Pathophysiology of Water Metabolism During Critical Illness

  • Mary H. Parks
  • Joseph G. Verbalis
Part of the Contemporary Endocrinology book series (COE, volume 4)


Maintenance of blood volume and pressure that is adequate for perfusion of vital body tissues and organs is crucial for the survival of organisms during periods of acute stress, such as critical illnesses. As might be expected of such important functions, many complex and overlapping physiological defense mechanisms have evolved to defend body fluid homeostasis during such periods. The efficacy of these mechanisms is attested to by the fact that derangements of body water and electrolytes do not occur even more frequently during disease states. Nonetheless, hypo- and hypernatremia represent the most common electrolyte disorders encountered in clinical practice today, and in order to understand both the pathogenesis and the appropriate therapy of these disorders in critically ill patients, it is crucial to understand body water metabolism and its disorders, since this accounts for the major part of regulation of the concentration in the extracellular fluid and blood. This chapter briefly summarizes the normal regulation of body water and then reviews in greater detail specific disorders associated with disruption of this normally finely tuned system for maintaining body fluids at physiologically appropriate volumes and solute concentrations.


Acquire Immune Deficiency Syndrome Water Metabolism Free Water Clearance Glucocorticoid Deficiency Effective Arterial Blood Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Robertson GL. Physiology of vasopressin, oxytocin, and thirst. In: Becker KL, ed. Principles and Practice of Endocrinology and Metabolism. Lippincott, Philadelphia, 1995, pp. 248–256.Google Scholar
  2. 2.
    Robertson GL. Thirst and vasopressin function in normal and disordered states of water balance. J Lab Clin Med 1983; 101: 351–371.PubMedGoogle Scholar
  3. 3.
    Robertson GL. Diseases of the posterior pituitary. In: Felig P, Baxter J, Brodus A, Frohman L, eds. Endocrinology and Metabolism. McGraw-Hill, New York, 1986, pp. 338–385.Google Scholar
  4. 4.
    Verbalis JG, Hoffman GE, Sherman TG. Use of immediate early genes as markers of oxytocin and vasopressin neuronal activation. Curr Opinion Endocrinol Diabetes 1995; 2: 157–168.CrossRefGoogle Scholar
  5. 5.
    Arduino F, Ferraz FPJ, Rodrigues J. Antidiuretic action of chlorpropamide in idiopathic diabetes insipidus. J Clin Endocrinol Metab 1966; 26: 1325–1328.PubMedCrossRefGoogle Scholar
  6. 6.
    Fichman MP, Vorherr H, Kleeman CR, Telfer N. Diuretic-induced hyponatremia. Ann Intern Med 1971; 75: 853–863.PubMedGoogle Scholar
  7. 7.
    Spigset O and Hedenmalm K. Hyponatremia and the syndrome of inappropriate antidiuretic hormone secretion (SIADH) induced by psychotropic drugs. Drug Safety 1995; 12 (3): 209–225.PubMedCrossRefGoogle Scholar
  8. 8.
    Taylor IC and McConnell JG. Severe hyponatremia associated with selective serotonin reuptake inhibitors. Scott Med J 1995; 40: 147–148.PubMedGoogle Scholar
  9. 9.
    Miyagawa CI. The pharmacologic management of the syndrome of inappropriate secretion of antidiuretic hormone. Drug Intel Clin Pharmacol 1986; 20: 527–531.Google Scholar
  10. 10.
    Shimizu K. Aquaretic effects of the nonpeptide V2 antagonist OPC-31260 in hydropenic humans. Kidney Int 1995; 48: 220–226.PubMedCrossRefGoogle Scholar
  11. 11.
    Miller M, Morley JE, Rubenstein LZ. Hyponatremia in a nursing home population. J Am Geriatr Soc 1995; 43: 1410–1413.PubMedGoogle Scholar
  12. 12.
    Borra SI, Beredo R, Kleinfeld M. Hypernatremia in the aging: causes, manifestations, and outcomes. J Nat Med Assoc 1995; 87 (3): 220–224.Google Scholar
  13. 13.
    Fliers E, Swaab DF, Pool CW, Verwer RW. The vasopressin and oxytocin neurons in the human supraoptic and paraventricular nucleur: change with aging and in senile dementia. Brain Res 1985; 342: 45–53.PubMedCrossRefGoogle Scholar
  14. 14.
    Phillips PA, Rolls BJ, Ledinghan JGG, Ledingham DM, Forsling ML, Morton JJ, Crowe MJ, Wollner L. Reduced thirst after water deprivationin healthy elderly man N Engl J Med 1984; 311: 753–759.Google Scholar
  15. 15.
    Bevilacqua M, Norbiato G, Chebat E, Raggi U, Cavaiani P, Guzzetti R, Bertora P. Osmotic and nonosmotic control of vasopressin release in the elderly: effect of metoclopramide. J Clin Endocrinol Metab. 1987; 65: 1243–1247.PubMedCrossRefGoogle Scholar
  16. 16.
    Robertson GL, Rowe JW. The effect of aging on neurohypophysial function. Peptides 1 1980; (Suppl 1): 159.CrossRefGoogle Scholar
  17. 17.
    Anderson S, Brenner BM. Effects of aging on the renal glomerulus. Am J Med 1986; 80: 435–442.PubMedCrossRefGoogle Scholar
  18. 18.
    Crowe MJ, Forsling ML, Rolls BJ, Phillips PA, Ledingham JG, Smith RF. Altered water excretion in healthy elderly men. Age Ageing 1987; 16: 285–293.PubMedCrossRefGoogle Scholar
  19. 19.
    Bengele HH, Mathias RS, Perkins JH, Alexander EA. Urinary concentrating defect in the aged rat. Am J Physiol 1981; 240: F147 - F150.PubMedGoogle Scholar
  20. 20.
    Baylis PH, Gaskill MR, Robertson GL. Vasopressin secretion in primary polydipsia and cranial diabetes insipidus. Q J Med 1981; 50: 345–358.PubMedGoogle Scholar
  21. 21.
    Robertson GL. Diabetes insipidus. In: Dluhy RG, ed. Endocrinology and Metabolism Clinics and North America. Saunders, Philadelphia, Co 1995;pp. 549–572.Google Scholar
  22. 22.
    Verbalis JG. Hyponatremia: epidemiology, pathophysiology, and therapy. Curr Opin Nephrol Hyperten 1993; 2: 636–652.CrossRefGoogle Scholar
  23. 23.
    Verbalis JG. Clinical aspects of body fluid homeostasis in humans. In: Handbook of Behavioral Neurobiology, Vol. 10. Plenum, New York, 1990, pp. 421–462.Google Scholar
  24. 24.
    Bevilacqua, M. Hyponatraemia in AIDS. Bailliere’s Clin Endocrinol Metab 1994; 8 (4): 837–848.PubMedCrossRefGoogle Scholar
  25. 25.
    Tang WW, Kaptein EM, Feinstein EI, Massry SG. Hyponatremia in hospitalized patients with the acquired immunodeficiency syndrome (AIDS) and the AIDS-related complex. Am J Med 1993; 94: 169–174.PubMedCrossRefGoogle Scholar
  26. 26.
    Agarwal A, Soni A, Ciechanowsky M, Chander P, Treser G. Hyponatremia in patients with the acquired immunodeficiency syndrome. Nephron 1989; 53: 317–321.PubMedCrossRefGoogle Scholar
  27. 27.
    Tapper ML, Rotterdam HZ, Lerner CW, Al’ Khafaji K, Seitzman PA. Adrenal necrosis in the acquired immunodeficiency syndrome. Ann Intern Med 1984; 100: 239–241.PubMedGoogle Scholar
  28. 28.
    Glasgow BJ, Steinsapir BS, Anders K, Layfield LJ. Adrenal pathology in the acquired immune deficiency syndrome. Am J Clin Pathol 1985; 84: 594–597.PubMedGoogle Scholar
  29. 29.
    Dobbs AS, Dempsey MA, Ladenson PW, Polk BF. Endocrine disorders in men infected with human immunodeficiency virus. Am J Med 1988; 84: 611–616.CrossRefGoogle Scholar
  30. 30.
    Membreno L, Irony I, Dere W, Klein R, Biglieri EG, Cobb E. Adrenocortical function in acquired immunodeficiency syndrome. J Clin Endocrinol Metab 1987; 65: 482–487.PubMedCrossRefGoogle Scholar
  31. 31.
    Kahn MF, Poretsky L, Seres DS, Zumoff B. Hyporeninemic hypoaldosteronism associated with acquired immune deficiency syndrome. Am J Med 1987; 82: 1035–1038.CrossRefGoogle Scholar
  32. 32.
    Cobbs R, Pepper GM, Torres JG, Gruenspan HL. Adrenocortical insufficiency with normal serum cortisol levels and hyporeninaemia in a patient with acquired immunodeficiency syndrome (AIDS). J Intern Med 1991; 230: 179–181.PubMedCrossRefGoogle Scholar
  33. 33.
    Seney FD, Burns DK, Silva FG. Acquired immunodeficiency syndrome and the kidney. Am J Kidney Dis 1990; 16: 1–13.PubMedGoogle Scholar
  34. 34.
    Brandle M, Vernazza PL, Oesterle M, Galeazzi RL. Cerebral toxoplasmosis with central diabetes insipidus and panhypopituitarism in a patient with AIDS. Schweiz Med Wochenschr 1995; 125 (14): 684–687.PubMedGoogle Scholar
  35. 35.
    Catz B, Russell S. Myxedema, shock and coma. Arch Intern Med 1961; 108: 407–417.PubMedCrossRefGoogle Scholar
  36. 36.
    Curtis RH. Hyponatremia in primary myxedema. Ann Intern Med 1956; 44: 376–385.PubMedGoogle Scholar
  37. 37.
    Derubertis FR, Michelis MF, Bloom ME, Mintz DH, Field JB, Davis BB. Impaired water excretion in myxedema. Am J Med 1971; 51: 41–53.PubMedCrossRefGoogle Scholar
  38. 38.
    Skowsky WR, Kikuchi TA. The role of vasopressin in the impaired water excretion of myxedema. Am J Med 1978; 64: 613–621.PubMedCrossRefGoogle Scholar
  39. 39.
    Crispell KR, Parson W, Sprinkle P. A cortisone-resistant abnormality in the diuretic response to ingested water in primary myxedema. J Clin Endocrinol Metab 1954; 14: 640–644.PubMedCrossRefGoogle Scholar
  40. 40.
    Discala VA, Kinney MJ. Effects of myxedema on the renal diluting and concentrating mechanism. Am J Med 1971; 50: 325–335.PubMedCrossRefGoogle Scholar
  41. 41.
    Emmanouel DS, Lindheimer MD, Katz AI. Mechanisms of impaired water excretion in the hypothyroid rat. J Clin Invest 1974; 54: 926–934.PubMedCrossRefGoogle Scholar
  42. 42.
    Pettinger WA, Talner L, Ferris TF. Inappropriate secretion on antidiuretic hormone due to myxedema. N Engl J Med 1965; 272: 362–364.PubMedCrossRefGoogle Scholar
  43. 43.
    Iwasaki Y, Oiso Y, Yamauchi K, Takatsuki Kensuke, Kunikazu K, Haruhiko H, Tomita A. Osmoregulation of plasma vasopressin in myxedema. J Clin Endocrinol Metab 1990; 70 (2): 534–539.PubMedCrossRefGoogle Scholar
  44. 44.
    Macaron C, Famuyiwa O. Hyponatremia of hypothyroidism. Appropriate suppression of antidiuretic hormone levels. Arch Intern Med 1978; 138: 820–822.PubMedCrossRefGoogle Scholar
  45. 45.
    Amidi M, Leon DF, DeGroot WJ, Kroetz FW, Leonard H. Effect of the thyroid state on myocardial contractility and ventricular ejection rate in man. Circulation 1968; 38: 229–239.PubMedCrossRefGoogle Scholar
  46. 46.
    Graettinger JS, Muenster JJ, Checchia CS, Grissom RL, Campbell JA. A correlation of clinical and hemodynamic studies in patients with hypothyroidism. J Clin Invest 1958; 37: 502–510.PubMedCrossRefGoogle Scholar
  47. 47.
    Gaunt R, Birnie JH, Eversole WJ. Adrenal cortex and water metabolism. Physiol Rev 1949; 29: 281–310.PubMedGoogle Scholar
  48. 48.
    Kleeman CR, Czaczkes JW, Cutler R. Mechanisms of impaired water excretion in adrenal and pituitary insufficiency: IV. Antidiuretic hormone in primary and secondary adrenal insufficiency. J Clin Invest 1964; 43: 1641–1648.PubMedCrossRefGoogle Scholar
  49. 49.
    Linas SL, Berl T, Robertson GL, Aisenbrey GA, Schrier RW, Anderson RJ. Role of vasopressin in the impaired water excretion of glucocorticoid deficiency. Kidney Int 1980; 18: 58–67.PubMedCrossRefGoogle Scholar
  50. 50.
    Ishikawa S, Schrier RW. Effect of arginine vasopressin antagonist on renal water excretion in glucocorticoid and mineralocorticoid deficient rats. Kidney Int 1982; 22: 587–593.PubMedCrossRefGoogle Scholar
  51. 51.
    Boykin J, DeTorrente A, Erickson A, Robertson G, Schrier RW. Role of plasma vasopressin in impaired water excretion of glucocorticoid deficiency. J Clin Invest 1978; 62: 738–744.PubMedCrossRefGoogle Scholar
  52. 52.
    Mandell IN, DeFronzo RA, Robertson GL, Forrest JN. Role of plasma arginine vasopressin in the impaired water diuresis of isolated glucocorticoid deficiency in the rat. Kidney Int 1980; 17: 186–195.PubMedCrossRefGoogle Scholar
  53. 53.
    Martin MM. Coexisting anterior and neurohypophyseal insufficiency: A syndrome with diagnostic implication. Arch Intern Med 1969; 123: 409–416.CrossRefGoogle Scholar
  54. 54.
    Green HH, Harrington AR, Valtin H. On the role of antidiuretic hormone in the inhibition of acute water diuresis in adrenal insufficiency and the effects of gluco- and mineralocorticoids in reversing the inhibition. J Clin Invest 1970; 49: 1724–1736.PubMedCrossRefGoogle Scholar
  55. 55.
    Harrop GA, Soffer LJ, Ellsworth R, Trescher JH. Studies on the suprarenal cortex. III. Plasma electrolytes and electrolyte excretion during suprarenal insufficiency in the dog. J Exp Med 1933; 58: 17–38.PubMedCrossRefGoogle Scholar
  56. 56.
    Ufferman RC, Schrier RW. Importance of sodium intake and mineralocorticoid hormone in the impaired water excretion in adrenal insufficiency. J Clin Invest 1972; 51: 1639–1646.PubMedCrossRefGoogle Scholar
  57. 57.
    Boykin J, Detorrente A, Robertson GL, Erickson A, Schrier RW. Mechanism of impaired water excretion in mineralocorticoid deficient dogs. Miner Electrolyte Metab 1979; 2: 310–315.Google Scholar
  58. 58.
    Share L, Travis RH. Plasma vasopressin concentration in the adrenally insufficient dog. Endocrinology 1970; 86: 196–201.PubMedCrossRefGoogle Scholar
  59. 59.
    Peters JP. The role of sodium in the production of edema. N Engl J Med 1948; 239: 353–362.PubMedCrossRefGoogle Scholar
  60. 60.
    Schrier RW. Pathogenesis of sodium and water retention in high-output and low-output cardiac failure, nephrotic syndrome, cirrhosis, and pregnancy (1). N Engl J Med 1988; 319 (16): 1065–1072.PubMedCrossRefGoogle Scholar
  61. 61.
    Schrier RW. Pathogenesis of sodium and water retention in high-output and low-output cardiac failure, nephrotic syndrome, cirrhosis, and pregnancy (2). N Engl J Med 1988; 319 (17): 1127–1134.PubMedCrossRefGoogle Scholar
  62. 62.
    Schrier RW. Body fluid volume regulation in health and disease: a unifying hypothesis. Ann Intern Med 1990; 113: 155–159.PubMedGoogle Scholar
  63. 63.
    Riegger MG, Liebau G. The renin-angiotensin-aldosterone system, antidiuretic hormone and sympathetic nerve activity in an experimental model of congestive heart failure in the dog. Clin Sci 1982; 62: 465–469.PubMedGoogle Scholar
  64. 64.
    Ishikawa S, Saito T, Okada K, Tsutsui K, Kuzuya T. Effect of vasopressin antagonist on water excretion in inferior vena cava constriction. Kidney Int 1986; 30: 49–55.PubMedCrossRefGoogle Scholar
  65. 65.
    Handelman WA, Lum GM, Schrier RW. Impaired water excretion in high output cardiac failure in the rat (abstract). Clin Res 1979; 27: 173A.Google Scholar
  66. 66.
    Kim JK, Michel JB, Soubrier F, Dun J, Corvol P, Schrier RW. Arginine vasopressin gene expression in congestive heart failure (abstract). Kidney Int 1988; 33: 270.Google Scholar
  67. 67.
    Robertson GL. The regulation of vasopressin function in health and disease. Recent Prog Horm Res 1977; 33: 333–375.Google Scholar
  68. 68.
    Riegger AJG, Liebau G, Kochsiek K. Antidiuretic hormone in congestive heart failure. Am J Med 1982; 72: 49–57.PubMedCrossRefGoogle Scholar
  69. 69.
    Bichet DG, Kortas C, Mettauer B, Manzini C, Marc-Aurele J, Rouleau JL, Schrier RW. Modulation of plasma and platelet vasopressin by cardiac function in patients with heart failure. Kidney Int 1986; 29: 1188–1196.PubMedCrossRefGoogle Scholar
  70. 70.
    The Consensus Trial Study Group. Effects of enalapril on mortality in severe congestive heart failure: results of the cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). N Engl J Med 1987; 316: 1429–1435.CrossRefGoogle Scholar
  71. 71.
    Konstam MA, Kronenberg MW, Rousseau MF, Udelson JE, Melin J, Stewart D, Dolan N, Edens TR, Ahn S, Kinan D. Effects of the angiotensin converting enzyme inhibitor enalapril on the long-term progression of left ventricular dilatation in patients with asymptomatic systolic dysfunction. SOLVD (Studies of Left Ventricular Dysfunction) Investigators. Circulation 1993; 88: 2277–2283.PubMedCrossRefGoogle Scholar
  72. 72.
    Ziesche S, Cobb FR, Cohn JN, Johnson G, Tristani F. Hydralazine and isosorbide dinitrate combination improves exercise tolerance in heart failure. Results from V-HeFT I and V-HeFT II. The V-HeFT VA Cooperative Studies Group. Circulation 1993;87(6 Suppl):SV 156–164.Google Scholar
  73. 73.
    Bichet DG, Szatalowicz V, Chaimovitz C, Schrier RW. Role of vasopressin in abnormal water excretion in cirrhotic patients. Ann Intern Med 1982; 96: 413–417.PubMedGoogle Scholar
  74. 74.
    Schrier RW, Arroyo V, Bernardi M, Epstein M, Henriksen JH, Rodes J. Peripheral arterial vasodilation hypothesis: a proposal for the initiation of renal sodium and water retention. J Hepatol 1987; 6: 239–257.Google Scholar
  75. 75.
    Usberti M, Federico S, Meccariello S, Cianciaruso B, Balletta M, Pecoraro C, Sacca L, Ungaro B, Pisanti N, Andreucci VE. Role of plasma vasopressin in the impairment of water excretion in nephrotic syndrome. Kidney Int 1984; 25: 422–429.PubMedCrossRefGoogle Scholar
  76. 76.
    Ichikawa I, Rennke HG, Hoyer JR, Badr KF, Schor N, Troy JL, Lechene CP, Brenner BM. Role for intrarenal mechanisms in the impaired salt excretion of experimental nephrotic syndrome. J Clin Invest 1983; 71: 91–103.PubMedCrossRefGoogle Scholar
  77. 77.
    Forsling ML, Rees M. Effects of hypoxia and hypercapnia on plasma vasopressin concentration. J Endocrino11975; 67: 62 p.Google Scholar
  78. 78.
    Forsling ML, Ullman EA. Release of vasopressin during hypoxia. J Physiol 1974; 241: 35 P.Google Scholar
  79. 79.
    Farber MO, Kiblawi SSO, Strawbridge RA, Robertson GL, Weinberger MH, Manfredi F. Studies on plasma vasopressin and the renin-angiotensin-aldosterone system in chronic obstructive lung disease. J Lab Clin Med 1977; 90 (2): 373–380.PubMedGoogle Scholar
  80. 80.
    Anderson RJ, Pluss RG, Berns AS, Jackson JT, Arnold PE, Schrier RW, McDonald ICE. Mechanism of effect of hypoxia on renal water excretion. J Clin Invest 1978; 62: 769–777.PubMedCrossRefGoogle Scholar
  81. 81.
    Farber MO, Roberts LR, Weinberger MH, Robertson GL, Fineberg NS, Manfredi F. Abnormalities of sodium and water handling in chronic obstructive lung disease. Arch Intern Med 1982; 142: 1326–1330.PubMedCrossRefGoogle Scholar
  82. 82.
    Farber MO, Weinberger MH, Robertson GL, Fineberg NS, Manfredi F. Hormonal abnormalities affecting sodium and water balance in acute respiratory failure due to chronic obstructive lung disease. Chest 1984; 85: 49–54.PubMedCrossRefGoogle Scholar
  83. 83.
    Weinberger SE, Schwartzstein RM, Weiss JW. Hypercapnia. N Engl J Med 1989; 321: 1223–1231.CrossRefGoogle Scholar
  84. 84.
    Chabot F, Mertes PM, Delorme N, Schrijen FV, Saunier CG, Polu JM. Effect of acute hypercapnia on alpha atrial natriuretic peptide, renin, angiotensin II, aldosterone, and vasopressin plasma levels in patients with COPD. Chest 1995; 107: 780–786.PubMedCrossRefGoogle Scholar
  85. 85.
    Sladen A, Laver MB. Pulmonary complications and water retention in prolonged mechanical ventilation. N Engl J Med 1968; 279: 448–453.PubMedCrossRefGoogle Scholar
  86. 86.
    Robotham JL, Sharf SM. Effects of positive and negative pressure ventilation on cardiac performance. Clin Chest Med 1983; 4: 161–187.PubMedGoogle Scholar
  87. 87.
    Bark H, Le Roith D, Myska M, Glick SM. Elevations in plasma ADH levels during PEEP ventilation in the dog: mechanisms involved. Am J Physiol 1980; 239: E474 - E48.PubMedGoogle Scholar
  88. 88.
    Khambatta HJ, Baratz RA. IPPB plasma ADH and urine flow in conscious man J Appl Physiol 1972; 33: 362–364.Google Scholar
  89. 89.
    Farge D, De La Coussaye JE, Beloucif S, Fratacci MD, Payen DM. Interactions between hemodynamic and hormonal modifications during PEEP-induced antidiuresis and antidiuresis. Chest 1995; 107: 1095–1100.PubMedCrossRefGoogle Scholar
  90. 90.
    Sorensen JB, Andersen MK, Hansen HH. Syndrome of inappropriate secretion of antidiuretic hormone (SIADH) in malignant disease. J Intern Med 1995; 238: 97–110.PubMedCrossRefGoogle Scholar
  91. 91.
    Gross AJ, Steinberg SM, Reilly JG, Bliss DP, Brennan J, Le PT, Simmons A, Phelps R, Mulshine JL, Ihde DC, Johnson BE. Atrial natriuretic factor and arginine vasopressin production in tumor cell lines from patients with lung cancer and their relationship to serum sodium. Cancer Res 1993; 53: 67–74.PubMedGoogle Scholar
  92. 92.
    Weiss H, Katz S. Hyponatremia resulting from apparently inappropriate secretion of antidiuretic hormone in patients with pulmonary tuberculosis. Am Rev Respir Dis 1965; 92: 609–616.PubMedGoogle Scholar
  93. 93.
    Vorherr H, Massry SG, Fallet R, Kaplan L, Kleeman CR. Antidiuretic principle in tuberculous lung tissue of a patient with pulmonary tuberculosis and hyponatremia. Ann Intern Med 1970; 72: 383–387.PubMedGoogle Scholar
  94. 94.
    Rosenow EC, Segar WE, Zehr JE. Inappropriate antidiuretic hormone secretion in pneumonia. Mayo Clin Proc 1972; 47: 169–174.PubMedGoogle Scholar
  95. 95.
    Pollard RB. Inappropriate secretion of antidiuretic hormone associated with adenovirus pneumonia. Chest 1975; 68 (4): 589–591.PubMedCrossRefGoogle Scholar
  96. 96.
    Breuer R, Rubinow A. Inappropriate secretion of antidiuretic hormone and mycoplasma pneumonia infection. Respiration 1981; 42: 217–219.PubMedGoogle Scholar
  97. 97.
    Ayus JC, Wheeler JM, Arieff AI. Postoperative hyponatremic encephalopathy in menstruant women. Ann Intern Med 1992; 117: 891–897.PubMedGoogle Scholar
  98. 98.
    Verbalis JG. Hyponatremia induced by vasopressin or desmopressin in female and male rats. J Am Soc Nephrol 1993; 3: 1600–1606.PubMedGoogle Scholar
  99. 99.
    Fraser CL, Kucharczyk J, Arieff AI, Rollin C, Sarnacki P, Norman D. Sex differences result in increased morbidity from hyponatremia in female rats. Am J Physiol 1989; 256: R880 - R885.PubMedGoogle Scholar
  100. 100.
    Butter FC, Schwartz WB. The syndrome of inappropriate secretion of antidiuretic hormone. Am J Med 1967; 42: 790–806.CrossRefGoogle Scholar
  101. 101.
    Campling BG, Sarda IR, Baer KA, Pang SC, Baker HM, Lofters WS, Flynn TG. Secretion of atrial natriuretic peptide and vasopressin by small cell lung cancer. Cancer 1995; 75: 2442–2451.PubMedCrossRefGoogle Scholar
  102. 102.
    Sorensen JB, Andersen MK, Hansen HH. Syndrome of inappropriate secretion of antidiuretic hormone (SIADH) in malignant disease. J Intern Med 1995; 238: 97–110.PubMedCrossRefGoogle Scholar
  103. 103.
    Weshl AE, Thieblemont C, Cottin V, Barbet N, Catimel G. Cisplatin-induced hyponatremia and renal sodium wasting. Acta Oncologica 1995; 34: 264–265.CrossRefGoogle Scholar
  104. 104.
    Lammers PJ, White L, Ettinger LJ. Cis-platinum-induced renal sodium wasting. Med Pediatr Oncol 1984; 12: 343–346.PubMedCrossRefGoogle Scholar
  105. 105.
    Abe T, Takaue Y, Okamoto Y, Yamaue T, Nakagawa R, Makimoto A, Sato J, Kawano Y, Kuroda Y. Syndrome of inappropriate antidiuretic hormone secretion (SIADH) in children undergoing high-dose chemotherapy and autologous peripheral blood stem cell transplantation. Pediatr Hematol Oncol 1995; 12 (4): 363–369.PubMedCrossRefGoogle Scholar
  106. 106.
    Bissett D, Cornford EJ, Sokal M. Hyponatraemia following cisplatin chemotherapy. Acta Oncol 1989; 28 (6): 823.PubMedCrossRefGoogle Scholar
  107. 107.
    Mastorakos G, Weber JS, Magiakou M, Gunn H, Chrousos GP. Hypothalamic-pituitary-adrenal axis activation and stimulation of systemic vasopressin secretion by recombinant interleukin-6 in humans: potential implications for the syndrome of inappropriate vasopressin secretion. J Clin Endocrinol Metab 1994; 79: 934–939.PubMedCrossRefGoogle Scholar
  108. 108.
    Kalogeras KT, Nieman LK, Friedman TC, Doppman JL, Cutler GB, Chrousos GP, Wilder RL, Gold PW, Yanovski JA. Inferior petrosal sinus sampling in healthy human subjects reveals a unilateral corticotropin-releasing hormone-induced arginine vasopressin release associated with ipsilateral adrenocorticotropin secretion. J Clin Invest 1996; 97: 2045–2050.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Mary H. Parks
  • Joseph G. Verbalis

There are no affiliations available

Personalised recommendations