Thyroid Response to Critical Illness

  • Jonathan S. LoPresti
  • John T. Nicoloff
Part of the Contemporary Endocrinology book series (COE, volume 4)


The imposition of a stress, such as systemic nonthyroidal illness (NTI) or caloric deprivation in euthyroid humans, produces characteristic alterations in serum thyroid hormone indices, which, in certain instances, may minimize the catabolic impact of these events (1–3). The initial step in this process is characterized by the development of the so-called low T3 state where serum total and free T3 values are reduced, but serum T4 levels remain normal. This represents the most common thyroid response observed in systemic illness. If the NTI progresses or is severe on presentation, then total serum T4 concentrations may also become depressed producing a combined low T3—T4 state. Despite these reductions in circulating T3 and T4 levels, serum TSH values, for the most part, remain normal, justifying the use of the descriptive term euthyroid sick syndrome. Further, these patients typically do not display characteristic features suggestive of hypothyroidism. It is also of interest that these changes in thyroid hormone economy usually are paralleled by alterations in other anabolic endocrine systems, such as growth hormone/IGF-1 and the reproductive hormones (4,5). Thus, systemic illnesses and nutritional deprivation induce an apparent integrated response involving multiple endocrine systems.


Thyroid Hormone Human Immunodeficiency Virus Infection Thyroxine Binding Globulin Nonthyroidal Illness Thyroid Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wartofsky L, Burman KD. Alterations in thyroid function in patients with systemic illnesses: the “euthyroid sick syndrome”. Endocrinol Rev 1982; 3: 164–217.CrossRefGoogle Scholar
  2. 2.
    Tibaldi JM, Surks MI. Effect of nonthyroidal illness on thyroid function. Med Clin North Am 1985; 69: 899–911.PubMedGoogle Scholar
  3. 3.
    Docter E, Krenning EP, deJong M, Hennemann G. The sick euthyroid syndrome: changes in thyroid hormone serum parameters and hormone metabolism. Clin Endocrinol 1993; 39: 499–518.CrossRefGoogle Scholar
  4. 4.
    Moller S, Juul A, Becker U, Flyvbyers A, Skakkeback NE, Henriksen JH. Concentrations, release, and disposal of insulin-like growth factor (IGF)-binding proteins (IGFBP), IGF-1, and growth hormone in different vascular beds in patients with cirrhosis. J Clin Endocrinol Metab 1995; 80: 1148–1157.PubMedCrossRefGoogle Scholar
  5. 5.
    Spratt DI, Gigas ST, Beitins I, Cox P, Longcope C, Orav J. Both hyper and hypogonadotropic hypogonadism occur transiently in acute illness: bio and immunoactive gonadotropins. J Clin Endocrinol Metab 1992; 75: 1562–1570.PubMedCrossRefGoogle Scholar
  6. 6.
    Vitek V, Shatney CH. Thyroid hormone alterations in patients with shock and injury. Injury 1987; 18: 336–341.PubMedCrossRefGoogle Scholar
  7. 7.
    Becker RA, Wilmore DW, Goodwin CW, et al. Free T4, free T3 and reverse T3 in critically ill, thermally injured patients. J Trauma 1980; 20: 713–721.PubMedCrossRefGoogle Scholar
  8. 8.
    Talwar KK, Sawhney RC, Rastogi RK. Serum levels of thyrotropin, thyroid hormones and their response to thyrotropin releasing hormone in infective febrile illness. J Clin Endocrinol Metab 1977; 44: 398–403.PubMedCrossRefGoogle Scholar
  9. 9.
    Lutz JH, Gregerman RF, Spaulding SW, Hornick RB, Dawkins AT, Jr. Thyroxine binding proteins, free thyroxine and thyroxine turnover interrelationships during acute infectious illness in man. J Clin Endocrinol Metab 1972; 35: 230–249.PubMedCrossRefGoogle Scholar
  10. 10.
    Smith SJ, Bas G, Gerbrandy J, Docter R, Visser TJ, Hennemann G. Lowering of serum 3,3’5triiodothyronine thyroxine ratio in patients with myocardial infarction; relationship with extent of tissue injury. Eur J Clin Invest 1978; 8: 99–102.PubMedCrossRefGoogle Scholar
  11. 11.
    Brandt MR, Skovsted L, Kehlet H, Hansen JM. Rapid decrease in plasma triiodothyronine during surgery and epidural anesthesia independent of afferent neurogenic stimuli and cortisol. Lancet 1976; 2: 1333–1335.PubMedCrossRefGoogle Scholar
  12. 12.
    Chopra IJ, Solomon DH, Chopra U, Young RT, Chua Teco GN. Alterations in circulating thyroid hormones and thyrotropin in hepatic cirrhosis: evidence for euthyroidism despite subnormal serum triiodothyronine. J Clin Endocrinol Metab 1974; 39: 501–511.PubMedCrossRefGoogle Scholar
  13. 13.
    Alexander CM, Kaptein EM, Lum SMC, Spencer CA, Kumar D, Nicoloff JT. Pattern of recovery of thyroid hormone indices associated with treatment of diabetes mellitus. J Clin Endocrinol Metab 1982; 54: 362–366.PubMedCrossRefGoogle Scholar
  14. 14.
    Spencer CA, Lum SMC, Wilber JF, Kaptein EM, Nicoloff JT. Dynamics of the thyrotropin and thyroid hormone changes in fasting. J Clin Endocrinol Metab 1983; 56: 887–888.CrossRefGoogle Scholar
  15. 15.
    Bermudez F, Surks MI, Oppenheimer JI. High incidence of decreased serum triiodothyronine concentration in patients with nonthyroidal disease. J Clin Endocrinol Metab 1975; 41: 27–40.PubMedCrossRefGoogle Scholar
  16. 16.
    Rothwell PM, Udwadia ZF, Lawlser PG. Thyrotropin concentration predicts outcome in critical illness. Anesthesia 1993 1993; 48: 373–376.CrossRefGoogle Scholar
  17. 17.
    Refetoff S and Nicoloff JT. Thyroid hormone transport and metabolism. In: DeGroot LJ, ed. Endocrinology, vol. 1. Saunders, Philadelphia, 1995, pp. 560–582.Google Scholar
  18. 18.
    Lum SMC, Nicoloff JT, Spencer, CA, Kaptein EM. Peripheral tissue mechanism for maintenance of serum T3 values in a T4-deficient state in man J Clin Invest 1984; 73: 571–575.Google Scholar
  19. 19.
    Engler D, Merkelbach U, Steiger G, Burger AG. The monodeiodination of triiodothyronine and reverse triiodothyronine in man: a quantitative evaluation of the pathway by the use of turnover rate techniques. J Clin Endocrinol Metab 1984; 58: 49–61.PubMedCrossRefGoogle Scholar
  20. 20.
    LoPresti JS, Nicoloff JT. 3,5,3’-triiodothyronine sulfate: a major metabolite in 3,5,3’-triiodothyronine metabolism in man J Clin Endocrinol Metab 1993; 78: 688–692.Google Scholar
  21. 21.
    Dlott RS, Nicoloff JT, LoPresti JS. Does triiodothyroacetic accid (T3AC) formation mediate the low T3 state (LT3S) in man? Program of 74th Annual Meeting of the Endocrine Society, San Antonio, TX 1992, 136 (338).Google Scholar
  22. 22.
    Arem R, Wiener GJ, Kaplan SG, Kim H-S, Reichlin S, Kaplan MM. Reduced tissue thyroid hormone levels in fatal illness. Metabolism 1993; 42: 1102–1108.PubMedCrossRefGoogle Scholar
  23. 23.
    Faber J, Francis-Thomsen H, Lumholtz IB, Kirkegaard C, Sierbach-Nielsen K, Friis T. Kinetic studies of thyroxine, 3,5,3’-triiodothyronine, 3,3’,5’-triiodothyronine, 3’ diiodothyronine, 3,3’-diiodothyronine and 3’-monoiodothyronine in patients with liver cirrhosis. J Clin Endocrinol Metab 1981; 53: 978–984.PubMedCrossRefGoogle Scholar
  24. 24.
    LoPresti JS, Spencer CA, Nicoloff JT. Search for a missing deiodinative metabolite of T4 in fasting man. Program of the 72nd Endocrine Society, Atlanta, GA 1990, 211 (245).Google Scholar
  25. 25.
    Kaptein EM, Robinson WJ, Grieb DA, Nicoloff JT. Peripheral serum thyroxine, triiodothyronine, and reverse triiodothyronine kinetics in the low thyroxine state of acute nonthyroidal illness. J Clin Invest 1982; 69: 526–535.PubMedCrossRefGoogle Scholar
  26. 26.
    Spaulding SW, Smith TJ, Hinkle PM, Davis FB, Kung M-P, Roth JA. Studies on the biological activity of triiodothyronine sulfate. J Clin Endocrinol Metab 1992; 74: 1062–1067.PubMedCrossRefGoogle Scholar
  27. 27.
    Young WF, Gorman CA, Weinshilboum RM. Triiodothyronine: a substrate for thermostabile and thermolabile forms of human phenol sulfotransferase. Endocrinology 1988; 122: 1816–1824.PubMedCrossRefGoogle Scholar
  28. 28.
    Chopra IS, Wu SY, Teio GNC, Santini F. A radioimmunoassay for measurement of 3,5,3’-triiodothyronine sulfate: studies in thyroidal and nonthyroidal diseases, pregnancy and neonatal life. J Clin Endocrinol Metab 1992; 75: 189–194.PubMedCrossRefGoogle Scholar
  29. 29.
    Menegay C, Juge C, Burger AG. Pharmacokinetics of 3,5,3’-triiodothyroacetic acid and its effects on serum TSH levels. Acta Endocrinologica 1989; 121: 651–658.PubMedGoogle Scholar
  30. 30.
    DeFranzo RA, Ferrannini E. Regulation of intermediary metabolism during fasting and refeeding. In: DeGroot LJ, ed. Endocrinology, vol. 2. Saunders, Philadelphia, 1995;pp. 1389–1410.Google Scholar
  31. 31.
    Gardner DR, Kaplan MM, Stanley CA, Utiger RD. Effect of triiodothyronine replacement on the metabolic and pituitary responses to starvation. N Engl J Med 1979; 300: 579–584.PubMedCrossRefGoogle Scholar
  32. 32.
    Burman KD, Wartofsky L, Dinterman RE, Kesler P, Wannemacher RW, Jr. The effect of T3 and reverse T3 administration on muscle protein catabolism during fasting as measured by 3-methylhistidine excretion. Metabolism 1979; 28: 805–813.PubMedCrossRefGoogle Scholar
  33. 33.
    Eisler JS, Kaptein EM, Drinick EJ, Nicoloff JT, Yoshimura NN, Swendseid ME. Metabolic and hormonal factors as predictors of nitrogen retention in obese men consuming very low calorie diets. Metabolism 1985; 34: 101–105.CrossRefGoogle Scholar
  34. 34.
    Croxson MS, Ibbertson HK. Low serum triiodothyronine (T3) and hypothyroidism in anorexia nervosa. J Clin Endocrinol Metab 1977; 44: 167–174.PubMedCrossRefGoogle Scholar
  35. 35.
    Byerley LO, Helier D. Metabolic effects of triiodothyronine replacement during fasting in obese subjects. J Clin Endocrinol Metab 1996; 81: 968–976.PubMedCrossRefGoogle Scholar
  36. 36.
    Kaptein EM, Grieb DA, Spencer CA, Wheeler WS, Nicoloff JT. Thyroxine metabolism in the low thyroxine state of critical nonthyroidal illness. J Clin Endocrinol Metab 1981; 53: 764–771.PubMedCrossRefGoogle Scholar
  37. 37.
    Chopra IJ, Huang TS, Hurd RE, Beredo A, Solomon DH. A competitive ligand binding assay for measurement of thyroid hormone-binding inhibitor in serum and tissues. J Clin Endocrinol Metab 1984; 58: 619–628.PubMedCrossRefGoogle Scholar
  38. 38.
    Chopra IJ, Huang TS, Beredo A, Solomon DH, Chua-Teco GN, Mead JF. Evidence for an inhibitor of extrathyroidal conversion of thyroxine to 3,5,3’-triiodothyronine in serum of patients with nonthyroidal illnesses. J Clin Endocrinol Metab 1985; 60: 666–672.PubMedCrossRefGoogle Scholar
  39. 39.
    Huang TS, Hurd RE, Chopra IJ, Stevens P, Solomon DH, Young LS. Inhibition of phagocytosis and chemiluminescence in human leukocytes by a lipid soluble factor in normal tissues. Infect Immun 1984; 46: 544–550.PubMedGoogle Scholar
  40. 40.
    Haynes IG, Lockett SJ, Farmer MJ, et al. Is oleic acid the thyroxine binding inhibitor in the serum of ill patients? Clin Endocrinol 1989; 31: 25–30.CrossRefGoogle Scholar
  41. 41.
    Reilly CP, Welley ML. Slow thyroxine binding globulin in the pathogenesis of increased dialyzable fraction of thyroxine in nonthyroidal illness. J Clin Endocrinol Metab 1983; 57: 15–18.PubMedCrossRefGoogle Scholar
  42. 42.
    Slag MF, Morley JE, Elson MK, Croxson TW, Nuttall FQ, Shafer RB. Hypothyroxinemia in critically ill patients as a predictor of high mortality. JAMA 1981; 245: 43–45.PubMedCrossRefGoogle Scholar
  43. 43.
    Kaptein EM, Weiner JM, Robinson WJ, Wheeler WS, Nicoloff JT. Relationship of altered thyroid hormone indices to survival in nonthyroidal illness. Clin Endocrinol 1982; 16: 565–579.CrossRefGoogle Scholar
  44. 44.
    Phillips RH, Valente WA, Caplan ES, Connor TB, Wisweil JG. Circulating thyroid hormone changes in acute trauma: prognostic implications for clinical outcome. J Trauma 1984; 24: 116–119.PubMedCrossRefGoogle Scholar
  45. 45.
    Kaufman DA, Dlott R, Townsend R, Mizuno L, Weiner J, Nicoloff J. Indices of thyroid function as predictors of outcome in critically ill patients. Clin Res 1988; 36: 101A.Google Scholar
  46. 46.
    Whicher JT, Evans SW. Cytokines in disease. Clin Chem 1990; 26: 1269–1281.Google Scholar
  47. 47.
    Kakuscka I, Romero LI, Clark BD, et al. Suppression of thyrotropin-releasing hormone gene expression by interleukin-1-beta in the rat: implications for nonthyroidal illness. Neuroendocrinology 1994; 59: 129–134.CrossRefGoogle Scholar
  48. 48.
    Stouthard JML, Van der Poll T, Endert E, et al. Effects of acute and chronic interleukin-6 administration on thyroid hormone metabolism in humans. J Clin Endocrinol Metab 1994; 79: 1342–1346.PubMedCrossRefGoogle Scholar
  49. 49.
    vanderPall T, Romijn JA, Wiersinga WM, Sauerwein HP. Tumor necrosis factor: a putative mediator of the sick euthyroid syndrome in man. J Clin Endocrinol Metab 1990; 71: 1567–1572.CrossRefGoogle Scholar
  50. 50.
    Dubuis JM, Dayer JM, Siegrist-Kaiser CA, Burger AG. Human recombinant interleukin I-(3 decreases plasma thyroid hormone and thyroid stimulating hormone levels in rats. Endocrinology 1988; 123: 2175–2181.PubMedCrossRefGoogle Scholar
  51. 51.
    Pang X-P, Hershman JM, Mirell CJ, Pekary EA. Impairment of hypothalamic-pituitary-thyroid function in rats treated with human recombinant tumor necrosis factor-a (cachetin). Endocrinology 1989; 125: 76–84.PubMedCrossRefGoogle Scholar
  52. 52.
    Brabant G, Brabant A, Ranft U, et al. Circadian and pulsatile thyrotropin secretion in euthyroid man under the influence of thyroid hormone and glucocorticoid administration. J Clin Endocrinol Metab 1987; 65: 83–88.PubMedCrossRefGoogle Scholar
  53. 53.
    LoPresti JS, Eigen A, Kaptein E, Anderson KP, Spencer CA, Nicoloff JT. Alterations in 3,3’,5’triiodothyronine metabolism in response to propylthiouracil, dexamethasone, and thyroxine administration in man. J Clin Invest 1989; 84: 1650–1656.PubMedCrossRefGoogle Scholar
  54. 54.
    Davidson MB, Chopra IJ. Effect of carbohydrate and noncarbohydrate series of calories on plasma 3,5,3’-tiiodothyronine concentrations in man. J Clin Endocrinol Metab 1979; 48: 577–581.PubMedCrossRefGoogle Scholar
  55. 55.
    Otten MH, Hennemann G, Docter R, Visser TJ. The role of dietary fat in peripheral thyroid hormone metabolism. Metabolism 1980; 29: 930–935.PubMedCrossRefGoogle Scholar
  56. 56.
    Hamblin PS, Dyer SA, Mohn VS, et al. Relationship between thyrotropin and thyroxine changes during recovery from severe hypothyroxinemia of critical illness. J Clin Endocrinol Metab 1986; 62: 717–722.PubMedCrossRefGoogle Scholar
  57. 57.
    Spencer CA, Eigen A, Shen D, et al. Sensitive TSH tests-specificity limitations for screening for thyroid disease in hospitalized patients. Clin Chem 1987; 33: 1391–1396.PubMedGoogle Scholar
  58. 58.
    Hughes J-N, Enjalbert A, Burger AG, Voiral M-J, Sebaoun J, Epelbaum J. Sensitivity of thyrotropin (TSH) secretion to 3,5,3’-triiodothyronine and TSH-released hormone in rat during starvation. Endocrinology 1986; 119: 253–269.CrossRefGoogle Scholar
  59. 59.
    Samuels MH, Luther M, Ridgway EC. Effect of hydrocortisone on pulsatile pituitary glycoprotein secretion. J Clin Endocrinol Metab 1994; 78: 211–215.PubMedCrossRefGoogle Scholar
  60. 60.
    vanderBergh G, deZeghe F, Vlasselaers D, Scheta M, Verwaest C, Ferdinande P, Lauer’s P. Thyrotropin-releasing hormone in critical illness: from a dopamine-dependent test to a strategy for increasing low serum triiodothyronine, prolactin, and growth hormone concentrations. Crit Care Med 1996; 24: 590–595.CrossRefGoogle Scholar
  61. 61.
    Beck-Peccoz P, Amr S, Menezes-Ferreira MM, Faglia G, Weintraub BD. Decreased receptor binding of biologically inactive thyrotropin in central hypothyroidism. Effect of treatment with thyrotropinreleasing hormone. N Engl J. Med 1985; 312: 1085–1090.PubMedCrossRefGoogle Scholar
  62. 62.
    Kaptein EM, Spencer CA, Kamiel MB, Nicoloff JT. Prolonged dopamine administration and thyroid hormone economy in normal and critically ill patients. J Clin Endocrinol Metab 1980; 51: 387–393.PubMedCrossRefGoogle Scholar
  63. 63.
    Zipser RD, Davenport MW, Martin KL, Swinney RR, Davis CL, Horton R. Hyperreninemic hypoaldosteronism in the critically ill: a new entity. J Clin Endocrinol Metab 1981; 53: 867–873.PubMedCrossRefGoogle Scholar
  64. 64.
    Novitsky D, Cooper DKC, Swanepoel A. Inotropic effect of triiodothyronine (T3) in low cardiac output following cardioplegic arrest and cardiopulmonary bypass: an initial experience in patients undergoing open heart surgery. Eur J Cardiothoracic Surg 1989; 3: 140–143.CrossRefGoogle Scholar
  65. 65.
    Novitsky D, Cooper DKC, Barton CI, et al. Triiodothyronine as an inotropic agent after open heart surgery. J Thoracic Cardiovasc Surg 1989; 98: 972–976.Google Scholar
  66. 66.
    Klemperer JD, Klein I, Gomez M, Helm RE, Ojamaa K, Thomas SJ, Isom OW, Kreiger K. Thyroid hormone treatment after coronary-artery bypass surgery. N Engl J Med 1995; 333: 1522–1527.PubMedCrossRefGoogle Scholar
  67. 67.
    Brent GA, Hershman JM. Thyroxine therapy in patients with severe nonthyroidal illness and low serum thyroxine concentration. Ann Intern Med 1986; 103: 1–7.Google Scholar
  68. 68.
    LoPresti JS, Fried JC, Spencer CA, Nicoloff JT. Unique alterations of thyroid hormone indices in the acquired immunodeficiency syndrome (AIDS). Ann Intern Med 1989; 110: 970–975.PubMedGoogle Scholar
  69. 69.
    Coodley GO, Loveless MO, Nelson HD, Coodley MK. Endocrine function in the HIV wasting syndrome. J Acquired Immune Defic Syndrome 1994; 7: 46–53.Google Scholar
  70. 70.
    Fried JC, LoPresti JS, Micon M, Bauer M, Tuchschmidt J, Nicoloff JT. Serum triiodothyronine values. Prognostic indicators of acute mortality due to pneumocystis carinii pneumonia associated with acquired immunodeficiency syndrome. Arch Int Med 1990; 150: 406–409.CrossRefGoogle Scholar
  71. 71.
    Hommes MJT, Romijn JA, Endert E, et al. Hypothyroid-like regulation of the pituitary thyroid axis in stable human immunodeficiency virus infection. Metabolism 1993; 42: 556–561.PubMedCrossRefGoogle Scholar
  72. 72.
    O’Connor CB, Sanvito M, DeCherney GS. Falling CD4 counts in HIV infection: relationship to thyroid hormone and thyroid hormone binding globulin (TBG). A review and new findings. Endocrinology 1995; 5: 371–376.CrossRefGoogle Scholar
  73. 73.
    Yamanaka T, Ido K, Kumura K, Saito T. Serum levels of thyroid hormones in liver disease. Clin Chim Acta 1980; 101: 45–55.PubMedCrossRefGoogle Scholar
  74. 74.
    Schussler GC, Schaffner F, Kam F. Increased serum thyroid hormone binding and decreased free hormone in chronic active liver disease. N Engl J Med 1978; 299: 510–515.PubMedCrossRefGoogle Scholar
  75. 75.
    Walfish PG, Orrego H, Israel Y, Blake J, Kalant H. Serum triiodothyronine and other clinical and laboratory indices of alcoholic liver disease. Ann Intern Med 1979; 91: 13–16.PubMedGoogle Scholar
  76. 76.
    Kaptein EM, Feinstein EI, Nicoloff JT, Massry SG. Serum reverse triiodothyronine and thyroxine kinetics in patients with chronic renal failure. J Clin Endocrinol Metab. 1983; 57: 181–189.PubMedCrossRefGoogle Scholar
  77. 77.
    Soffer E, Pelet D, Segal S, Bar-Khayim Y. Thyroid function in hemodialysis. Israel J Med Sci 1979; 15: 836–839.PubMedGoogle Scholar
  78. 78.
    Spratt DI, Pont A, Miller MB, et al. Hyperthyroxinemia in patients with acute psychiatric disorders. Am J Med 1982; 73: 41–48.PubMedCrossRefGoogle Scholar
  79. 79.
    Hein MD, Jackson IM. Review: thyroid function in psychiatric illness. Gen Hosp Psychiatry 1990; 12: 232–244.PubMedCrossRefGoogle Scholar
  80. 80.
    Ain KB, Mau Y, Refetoff S. Reduced clearance rate of thyroxine binding globulin (TBG) with increased sialylation: a mechanism for estrogen-induced elevations of serum TBG concentration. J Clin Endocrinol Metab 1987; 65: 689–692.PubMedCrossRefGoogle Scholar
  81. 81.
    Glinoer D, DeNayer P, Bourdoux P. Regulation of maternal thyroid function during pregnancy. J Clin Endocinol Metab 1990; 71: 276–287.CrossRefGoogle Scholar
  82. 82.
    Goodwin TM, Montoro M, Mestman JH, Pekary EA, Hershman JM. The role of chorionic gonadotropin in transient hyperthyroidism of hyperemesis gravidarum. J Clin Endocrinol Metab 1992; 75: 1333–1337.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Jonathan S. LoPresti
  • John T. Nicoloff

There are no affiliations available

Personalised recommendations