 1995.PubMedGoogle Scholar
  4. 5.
    Medeiros, L. J., Bagg, A., and Cossman, J. Application of molecular genetics to the diag-nosis of hematopoietic neoplasms, in Neoplastic Hematopathology, Knowles, D. M., ed., Williams and Wilkins, Baltimore, pp. 263–298, 1992.Google Scholar
  5. 6.
    Cooper, M. D. B lymphocytes: normal development and function. New Engl. J. Med. 317:1452–1456, 1987.PubMedCrossRefGoogle Scholar
  6. 7.
    Sklar, J. Antigen receptor genes: structure, function, and techniques for analysis of their rearrangements, in Neoplastic Hematopathology, Knowles, D. M., ed., Williams and Wilkins, Baltimore, pp. 215–244, 1992.Google Scholar
  7. 8.
    Foon, K. A. and Todd, R. F. Immunologic classification of leukemia and lymphoma. Blood 68:1–31, 1986.PubMedGoogle Scholar
  8. 9.
    Spits, H., Lanier, L. L., and Phillips, J. H. Development of human T and natural killer cells. Blood 85:2654–2670, 1995.PubMedGoogle Scholar
  9. 10.
    Royer, H. D. and Reinherz, E. L. T lymphocytes: ontogeny, function, and relevance to clinical disorders. New Engl. J. Med. 317:1136–1142, 1987.PubMedCrossRefGoogle Scholar
  10. 11.
    Gill, J. I. and Gulley, M. L. Immunoglobulin and T cell receptor gene rearrangement. Hematol. Oncol. Clin. North Am. 8:751–770, 1994.PubMedGoogle Scholar
  11. 12.
    Cossman, J., Zehnbauer, B., Garrett, C. T., Smith, L. J., Williams, M., Jaffe, E. S., Hanson, L. O., and Love, J. Gene rearrangements in the diagnosis of lymphoma/leuke-mia. Guidelines for use based on a multiinstitutional study. Am. J. Clin. Pathol. 95:347–354, 1991.PubMedGoogle Scholar
  12. 13.
    Hodges, K. A., Kosciol, C. M., Rezuke, W. N., Abernathy, E. C., Pastuszak, W. T., and Tsongalis, G. J. Chemiluminescent detection of gene rearrangements in hematologic malignancy. Ann. Clin. Lab. Sci. in press.Google Scholar
  13. 14.
    Medeiros, L. J. and Weiss, L. M. The utility of the polymerase chain reaction as a screen-ing method for the detection of antigen receptor gene rearrangements. Hum. Pathol. 25:1261–1263, 1994.PubMedCrossRefGoogle Scholar
  14. 15.
    Macintyre, E. A. The use of the polymerase chain reaction in hematology. Blood Rev. 3:201–210, 1989.PubMedCrossRefGoogle Scholar
  15. 16.
    Sioutos, N., Bagg, A., Michaud, G. Y., Irving, S. G., Hartmann, D. P., Siragy, H., Oliveri, D. R., Locker, J., and Cossman, J. Polymerase chain reaction versus Southern blot hybrid-ization. Detection of immunoglobulin heavy-chain gene rearrangements. Diagn. Mol. Pathol. 4:8–13, 1995.PubMedCrossRefGoogle Scholar
  16. 17.
    Weiss, L. M. and Spagnolo, D. V. Assessment of clonality in lymphoid proliferations. Am. J. Pathol. 142:1679–1682, 1993.PubMedGoogle Scholar
  17. 18.
    Segal, G. H., Jorgensen, T., Scott, M., and Braylan, R. C. Optimal primer selection for clonality assessment by polymerase chain reaction analysis: II. Follicular lymphomas. Hum. Pathol. 25:1276–1282, 1994.PubMedCrossRefGoogle Scholar
  18. 19.
    Gaidano, G. and Dalla-Favera, R. Protooncogenes and tumor suppressor genes, in Neo-plastic Hematopathology. Knowles, D. M., ed., Williams and Wilkins, Baltimore, pp. 245– 261, 1992.Google Scholar
  19. 20.
    Korsmeyer, S. J. Bcl-2 initiates a new category of oncogenes: regulators of cell death. Blood 80:879–886, 1992.PubMedGoogle Scholar
  20. 21.
    Crisan, D., Chen, S-T., and Weil, S. C. Polymerase chain reaction in the diagnosis of chromosomal breakpoints. Hematol. Oncol. Clin. North Am. 8:725–750, 1994.PubMedGoogle Scholar
  21. 22.
    Banks, P. M., Chan, J., Cleary, M. L., Delsol, G., De Wolf- Peeters, C., and Gatter, K. Mantle cell lymphoma. A proposal for unification of morphologic, immunologic, and molecular data. Am. J. Surg. Pathol. 16:637–640, 1992.PubMedCrossRefGoogle Scholar
  22. 23.
    Ngan, B.-Y., Nourse, J., and Cleary, M. L. Detection of chromosomai translocation t(14;18) within the minor cluster region of bcl-2 by polymerase chain reaction and direct genomic sequencing of the enzymatically amplified DNA in follicular lymphomas. Blood 73:1759–1762, 1989.PubMedGoogle Scholar
  23. 24.
    Haluska, F. G., Brufsky, A. M., and Canellos, G. P. The cellular biology of the Reed-Sternberg cell. Blood 84:1005–1019, 1994.PubMedGoogle Scholar
  24. 25.
    Agnarsson, B. A. and Kadin, M. E. The immunophenotype ofReed-Sternberg cells. A study of 50 cases of Hodgkin’ s disease using fixed frozen tissues. Cancer 63:2083–2087, 1989.PubMedCrossRefGoogle Scholar
  25. 26.
    Weiss, L. M., Strickler, J. G., Hu, E., Warnke, R. A., and Sklar, J. Immunoglobulin gene rearrangements in Hodgkin’ s disease. Hum. Pathol. 17:1009–1014, 1986.PubMedCrossRefGoogle Scholar
  26. 27.
    Hummel, M., Ziemann, K., Lammert, H., Pileri, S., Sabattini, E., and Stein, H. Hodgkin’ s disease with monoclonal and polyclonal populations of Reed-Sternberg cells. New Engl. J. Med. 333:901–906, 1995.PubMedCrossRefGoogle Scholar
  27. 28.
    Larson, R. A., Williams, S. F., Le Beau, M. M., Bitter, M. A., Vardiman, J. W., and Rowley, J. D. Acute myelomonocytic leukemia with abnormal eosinophils and inv (16) or t(16;16) has a favorable prognosis. Blood 68:1242–1249, 1986.PubMedGoogle Scholar
  28. 29.
    Vardiman, J. W. Chronic myelogenous leukemia and the myeloproliferative disorders, in Neoplastic Hematopathology, Knowles, D. M., ed., Williams and Wilkins, Baltimore, pp. 1405–1438, 1992.Google Scholar
  29. 30.
    Kurzrock, R., Gutterman, J. U., and Talpaz, M. The molecular genetics of Philadelphia chromosome-positive leukemias. New Engl. J. Med. 319:990–998, 1988.PubMedCrossRefGoogle Scholar
  30. 31.
    Copelan, E. A. and McGuire, E. A. The biology and treatment of acute lymphoblastic leukemia in adults. Blood 85:1151–1168, 1995.PubMedGoogle Scholar
  31. 32.
    Kawasaki, E. S., Clark, S. S., Coyne, M. Y., Smith, S. D., Champlin, R., Witte, O. N., and McCormick, F. P. Diagnosis of chronic myeloid and acute lymphocytic leukemias by detection of leukemia-specific mRNA sequences amplified in vitro. Proc. Natl. Acad. Sci. USA 85:5698–5702, 1988.PubMedCrossRefGoogle Scholar
  32. 33.
    Cowan, J. M. Fishing for chromosomes: the art and its applications. Diagn. Mol. Pathol. 3:224–226, 1994.PubMedCrossRefGoogle Scholar
  33. 34.
    Negrin, R. S. and Blume, K. G. The use of the polymerase chain reaction for the detection of minimal residual malignant disease. Blood 78:255–258, 1991.PubMedGoogle Scholar
  34. 35.
    Sklar, J. Polymerase chain reaction: the molecular microscope of residual disease. J. Clin. Oncol. 9:1521–1524, 1991.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • William N. Rezuke
  • Evelyn C. Abernathy

There are no affiliations available

Personalised recommendations