The Adrenocortical Response to Critical Illness

The CRH-ACTH-Cortisol Axis
  • Jay Watsky
  • Matthew C. Leinung
Part of the Contemporary Endocrinology book series (COE, volume 4)


The maintenance of normal, coordinated physiologic functioning of various organ systems of the body is the primary role of the endocrine system (1). Although the endocrine response to many forms of stress is relatively uniform, it is nevertheless complicated and comprehensive in scope. The adrenal cortex is a critical player in the endocrine response to major stress. Cortisol, the primary glucocorticoid secreted from the human adrenal gland, has long been recognized as a requirement for survival in critical illness. Although the physiologic effects of cortisol are widespread and complex, it may be reasonable to summarize its role in critical illness by stating that it prevents an overexuberant response of the potentially self-destructive immune system (2).


Cortisol Level Critical Illness Adrenal Insufficiency Cortisol Response ACTH Stimulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rolih C, Ober K. The endocrine response to critical illness. Med Clin North Am 1995; 79: 211–224.PubMedGoogle Scholar
  2. 2.
    Munck A, Guyre PM, Holbrook NJ. Physiological functions of glucocorticoids in stress and their relation to pharmacological actions. Endocr Rev 1984; 5: 25–44.PubMedCrossRefGoogle Scholar
  3. 3.
    Chrousos GP, Gold PW. The concepts of stress and stress system disorders. JAMA 1992; 267: 1244–1252.PubMedCrossRefGoogle Scholar
  4. 4.
    Stocco DM, Clark BJ. Regulation of the acute production of steroids in steroidogenic cells. Endocr Rev 1996; 17: 221–244.PubMedGoogle Scholar
  5. 5.
    Illingworth DR, Kenny TA, Orwoll ES. Adrenal function in heterozygous and homozygous hypobelalipoproteinemia. J Clin Endocrinol Metab 1982; 54: 27–33.PubMedCrossRefGoogle Scholar
  6. 6.
    Simpson ER, Waterman MR. Regulation of the synthesis of steroidogenic enzymes in adrenal cortical cells by ACTH. Annu Rev Physiol 1988; 50: 427–440.PubMedCrossRefGoogle Scholar
  7. 7.
    Parker LN, Levin ER, Lifrak ET. Evidence for adrenocortical adaptation to severe illness. J Clin Endocrinol Metab 1985; 60: 947–952.PubMedCrossRefGoogle Scholar
  8. 8.
    Orth DN, Kovacs WJ, Debold CR. The adrenal cortex. In: Wilson JD, Foster DW, eds. Williams Textbook of Endocrinology, 8th ed. Philadephia, Saunders 1992, pp. 489–620.Google Scholar
  9. 9.
    Kehlet H. A rational approach to dosage and preparation of parenteral glucocorticoid substitution therapy during surgical procedure. Acta Anaesth Scand 1975; 19: 260–264.PubMedCrossRefGoogle Scholar
  10. 10.
    Loriaux DL. Adrenocortical insufficiency. In: Becker KL, ed. Principles and Practice of Endocrinology and Metablosim, 8th ed. J Lippincott, Philadelphia, 1995, pp. 682–695.Google Scholar
  11. 11.
    Chernow B, Alexamder HR, Smallridge RC, Thompson WR, Cook D, Beardsley D, Fink MP, Lake R, Fletcher JR. Hormonal responses to graded surgical stress. Arch Intern Med 1987; 147: 1273–1278.PubMedCrossRefGoogle Scholar
  12. 12.
    Schein RM, Sprung CL, Marcial E, Napolitano L, Chernow B. Plasma cortisol levels in patients with septic shock. Crit Care Med 1990; 18: 259–263.PubMedCrossRefGoogle Scholar
  13. 13.
    Raff H, Norton AJ, Flemma RJ, Findling JW. Inhibition of the adrenocorticotropin response to surgery in humans: interaction between dexamethasone and fentanyl. J Clin Endocrinol Metab 1987; 65: 295–298.PubMedCrossRefGoogle Scholar
  14. 14.
    Spangelo BL, Macleod RM. The role of immunopeptides in the regulation of anterior pituitary hormone release. Trends Endocrinol Metab 1990; 1: 408–412.PubMedCrossRefGoogle Scholar
  15. 15.
    Blalock JE. A molecular basis for bidirectional communication between the immune and neuroendocrine systems. Physiol Rev 1989; 69: 1–32.PubMedGoogle Scholar
  16. 16.
    Besedovsky HO, Del Rey A. Immune-neuro-endocrine interactions: facts and hypotheses. Endocr Rev 1996; 17: 64–102.PubMedGoogle Scholar
  17. 17.
    Besedovsky HO, Del Rey A. Immune-neuroendocrine circuits: integrative role of cytokines. Front Neuroendocrinol 1992; 13: 61–94.PubMedGoogle Scholar
  18. 18.
    Gaillard RC. Neuroendocrine-immune system interactions. Trends in Endocrinol Metab 1994; 5: 303–309.CrossRefGoogle Scholar
  19. 19.
    Weigent DA, Blalock JE. Interaction between the neuroendocrine and immune systems: common hormones and receptors. Immunol Rev 1987; 100: 79–108.PubMedCrossRefGoogle Scholar
  20. 20.
    Dupont AG, Somers G, Van Steirteghem AC, Warson F, Vanhaelst L. Ectopic adrenocorticotropin production: disappearance after removal of inflammatory tissue. J Clin Endocrinol Metab 1984; 58: 654–658.PubMedCrossRefGoogle Scholar
  21. 21.
    Mendel CM. The free hormone hypothesis: a physiologically based mathematical model. Endocr Rev 1989; 10: 232–274.PubMedCrossRefGoogle Scholar
  22. 22.
    Rosner W. Plasma steroid-binding proteins. Endocrinol Metab Clin North Am 1991; 20: 697–720.PubMedGoogle Scholar
  23. 23.
    Hammond GL. Potential functions of plasma steroid-binding proteins. Trends Endocrinol Metab 1995; 6: 298–304.PubMedCrossRefGoogle Scholar
  24. 24.
    Bamberger CM, Schulte HN, Chrousos GP. Molecular determinants of glucocorticoid receptor function and tissue sensitivity to glucocorticoids. Endocr Rev 1996; 17: 245–268.PubMedGoogle Scholar
  25. 25.
    Burnstein KL, Bellingham DL, Jewell CM, Powell-Oliver FE, Cidlowski JA. Autoregulation of glucocorticoid receptor gene expression. Steroids 1991; 56: 52–58.PubMedCrossRefGoogle Scholar
  26. 26.
    Antakly T, Mercille S, Cote JP. Tissue-specific dopaminergic regulation of the glucocorticoid receptor in the rat pituiatry. Endocrinology 1987; 120: 1558–1562.PubMedCrossRefGoogle Scholar
  27. 27.
    Peiffer A, Bardin N. Estrogen-induced decrease of glucocorticoid receptor messenger ribonucleic acid concentration in the anterior pituitary gland. Mol Endocrinol 1987; 1: 435–440.PubMedCrossRefGoogle Scholar
  28. 28.
    Moyer ML, Borror KC, Bona BJ, DeFranco DB, Nordeen SK. Modulation of cell signaling pathways can enhance or impair glucocorticoid-induced gene expression without altering the state of receptor phosphorylation. J Biol Chem 1993; 22: 933–940.Google Scholar
  29. 29.
    Renoir JM, Mercier-Bodard C, Hoffmann K. LeBihan S, Ning YM, Sanchez ER, Handschumacher RE, Baulieu EE. Cyclosprorin A potentiates the dexamethasone-induced mouse mammary tumor viruschloramphenical acetyltransferase activity in LMCAT cells: a possible role for different heat shock protein-binding immunophilins in glucocorticoid receptor-mediated gene expression. Proc Natl Acad Sci USA 1995; 92: 4977–4981.PubMedCrossRefGoogle Scholar
  30. 30.
    Liu J, Farmer JC, Lane WE, Friedman J, Weissman I, Schreiber SL. Calicineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell 1991; 66: 807–815.PubMedCrossRefGoogle Scholar
  31. 31.
    Wehling M. Nongenomic actions of steroid hormones. Trends Endocrinol Metab 1994; 5: 347–353.PubMedCrossRefGoogle Scholar
  32. 32.
    Suyemitsu, T, Terayama H. Specific binding sites for natural glucocorticoids in plasma membranes of rat liver. Endocrinology 1975; 96: 1499–1508.PubMedCrossRefGoogle Scholar
  33. 33.
    White PC, Pescovitz OH, Cutler GB. Synthesis and metabolism of corticosteroids. In: Becker KL, ed. Principles and Practice of Endocrinology and Metabolism, 2nd ed. Philadelphia, Lippincott, 1995, pp. 647–662.Google Scholar
  34. 34.
    Parrillo JE, Fauci AS. Mechanisms of glucocorticoid action on immune processes. Annu Rev Pharmacol Toxicol 1979; 19: 179.PubMedCrossRefGoogle Scholar
  35. 35.
    Moncada S, Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med 1993; 329: 2002–2012.PubMedCrossRefGoogle Scholar
  36. 36.
    Tyrrell JB. Glucocorticoid therapy. In: Felig P, Baxter JD, Frohman LA eds. Endocrinology and Metabloism, 3rd ed. McGraw Hill, New York, 1995, 855–882.Google Scholar
  37. 37.
    Hume DM, Bell CC, Banter F. Direct measurement of adrenal secretion during operative trauma and convalescence. Surgery 1962; 52: 174.PubMedGoogle Scholar
  38. 38.
    Naito Y, Fukuta J, Tamai S, Seo N, Nakai Y, Mori K, Imura H. Biphasic changes in hypothalamopituitary-adrenal function during the early recovery period after major abdominal surgery. J Clin Endocrinol Metab 1991; 73: 111–117.PubMedCrossRefGoogle Scholar
  39. 39.
    Udelsman R, Norton JA, Jelenich SE, Goldstein DS, Linehan WM, Loriaux DL, Chrousos GP. Responses of the hypothalamic-pituitary-adrenal and renin-angiotensin axes and the sympathetic system during controlled surgical and anesthetic stress. J Clin Endocrinol Metab 1987; 64: 986–994.PubMedCrossRefGoogle Scholar
  40. 40.
    Kehlet H, Binder CHR. Alterations in distribution volume and biological half-life of cortisol during major surgery. J Clin Endocrinol Metab 1972; 36: 330–333.CrossRefGoogle Scholar
  41. 41.
    Naito Y, Tamai S, Shingu K, Shindo K, Matsui T, Segawa H, NakaiY, Mori K. Responses of plasma adrenocorticotropic hor-mone, cortisol, and cytokines during and after upper abdominal surgery. Anesthesiology 1992; 77: 426–431.PubMedCrossRefGoogle Scholar
  42. 42.
    Wortsman J, Wehrenberg WB, Petra PH, Murphy JE. Melanocyte-stimulating hormone immunoreactivity is a component of the neuroendocrine response to maximal stress (cardiac arrest). J Clin Endocrinol Metab 1985; 61: 355–360.PubMedCrossRefGoogle Scholar
  43. 43.
    Schultz CH, Rivers EP, Feldkamp CS, Goad EG, Smithline HA, Martin GC, Fath JJ,Wortsman J, Nowak RM. A characterization of hypothalamic-pituitary-adrenal axis function during and after human cardiac arrest. Crit Care Med 1993; 21: 1339–1347.PubMedCrossRefGoogle Scholar
  44. 44.
    Melby JC, Spink WW. Comparative studies on adrenal cortical function and cortisol metabolism in healthy adults and in patients with shock due to infection. J Clin Invest 1958; 37: 1791–1798.PubMedCrossRefGoogle Scholar
  45. 45.
    Vermes I, Beishuizen A, Hampsink RM, Haanen C. Dissociation of plasma adrenocortioctropin and cortisol levels in criticaly ill patients: possible role of endothelin and atrial natriuretic hormone. J Clin Endocrinol Metab 1995; 80: 1238–1242.PubMedCrossRefGoogle Scholar
  46. 46.
    Siegel LM, Grinspoon SK, Garvey GJ, Bilezekian JP. Sepsis and adrenal function. Trends Endocrinol Metab 1994; 5: 324–328.PubMedCrossRefGoogle Scholar
  47. 47.
    Reincke M, Allolio B, Wurth G, Winkelmann W The hypothalamic-pituitary-adrenal axis in critical illness: response to dexamethasone and corticotropin-releasing hormone. J Clin Endocrinol Metab 1993; 77: 151–156.PubMedCrossRefGoogle Scholar
  48. 48.
    Lortholary O, Christeff N, Casassus P, Thobein N, Veyssier P, Trogoff B, Tocci O, Brauner M, Nunez CA, Guillouin L. Hypothamo-pituitary-adrenal function in human immunodeficiency virus infected men. J Clin Endocrinol Metab 1996; 81: 791–796.PubMedCrossRefGoogle Scholar
  49. 49.
    Drucker D, McLaughlin J. Adrenocortical dysfunction in acute medical illness. Crit Care Med 1986; 14: 789–791.PubMedCrossRefGoogle Scholar
  50. 50.
    Jurney TH, Cockrell JL, Lindberg JS, Lamiell JM, Wade CE. Spectrum of serum cortisol response to ACTH in ICU patients. Chest 1987; 92: 292–295.PubMedCrossRefGoogle Scholar
  51. 51.
    Drucker D, shandling M. Variable adrenocortical function in acute medical illness. Crit Care Med 1985; 13: 477–479.PubMedCrossRefGoogle Scholar
  52. 52.
    Soni A, Pepper GM, Wyrwinski PM, Ramirez NE, Simon R, Pina T, Gruenspan H, Vaca CE. Adrenal insufficiency occurring during septic shock: incidence, outcome, and relationship to peripheral cytokine levels. Am J Med 1995; 98: 266–271.PubMedCrossRefGoogle Scholar
  53. 53.
    Sibbald WJ, Short A, Cohen MP, Wilson RF. Variations in adrenocortical responsiveness during severe bacterial infections. Ann Surg 1977; 186: 29–33.PubMedCrossRefGoogle Scholar
  54. 54.
    Rothwell PM, Udwadia ZF, Lawler PC. Cortisol response to corticotropin and survival in septic shock. Lancet 1991; 337: 582–583.PubMedCrossRefGoogle Scholar
  55. 55.
    Xarli VP, Steele AA, Davis PJ, Buescher ES, Rios CN, Carcia-Bunuel R. Adrenal hemorrhage in the adult. Medicine 1978; 57: 211–221.PubMedCrossRefGoogle Scholar
  56. 56.
    Werbel SS, Ober KP. Acute adrenal insufficiency. Endocrinol Metab Clin North Am 1993; 22: 303–328.PubMedGoogle Scholar
  57. 57.
    Rao RH, Bagnucci AH, Amico JA. Bilateral massive adrenal hemorrhage: early recognition and treatment. Ann Intern Med 1989; 110: 227–235.PubMedGoogle Scholar
  58. 58.
    Schlaghecke R, Kornely E, Santen RH, Ridderskamp. The effect of long-term glucocorticoid therapy on pituitary-adrenal responses to exogenous cortictropin-releasing hormone. N Engl J Med 1992; 326: 226–230.PubMedCrossRefGoogle Scholar
  59. 59.
    Mann M, Malozowski S, Murgo A, Bacsanyi J, Breen L, Koller E. 1996 The glucocorticoid activity of megestrol acetate: report on 56 cases. Program of the 10th International Congress of Endocrinology, San Francisco, P3–604 (Abstract).Google Scholar
  60. 60.
    Leinung MC, Liporace R, Miller CH. Induction of adrenal suppression by megestrol acetate in patients with AIDS. Ann Intern Med 1995; 122: 843–845.PubMedGoogle Scholar
  61. 61.
    Kidess AJ, Caplan RH, Reynertson RH, Wickus GG, Goodnough DE. Transient corticotropin deficiency in critical illness. Mayo Clin Proc 1993; 68: 435–441.PubMedCrossRefGoogle Scholar
  62. 62.
    Solomon S. Corticostatins. Trends Endocrinol Metab 1993; 4: 260.PubMedCrossRefGoogle Scholar
  63. 63.
    Mohler JL, Michael KA, Freedman AM, McRoberts JW, Geffen- WO Jr. The evaluation of postoperative function of the adrenal gland. Surg Gynecol Obstet 1985; 161: 551–556.PubMedGoogle Scholar
  64. 64.
    Chikanza IC, Petrou P, Kingsley G, Chrousos G, Panayi GS. Defective hypothalamic response to immune and inflammatory stimuli in patients with rheumatoid arthritis. Arthritis Rheum 1992; 35: 1281–1288.PubMedGoogle Scholar
  65. 65.
    Blevins LS. Serum cortisol is not an accurate predictor of the integrity of the hypothalamic-pituitaryadrenocortical axis. Clin Endocrinol 1995; 42: 101–102.CrossRefGoogle Scholar
  66. 66.
    Streeten DHP, Anderson GH, Bonaventura MM. The potential for serious consequences from misinterpreting normal responses to the rapid adrencorticotropin test. J Clin Endocrinol Metab 1996; 81: 285–290.PubMedCrossRefGoogle Scholar
  67. 67.
    Salem M, Tainsh RE, Bromberg J, Loriaux DL, Chernow B. Perioperative glucocorticoid coverage. Ann Surg 1994; 219: 416–425.PubMedCrossRefGoogle Scholar
  68. 68.
    Borst GC, Michenfelder HJ, O’Brian JT. Discordant cortisol response to exogenous ACTH and insulin-induced hypoglycemia in patients with pituitary disease. N Engl J Med 1982; 306: 1462–1464.PubMedCrossRefGoogle Scholar
  69. 69.
    Resclini E, Cartana A, Giustina G. Plasma cortisol response to ACTH does not accurately indicate the state of the hypothalamic-pituitary-adrenal axis. J Endocrinol Invest 1982; 5: 259–261.Google Scholar
  70. 70.
    Cunningham SK, Moore A, McKenna Ti. Normal cortisol response to corticotropin in patients with secondary adrenal failure. Arch Intern Med 1982; 143: 2276–2279.CrossRefGoogle Scholar
  71. 71.
    Lindholm J, Kehlet H. Re-evaluation of the clinical value of the 30 minute ACTH test in assessing the hypothalamic-pituitary-adrenocortical function. Clin Endocrinol (Oxford) 1987; 26: 53–59.CrossRefGoogle Scholar
  72. 72.
    Fiad TM, Kirby JM, Cunningham SK, McKenna TJ. The overnight single-dose metyrapone test is a simple and reliable index of the hypothalamic-pituitary-adrenal axis. Clin Endocrinol (Oxford) 1994; 40: 603–609.CrossRefGoogle Scholar
  73. 73.
    Dickstein G, Shechner C, Nicholson WE, Rosner I, Shen-Orr Z, Adawi F, Lahav M. Adrenocorticotropin stimulaiton test: effects of basal cortisol level, time of day, and suggested new sensitive low dose test. J Clin Endocrinol Metab 1991; 72: 773–778.PubMedCrossRefGoogle Scholar
  74. 74.
    Broide J, Soferman R, Kivity S, Golander A, Dickstein G, Spirer Z, Weisman Y. Low-dose adrenocorticotropin test reveals impaired adrenal function in patients taking inhaled corticosteroids. J Clin Endocrinol Metab 1995; 80: 1243–1246.PubMedCrossRefGoogle Scholar
  75. 75.
    Tordjman K, Jaffe A, Grazas N, Apter C, Stern N. The role of the low dose (1 mcg) adrenocorticotropin test in the evaluation of patients with pituitary diseases. J Clin Endocrinol Metab 1995; 80: 1301–1305.PubMedCrossRefGoogle Scholar
  76. 76.
    Watson AC, Rosenfield RL, Fang VS. Recovery from glucocorticoid inhibition of the responses to corticotropin-releasing hormone. Clin Endocrinol 1988; 28: 471–477.CrossRefGoogle Scholar
  77. 77.
    Orth DN. Corticotropin-releasing hormone in humans. Endocr Rev 1992; 13: 164–190.PubMedGoogle Scholar
  78. 78.
    Bone RC, Fisher CJ, Clemmer TP, et al. A controlled clinical trial of high-dose methylprednisolone in the treatment of severe sepsis and septic shock. N Engl J Med 1987; 317: 653–658.PubMedCrossRefGoogle Scholar
  79. 79.
    The Veterans Administration Systemic Sepsis Cooperative Study Group. Effect of high-dose glucocorticoid therapy on mortality in patients with clinical signs of sepsis. N Engl J Med 1987; 317: 659–665.CrossRefGoogle Scholar
  80. 80.
    Lefering R, Neugebauer EA. Steroid controversy in sepsis and septic shock: a meta-analysis. Crit Care Med 1995; 23: 1294–1303.PubMedCrossRefGoogle Scholar
  81. 81.
    Cronin L, Cook DJ, Carlet J, Heyland OK, King D, Lansang MAD, Fisher CJ. Corticosteroid treatment for sepsis: a critical appraisal and meta-analysis of the literature. Crit Care Med 1995; 23: 1403–1409.CrossRefGoogle Scholar
  82. 82.
    Bernard GR, Luce JM, Sprung CL, Rinaldo JE, Tate RM, Sibbald WJ, Kariman K, Higgins S, Brodley R, Metz CA, Harris TR, Brigham K High-dose corticosteroids in patients with the adult respiratory distress syndrome. N Engl J Med 1987; 317: 1565–70.PubMedCrossRefGoogle Scholar
  83. 83.
    Masur H. Prevention and treatment of pneumocystis pneumonia. N Engl J Med 1992; 327: 1853–1860.PubMedCrossRefGoogle Scholar
  84. 84.
    Olshaker JS, Whye DW. Head trauma. Emerg Med Clin North Am 1993; 11: 165–183.Google Scholar
  85. 85.
    Bracken M, Shepard M, Collins W, et al. A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury. N Engl J Med 1990; 322: 1405–1411.PubMedCrossRefGoogle Scholar
  86. 86.
    Galandiuk S, Raque G, Appel S, Polk HC. The two-edged sword of large-dose steroids for spinal cord trauma. Ann Surg 1993; 218: 419–427.PubMedCrossRefGoogle Scholar
  87. 87.
    George ER, Scholten DJ, Buechler CM, Jordan-Tibbs J, et al. Failure of methylprednisolone to improve the outcome of spinal cord injuries, An Surg 1995; 61 (8): 659–664.Google Scholar
  88. 88.
    Bell WE. Bacterial meningitis in children. Pediatr Clin North Am 1992; 39: 651–660.PubMedGoogle Scholar
  89. 89.
    Hall ED. Lipid antioxidants in acute central nervous system injury. Ann Emerg Med 1993; 22: 1022–1027.PubMedCrossRefGoogle Scholar
  90. 90.
    Friedman RJ, Schiff CF, Bromberg JS. Use of supplemental steroids in patients having orthopaedic operations. J Bone Joint Sur 1995; 77 (12): 1801–1806.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Jay Watsky
  • Matthew C. Leinung

There are no affiliations available

Personalised recommendations