Skeletal Metabolism in Critical Illness

  • Steven R. Gambert
  • Stephen J. Peterson
Part of the Contemporary Endocrinology book series (COE, volume 4)

Abstract

Although a wealth of information has accumulated concerning physiological changes that may occur in the setting of critical illness, little has been written specifically regarding critical illness and its potential effects on the skeletal system. Not only may individual problems alter normal skeletal homeostasis, but treatment modalities used both short and long term must be considered. The skeletal system is the largest “organ” in the body, and serves a structural function and as a reservoir for calcium and other nutrients necessary for normal homeostasis and cellular action. Bone is a complex tissue and has a developmental process; it is constantly being remodeled throughout life. Its mechanical properties provide strength for skeletal support as well as protection for other organs. Changes that occur may have significance for one’s functional capacity and ability to conduct necessary activities of daily living, as well as may compromise function of internal organs. Although most changes in bone take months to years to become clinically significant, even small changes may alter the balance in individuals with pre-existing pathology or decreased reserve capacity.

Keywords

Bone Mineral Density Bone Loss Bone Turnover Bone Mineral Content Critical Illness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Delmas PD. Clinical use of biochemical markers of bone remodeling in osteoporosis. Bone 1992; 13: 517–521.CrossRefGoogle Scholar
  2. 2.
    Uebelhart D, Gineyts E, Chapuy M-C. Urinary excretion of pyridinium crosslinks: a new marker of bone resorption in metabolic bone disease. Bone Miner 1990; 8: 87–96.PubMedCrossRefGoogle Scholar
  3. 3.
    Seibel MJ, Cosman F, Shen U. Urinary hydroxypyridinium crosslinks of collagen as markers of bone resorption and estrogen efficacy in postmenopausal osteoporosis. J Bone Miner Res 1993; 8: 881–889.PubMedCrossRefGoogle Scholar
  4. 4.
    Robin S, Woitge H, Hesley R. A direct enzyme linked immunoassay for urinary deoxypyridinoline as a specific marker for measuring bone resorption. J Bone Miner Res 1994; 9: 1643–1649.CrossRefGoogle Scholar
  5. 5.
    Gomez B, Ardakani S, Ju J. Monoclonal antibody assay for measuring bone-specific alkaline phosphatase actuity in serum. Clin Chem 1995; 41: 1560–1566.PubMedGoogle Scholar
  6. 6.
    Gomez B, Bally CA, Jenkins DK. An enzyme immunoassay for intact newly synthesized osteocalcin: a marker of bone formation (abs). International Conference on Progress in Bone and Mineral Research, Vienna, Austria, 1994.Google Scholar
  7. 7.
    Meunier PJ, Sellami S, Briancon D. Histological heterogeneity of apparently idiopathic osteoporosis. In: DeLuca HF, Frost HM, Jee WS, eds. Osteoporosis: Recent Advances in Pathogenesis and Treatment. University Park Press, Baltimore, 1980, p. 293.Google Scholar
  8. 8.
    Parfitt AM, Matthews C, Rao D. Impaired osteoblast function in metabolic bone disease. In: DeLuca HF, Frost HM, Jee WS, eds. Osteoporosis: Recent Advances in Pathogenesis and Treatment. University Park Press, Baltimore, 1980, p. 321.Google Scholar
  9. 9.
    Weinstein R, Bryce G, Sappington L. Decreased serum ionized calcium and normal vitamin D metabolite levels with anticonvulsant drug treatment. J Clin Endocrinol Metab 1984; 58: 1003–1009.PubMedCrossRefGoogle Scholar
  10. 10.
    Cushing H 1982 Basophile adenomas. J Nery Ment Dis 76: 50.Google Scholar
  11. 11.
    Bressot C, Meunier PJ. Histomorphometric profile, pathophysiology and reversibility of corticosteroid induced osteoporosis. Metab Bone Dis Rel Res 1979; 1: 303–311.CrossRefGoogle Scholar
  12. 12.
    Curtiss PH, Clark WS, Herndon CH. Vertebral fractures resulting from prolonged cortisone and corticotropin therapy. JAMA 1954; 156: 467–469.CrossRefGoogle Scholar
  13. 13.
    Howland WJ, Pugh DG, Sprague RG. Roentgenologic changes of the skeletal system in Cushing’s syndrome. Radiology 1958; 71: 69–78.PubMedGoogle Scholar
  14. 14.
    Sussman ML, Copelman B. The roentgenologic appearance of the bones in Cushing’s syndrome. Radiology 1942; 39: 288–292.Google Scholar
  15. 15.
    Maldague B, Malghem J, Nagant de Deuxchaisnes C. Radiologic aspects of glucocortinephrologist. Kidney Int 1984; 38: 193–211.Google Scholar
  16. 16.
    Schaadt O, Bohr H. Loss of bone mineral in axial and peripheral skeleton in aging, prednisone treatment and osteoporosis. In: Dequeker JV, Johnston CC Jr, eds. Noninvasive Bone Measurements: Methodological Problems. Oxford, IRL Press, 1982, pp. 207–214.Google Scholar
  17. 17.
    Sambrook PN, Eisman JA, Yates MG. Osteoporosis in rheumatoid arthritis: safety of low dose corticosteroids. Ann Rheum Dis 1986; 45: 950–953.PubMedCrossRefGoogle Scholar
  18. 18.
    Mitchell D, Lyles K. Glucocorticoid induced osteoporosis mechanisms for bone loss: evaluation of strategy for prevention. J Gerontol 1990; 45: M153–158.PubMedCrossRefGoogle Scholar
  19. 19.
    LoCascio V, Bonucci E, Imbimbo B. Bone loss in response to long-term glucocorticoid therapy. Bone Miner 1990; 8: 39–51.PubMedCrossRefGoogle Scholar
  20. 20.
    Reugsegger P, Medici TC, Anliker M. Corticosteroid induced bone loss: a longitudinal study of alternate day therapy in patients with bronchial asthma using quantitative computed tomography. Eur J Clin Pharmacol 1983; 25: 615–620.CrossRefGoogle Scholar
  21. 21.
    Rickers H, Deding A, Christiansen C. Corticosteroid induced osteopenia and vitamin D metabolism: effect of vitamin D2, calcium phosphate and sodium fluoride administration. Clin Endocrinol 1982; 16: 409–415.CrossRefGoogle Scholar
  22. 22.
    Dykman T, Gluck O, Murphy W. Evaluation of factors associated with glucocorticoid induced osteopenia in patients with rheumatic diseases. Arthritis Rheum 1985; 23: 361–365.CrossRefGoogle Scholar
  23. 23.
    Curtiss PH, Clark WS, Herndon CH. Vertebral fractures resulting from prolonged cortisone and corticotropin therapy. JAMA 1954; 156: 467–469.CrossRefGoogle Scholar
  24. 24.
    Nagant de Deuxchaisnes C, Devogelaer JP, Esselinckx W. The effect of low dose glucocorticoids on bone mass in rheumatoid arthritis: a cross-sectional and a longitudinal study using single photon absorptiometry. Adv Exp Med Biol 1984; 171: 210–239.Google Scholar
  25. 25.
    Dempster D. Perspectives: bone histomorphometry in glucocorticoid induced osteoporosis. J Bone Miner Res 1989; 4: 137–150.PubMedCrossRefGoogle Scholar
  26. 26.
    Dempster DW, Arlot MA, Meunier PJ. Mean wall thickness and formation periods of trabecular bone packets in corticosteroid induced osteoporosis. Calcif Tissue Int 1983; 35: 410–417.PubMedCrossRefGoogle Scholar
  27. 27.
    Meunier PJ, Dempster DW, Edouard C. Bone histomorphometry in corticosteroid induced osteoporosis and Cushing’s syndrome. Adv Exp Med Biol 1984; 171: 191–200.PubMedGoogle Scholar
  28. 28.
    Hseuh AJ, Erickson GF. Glucocorticoid inhibition of FSH induced estrogen production in cultured rat granulosa cells. Steroids 1978; 32: 639–648.CrossRefGoogle Scholar
  29. 29.
    Sakakura M, Takebe K, Nakagawa S. Inhibition of leutinizing hormone secretion induced by synthetic LRH by long-term treatment with glucocorticoids in human subjects. J Clin Endocrinol Metab 1975; 40: 774–779.PubMedCrossRefGoogle Scholar
  30. 30.
    Macadams MR, White RH, Chipps RE. Reduction of serum testosterone levels during chronic glucocorticoid therapy. Ann Intern Med 1986; 104: 648–651.PubMedGoogle Scholar
  31. 31.
    Raisz LG, Kream BE. Regulation of bone formation. N Engl J Med 1983; 30: 83–89.CrossRefGoogle Scholar
  32. 32.
    Gourmelen M, Girard F, Biuoux M. Serum somatomedin/insulin like growth factor (IGF) and IGF carrier levels in patients with Cushing’s syndrome or receiving glucocorticoid therapy. J Clin Endocrinol Metab 1982; 54: 885–892.PubMedCrossRefGoogle Scholar
  33. 33.
    Reid I. Pathogenesis and treatment of steroid osteoporosis. Clin Endocrinol 1989; 30: 83–103.CrossRefGoogle Scholar
  34. 34.
    Hahn T, Henden B, Scharp C. Effect of chronic anticonvulsant therapy on serum 25-hydroxycalciferol levels in adults. N Engl J Med 1972; 287: 900–904.PubMedCrossRefGoogle Scholar
  35. 35.
    Bijlsma JW, Raymakers JA, Mosch C. Effect of oral calcium and vitamin D on glucocorticoid induced osteopenia. Clin Exp Rheumatol 1988; 6: 113–119.PubMedGoogle Scholar
  36. 36.
    Suzuki Y, Ichikawa Y, Saito E. Importance of increased urinary calcium excretion in the development of secondary hyperparathyroidism of patients under glucocorticoid therapy. Metabolism 1983; 32: 151–156.PubMedCrossRefGoogle Scholar
  37. 37.
    Emkey R, Reading W, Procaccini P. The effect of calcitonin on bone mass in steroid induced osteoporosis. In: Abstracts of the Annual Scientific Meeting of the American College of Rheumatology, Minneapolis, 1994, p. S183.Google Scholar
  38. 38.
    Montemurro L, Schiraldi G, Zanni D Two years’ treatment with calcitonin nasal spray: effective protection against corticosteroid induced osteoporosis. In: Kovergaard, Christiansen C, eds. Proceedings Third International Symposium in Osteoporosis. Denmark, Glastrup Hospital, 1990.Google Scholar
  39. 39.
    Ringe J, Welzel D. Salmon calcitonin in the therapy of corticoid induced osteoporosis. Eur J Clin Pharmacol 1987; 33: 35–39.PubMedCrossRefGoogle Scholar
  40. 40.
    Reid IR, Alexander CJ, King AR. Prevention of steroid induced osteoporosis with (3-amino-1hydroxylpropylidene) -1, 1-bisphosphonate (APD). Lancet 1988; 1: 143–146.PubMedGoogle Scholar
  41. 41.
    Mulder H, struys A. Intermittent cyclic etidronate in the prevention of corticosteroid induced bone loss. Br J Rheumatol 1994; 33: 348–350.PubMedCrossRefGoogle Scholar
  42. 42.
    Need AG. Corticosteroids and osteoporosis. Aust NZJ Med 1987; 17: 267–272.CrossRefGoogle Scholar
  43. 43.
    Lee YSL, Kohlmeier L, Van Vollenhoven RF. The effects of dehydroepiandrosterone (DHEA) on bone metabolism in healthy postmenopausal women. In: Abstracts of the Annual Scientific Meeting of the American College of Rheumatology, Minneapolis, 1994, p. S182.Google Scholar
  44. 44.
    Reid I. Pathogenesis and treatment of steroid osteoporosis. Clin Endocrinol 1989; 30: 83–103.CrossRefGoogle Scholar
  45. 45.
    Grecu E, Weinshelbaum A, Simmons R. Effective therapy of glucocorticoid induced osteoporosis with medroxyprogesterone acetate. Calcif Tissue Int 1990; 46: 294–299.PubMedCrossRefGoogle Scholar
  46. 46.
    Fucik RJ, Kukreja SG, Hargis GK. Effects of glucocorticoids on function of the parathyroid glands in man. J Clin Endocrinol Metab 1975; 40: 152–155.PubMedCrossRefGoogle Scholar
  47. 47.
    Imbimbo B, Tuzi R, Porzino F. Clinical equivalence of a new glucocorticoid deflazacort and prednisone in rheumatoid arthritis and SLE patients. In: Avioli L, Gennari C, Imbimbo B, eds. Glucocorticoid Effects and Their Biological Consequences. Plenum, New York 1983, p. 234.Google Scholar
  48. 48.
    Gennari C, Imbimbo B. Effects of prednisone and deflazacort on vertebral bone mass. Calcif Tissue Int 1985; 37: 592–593.PubMedCrossRefGoogle Scholar
  49. 49.
    Avioli L. Heparin-induced osteoporosis: an appraisal. Adv Exp Med Biol 1975; 52: 375–387.PubMedCrossRefGoogle Scholar
  50. 50.
    Rupp WM, McCarthy HB. Risk of osteoporosis in patients treated with long-term intravenous heparin therapy. Cuff Probl Surg 1982; 39: 419–422.Google Scholar
  51. 51.
    Griffith GC, Nichols G, Asher JD. Heparin osteoporosis JAMA 1965; 193: 85–88.Google Scholar
  52. 52.
    Squires JW, Pinch LW. Heparin induced spinal fractures. JAMA 1979; 241: 2417–2418.PubMedCrossRefGoogle Scholar
  53. 53.
    Wise PH, Hall AS. Heparin induced osteopenia in pregnancy BMJ 1980; 281: 110–111.Google Scholar
  54. 54.
    Megard M, Cuche M, Grapeloux. Osteoporose de l’heparinotherapie: Analyse histomorphometrique de la biopse ossuse une observation. Nouv Presse Med 1982; 11: 261–264.PubMedGoogle Scholar
  55. 55.
    Canalis E, McCarthy T, Centrella M. The role of skeletal growth factors in skeletal remodeling. Clin Endocrinol Metab 1989; 18: 903–919.Google Scholar
  56. 56.
    Schreiber AB, Kenny J, Kowalski WJ. Interaction of endothelial cell growth factor with heparin: Characterization by receptor and antibody recognition. Proc Natl Acad Sci USA 1985.Google Scholar
  57. 57.
    Glajchen N, Ismail F, Epstein S. The effect of chronic caffeine administration on serum markers of bone mineral metabolism and bone histomorphometry in the rat. Calcif Tissue Int 1988; 43: 277–280.PubMedCrossRefGoogle Scholar
  58. 58.
    Barrett-Connor E, Chang JC, Edelstein SL. Coffee associated osteoporosis offset by daily milk consumption: The Rancho Bernardo Study. JAMA 1994; 271: 280–283.PubMedCrossRefGoogle Scholar
  59. 59.
    Prince R, Monk K, Kent G. Effects of theophylline and salbutamol on phosphate and calcium metabolism in normal subjects. Miner Electrolyte Metab 1988; 14: 262–265.PubMedGoogle Scholar
  60. 60.
    Blum JW, Fischer JA, Hunziker WH. Parathyroid hormone responses to catecholamines and to changes of extracellular calcium in cows. J Clin Invest 1978; 61: 1113–1122.PubMedCrossRefGoogle Scholar
  61. 61.
    Kukreja SC, Hargis GK, Bowser EN. Role of adrenergic stimuli in parathyroid hormone secretion in man. J Clin Endocrinol Metab 1975; 40: 478–481.PubMedCrossRefGoogle Scholar
  62. 62.
    Metz SA, Deftos LJ, Baylink DG, Robertson RP. Neuroendocrine modulation of calcitonin and parathyroid hormone in man. J Clin Endocrinol Metab 1978; 47: 151–159.PubMedCrossRefGoogle Scholar
  63. 63.
    Brown EM, Gardner DG, Windeck RA. B-Adrenergically stimulated adenosine 3’, 5’-monophosphate accumulation in and parathyroid hormone release from dispersed human parathyroid cells. J Clin Endocrinol Metab 1979; 48: 618–626.PubMedCrossRefGoogle Scholar
  64. 64.
    Mulder H, Struys A. Intermittent cyclic etidronate in the prevention of corticosteroid induced bone loss. Br J Rheumatol 1994; 33: 348–350.PubMedCrossRefGoogle Scholar
  65. 65.
    Rodbro P, Christiansen C, Lund M. Development of anticonvulsant osteomalacia in epileptic patients on phenytoin treatment. Acta Neurol Scand 1974; 50: 527–532.PubMedCrossRefGoogle Scholar
  66. 66.
    Tolman KG, Jubiz W, Sannella J. Osteomalacia associated with anticonvulsant drug therapy in mentally retarded children. Pediatrics 1975; 56: 45–51.PubMedGoogle Scholar
  67. 67.
    Jubiz W, Meikle AW, Levinson RA. Effect of diphenylhydantoin on the metabolism of dexamethasone: mechanisms of the abnormal dexamethasone suppression in humans. N Engl J Med 1970; 283: 11–14.PubMedCrossRefGoogle Scholar
  68. 68.
    Hahn T, Birge S, Scharp C. Phenobarbital induced alterations in vitamin D metabolism J Clin Invest 1972; 51: 741–748.Google Scholar
  69. 69.
    Koch HV, Kraft D, Von Herrath D. Influence of diphenylhydantoin and phenobarbital on intestinal calcium transport in the rat. Epilepsia 1972; 13: 829–841.PubMedCrossRefGoogle Scholar
  70. 70.
    Hahn T, scharp C, Richardson C. Interaction of diphenylhydantoin (phenytoin) and phenobarbital with hormonal mediation of fetal rat bone resorption in vitro. J Clin Invest 1978; 62: 496–414.CrossRefGoogle Scholar
  71. 71.
    Dietrich J, Duffield R. Effects of diphenylhydantoin on synthesis of collagen and noncollagen protein in tissue culture. Endocrinology 1980; 106: 606–610.PubMedCrossRefGoogle Scholar
  72. 72.
    Krolner B, Jorgensen JV, Nielsen SP. Spinal bone mineral content in myxedema and thyrotoxicosis: effects of thyroid hormones and antithyroid treatments. Clin Endocrinol 1983; 18: 439–446.CrossRefGoogle Scholar
  73. 73.
    Meunier P, Bianchi G, Edouard C. Bony manifestation of thyrotoxicosis. Orthop Clin North Am 1972; 3: 745–774.Google Scholar
  74. 74.
    Toft A. Thyroxine therapy. N Engl J Med 1994; 331: 174–181.PubMedCrossRefGoogle Scholar
  75. 75.
    Mosekilde L, Eriksen EF, Charles P. Effects of thyroid hormones on bone and mineral metabolism. Endocrinol Metab Clin North Am 1990; 19: 35–63.PubMedGoogle Scholar
  76. 76.
    Mosekilde L, Melsen F, Bagger JP. Bone changes in hyperthyroidism: interrelationships between bone morphometry, thyroid function and calcium phosphorus metabolism. Acta Endocrinol 1977; 85: 515–525.PubMedGoogle Scholar
  77. 77.
    Eriksen EF, Mosekilde L, Melsen F. Trabecular bone remodeling and bone balance in hyperthyroidism. Bone 1985; 6: 421–428.PubMedCrossRefGoogle Scholar
  78. 78.
    Burman KD, Monchik JM, Earll JM. Ionized and total serum calcium and parathyroid hormone in hyperthyroidism. Ann Intern Med 1976; 84: 668–671.PubMedGoogle Scholar
  79. 79.
    Manicourt D, Demeester-Mirkine N, Brauman H. Disturbed mineral metabolism in hyperthyroidism: good correlation with triiodothyronine. Clin Endocrinol 1979; 101: 407–412.CrossRefGoogle Scholar
  80. 80.
    Stall G, Harris S, Sokoll L. Accelerated bone loss in hypothyroid patients overtreated with L-thyroxine. Ann Intern Med 1990; 113: 265–269.PubMedGoogle Scholar
  81. 81.
    Paul T, Kerrigan J, Kelly AM. Long-term L-thyroxine therapy is associated with decreased hip bone density in premenopausal women. JAMA 1988; 259: 3137–3141.PubMedCrossRefGoogle Scholar
  82. 82.
    Ross D, Neer R, Ridgway EC. Subclinical hyperthyroidism and reduced bone density as a possible result of prolonged suppression of the pituitary thyroid axis with L-thyroxine. Am J Med 1987; 82: 1167–1170.PubMedCrossRefGoogle Scholar
  83. 83.
    Adlin EM, Maurer AM, Marks AD. Bone mineral density in postmenopausal women treated with thyroxine. Am J Med 1991; 90: 360–366.PubMedCrossRefGoogle Scholar
  84. 84.
    Baylink D, Stauffer M, Wergedal J, Rich C. Formation mineralization and resorption of bone in vitamin-D deficient rats. J Clin Invest 1970; 49: 1122–1134.PubMedCrossRefGoogle Scholar
  85. 85.
    Barnes MJ, Constable BJ, Morton LF, Kodicek E. Bone collagen metabolism in vitamin-D deficiency. Biochem J 1973; 132: 113–115.PubMedGoogle Scholar
  86. 86.
    Frame B, Parfitt AM. Osteomalacia: current concepts. Ann Intern Med 1978; 89: 966–982.PubMedGoogle Scholar
  87. 87.
    Kanis JA. Pathophysiology and Treatment of Paget’s Disease of Bone. Carolina Academic Press, London.Google Scholar
  88. 88.
    Dove J. Complete fractures of the femur in Paget’s disease of bone. J Bone Joint Surg 1980; 62B: 12–17.Google Scholar
  89. 89.
    Boonekamp PM, van der Wee Pals LJA, van Wij-van Lennep MLL. Two modes of action of biophosphonates on osteoclastic resorption of mineralized matrix. Bone Miner 1986; 1: 27–39.PubMedGoogle Scholar
  90. 90.
    Sins E, Weinstein RS, Altman R, Conte JM, Favus M, Lombardi A, Lyles K, et al. Comparative study of alendronate versus etidronate for the treatment of Paget’s disease of bone. J Clin Endocrinol Metab 1996; 81: 961–967.CrossRefGoogle Scholar
  91. 91.
    Chesnut CH III. Review of calcitonin-present: current status of calcitonin as a therapeutic agent. Bone Miner 1992; 16: 211–212.PubMedCrossRefGoogle Scholar
  92. 92.
    Devogelaer JP. Comparison of the acute biological action of injectable salmon calcitonin and an injectable and oral calcitonin analogue. Calcif Tissue Int 1994; 55: 71–73.PubMedCrossRefGoogle Scholar
  93. 93.
    Luboshitzky R, Bar-Shalom R. Calcitonin nasal spray for Paget’s disease of the bone. Harefuah 1995; 128: 358–362.PubMedGoogle Scholar
  94. 94.
    Wimalawansa SJ. Dramatic response to plicamycin in a patient with severe Paget’s disease refractory to calcitonin and pamidronate. Semin Arthritis Rheum 1994; 23: 267.PubMedCrossRefGoogle Scholar
  95. 95.
    Consensus Development Conference Panel. Diagnosis and management of asymptomatic primary hyperparathyroidism: consensus development conference statement. Ann Intern Med 1991; 114: 593–597.Google Scholar
  96. 96.
    Parfitt AM. Equilibrium and disequilibrium hypercalcemia: new light on an old concept. Metab Bone Dis Relat Res 1979; 1: 279–293.CrossRefGoogle Scholar
  97. 97.
    Kaiser W, Biesenbach G, Kramar R. Calcium free hemodialysis: an effective therapy in hypercalcemic crisis-report of 4 cases. Intens Care Med 1989; 15: 471–474.CrossRefGoogle Scholar
  98. 98.
    Binshock ML, Mundy GR. Effect of calcitonin and glucocorticoids in combination on the hypercalcemia of malignancy. Ann Intern Med 1980; 93: 269–272.Google Scholar
  99. 99.
    Ljunghall S, Rastad J, Akerstrom G. Comparative effects of calcitonin and clodronate in hypercalcemia. Bone 1987; 8: S79 - S83.PubMedCrossRefGoogle Scholar
  100. 100.
    Mundy GR, Wilkinson R, Health DA. Comparative study of available medical therapy for hypercalcemia of malignancy. Am J Med 1983; 74: 421–432.PubMedCrossRefGoogle Scholar
  101. 101.
    Warrell RP, Israel R, Frisone M. Gallium nitrate for acute treatment of cancer-related hypercalcemia: a randomized, double-blind comparison to calcitonin. Ann Intern Med 1988; 108: 669–674.PubMedGoogle Scholar
  102. 102.
    Mallette LE, Bilezikian JP, Heath DA. Primary hyperparathyroidism: Clinical and biochemical features. Medicine 1974; 53: 127–146.PubMedCrossRefGoogle Scholar
  103. 103.
    NIH. NIH Consensus Development Conference Statement: Diagnosis and management of asymptomatic primary hyperparathyroidism. Ann Int Med 1991; 114: 593–597.Google Scholar
  104. 104.
    Stewart AF, Adler M, Byers CM, Segre GV, Broadus AE. Calcium homeostasis in immobilization: an example of resorptive hypercalciuria. N Engl J Med 1982; 306: 1136–1140.PubMedCrossRefGoogle Scholar
  105. 105.
    Galasko CSB. Skeletal metastases. Clin Orthop 1990, (September):18–30.Google Scholar
  106. 106.
    Poste G. Pathogenesis of metastatic disease: Implications for current therapy and for the development of new therapeutic strategies. Cancer Treat Rev 1986; 70: 183–199.Google Scholar
  107. 107.
    Garrett RI, Durie BGM, Nedwin GE. Production of the bone resorbing cytokine lymphotoxin by cultured human myeloma cells. N Engl J Med 1987; 317: 526–532.PubMedCrossRefGoogle Scholar
  108. 108.
    Cozzolino F, Torcia M, Aldinucci D. Production of interleukin-1 by bone marrow myeloma cells. Blood 1989; 74: 387–390.Google Scholar
  109. 109.
    Bataille R, Jourdan M, Zhang Xue-Guang. Serum levels of interleukin-6, a potent myeloma cell growth factor as a reflection of disease severity in plasma cell dyscrasias. J Clin Invest 1989; 84: 2008–2011.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Steven R. Gambert
  • Stephen J. Peterson

There are no affiliations available

Personalised recommendations