Effects of Essential Fatty Acid Preparation (SR-3) on Brain Lipids, Biochemistry, and Behavioral and Cognitive Functions

  • Shlomo Yehuda
  • Sharon Rabinovitz
  • David I. Mostofsky
Chapter

Abstract

From the time of written history people have tended to divide the world of nutrition into two sections. One section includes all foods that are “fit” for eating, the other section, no less important, includes all the foods that are “unfit” to consume. People have also cherished the belief that certain foods are “good for thought” and other foods are “bad for thought” (Harris, 1985). Furthermore, there are yet those who believe that certain foods contain magical powers. If you want to be brave—it is claimed—the heart of the lion is good food for you. Finally, there is widespread acceptance that certain foods can heal various diseases. The effect of food on thought and behavior has been demonstrated in Alice’s Adventure in Wonderland. Alice not only could change her height when she was drinking the liquid, but also refered to a “treacle well” which could “cure” snakebites and various diseases.

Keywords

Multiple Sclerosis Fatty Acid Composition Anorexia Nervosa Multiple Sclerosis Patient Essential Fatty Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agranof, R. W. and Hajra, A. K. (1994) Lipids, in Basic Neurochemistry: Molecular, Cellular, and Medical Aspects, 5th ed. ( Seigel G. S., ed.), Raven, New York, pp. 97–116.Google Scholar
  2. Aloia, R. C., Paxton, J., Daviau, J. S., van Gelb, O., Mlekusch, W., Truppe, W., Meyer, J. A., and Brauer, F. S. (1985) Effect of chronic alcohol consumption on rat brain microsome lipid composition, membrane fluidity and Na+-K+-ATPase activity. Life Sci. 36, 1003–1017.PubMedCrossRefGoogle Scholar
  3. Anderson, G. H. (1980) Diet, neurotransmitter and brain function. Br. Med. Bull. 37, 95–100.Google Scholar
  4. Arbeeny, C. M., Meyers, D. S., Hillyer, D. E., and Bergquist, K. E. (1995) Metabolic alterations associated with the antidiabetic effect of beta 3-adrenergic receptor agonists in obese mice. Am. J. Physiol. 268, 678–684.Google Scholar
  5. Barzanti, V., Battino, M., Baracca, A., Cavazzoni, M., Cocchi, M., Noble, R., Maranesi, M., Turchetto, E., and Lenaz, G. (1994) The effect of dietary lipid changes on the fatty acid composition and function of liver, heart and brain mitochondria in the rat at different ages. Br. J. Nutr. 71, 193–202.PubMedCrossRefGoogle Scholar
  6. Bazan, N. G., Birkle, D. L., Tang, W., and Reddy, T. S. (1986) The accumulation of free arachidonic acid, diacylglycerols, prostaglandins, and lipoxygenase reaction products in the brain during experimental epilepsy. Adv. Neurol. 44, 879–902.PubMedGoogle Scholar
  7. Benedict, C. R., Anderson, G. H., and Sole, M. J. (1983) The influence of oral tyrosine and tryptophan feeding on plasma catecholamines in man. Am. J. Clin. Nutr. 38, 429–435.PubMedGoogle Scholar
  8. Besson, J., Glen, E., Glen, I., MacDonnel, L., and Skinner, F. (1987) Essential fatty acids, mean cell volume and nuclear magnetic resonance brains of ethanol dependent human subjects. Alcohol Alcohol. Suppl. 1, 577–581.PubMedGoogle Scholar
  9. Biagi, P. L., Bordoni, A., Hrelia, S., Celadon, M., and Horrobin, D. F. (1991) Gammalinolenic acid dietary supplementation can reverse the aging influence on rat liver microsome delta 6-desaturase activity. Biochim. Biophys. Acta 1083, 187–192.PubMedCrossRefGoogle Scholar
  10. Birkle, D. L. (1993) Regional and temporal variations in the accumulation of unesterified fatty acids and diacylglycerols in the rat brain during kainic acid induced limbic seizures. Brain Res. 613, 115–122.PubMedCrossRefGoogle Scholar
  11. Borlak, J. T. and Welch, V. A. (1994) Health implications of fatty acids. Arzneimittelforschung 44, 976–981.PubMedGoogle Scholar
  12. Bourre, J. M., Bonneil, M., Clement, M., Dumont, O., Durand, G., Lafont, H., Nalbone, G., and Piciotti, M. (1993) Function of dietary polyunsaturated fatty acids in the nervous system. Prostaglandins Leukotrienes Essential Fatty Acids 48, 5–15.CrossRefGoogle Scholar
  13. Bourre, J. M., Dumont, O., and Durand, G. (1993). Brain phospholipids as dietary source of (n-3) polyunsaturated fatty acids for nervous tissue in the rat. J. Neurochem. 60, 2018–2028.PubMedCrossRefGoogle Scholar
  14. Bukbulatova, L. S., Obidin, A. B., Guliaeva, N. V., Airapetiants, M. G., and Kruglikov, R. I. (1990) Effect of conditioned-reflex bilateral avoidance learning on lipid components of the rat brain. Biull. Eksp. Biol. Meditsin. 109, 315–316.Google Scholar
  15. Burov, IuV., Robakidze, T. N., and Voronin, A. E. (1992) A comparative study on the effects of amiridin on learning and memory of old rats during passive avoidance test. Biull. Eksp. Biol Meditsin. 113, 43–45.Google Scholar
  16. Cherayil, G. D. (1990) Effects of in vitro hyperthermia on fatty acids of red blood cells and plasma lipids from patients with multiple sclerosis. J. Neurol. Sci. 95, 141–151.PubMedCrossRefGoogle Scholar
  17. Clandinin, M. T., Field, C. J., Hargreaves, K., Morson, L., and Zsigmond, E. (1985) Role of diet fat in subcellular structure and function. Can. J. Physiol. Pharmacol. 63, 546–556.PubMedCrossRefGoogle Scholar
  18. Cornford, E. M. and Oldenforf, W. H. (1986) Epilepsy and the blood-brain barrier. Adv. Neurol. 44, 787–812.PubMedGoogle Scholar
  19. Coscina, D. V., Yehuda, S., Dixon, L. M., Kish, S. J., and Leprohon-Greenwood, C. E. (1986) Learning is improved by soybean oil diet in rats. Life Sci. 38, 1789–1794.PubMedCrossRefGoogle Scholar
  20. Davidson, W. S., Gillotte, K. L., Lund-Katz, S., Johnson, W. J., Rothblat, G. H., and Phillips, M. C. (1995) The effect of high density lipoprotein phospholipid acyl chain composition on the efflux of cellular free cholesterol. J. Biol. Chem. 270, 5882–5890.PubMedCrossRefGoogle Scholar
  21. Deliconstantinos, G., Villiotou, V., and Stavrides, J. C. (1995) Met-enkephalin receptor-mediated increase of membrane fluidity modulates nitric oxide (NO) and cGMP production in rat brain synaptosomes. Neurochem. Res. 20, 217–224.PubMedCrossRefGoogle Scholar
  22. DeWille, J. W. and Farmer, S. J. (1992) Postnatal dietary fat influences mRNAS involved in myelination. Dev. Neurosci. 14, 61–68.PubMedCrossRefGoogle Scholar
  23. Dhopeshwarkar, G. A. (1983) Nutrition and brain development, Plenum, New York.CrossRefGoogle Scholar
  24. Duffy, O., Menez, J. F., and Leonard, B. E. (1992) Effects of an oil enriched in gamma linolenic acid on locomotor activity and behaviour in the Morris Maze, following in utero ethanol exposure in rats. Drug Alcohol Depend. 30, 65–70.PubMedCrossRefGoogle Scholar
  25. Enslen, M., Milon, H., and Malnoe, A. (1991) Effect of low intake acid composition and exploratory behavior in rats. Lipids 26, 203–208.PubMedCrossRefGoogle Scholar
  26. Erdmann, A., Bernhardt, I., Herrmann, A., and Glaser, R. (1990) Species-dependent differences in the influence of ionic strength on potassium transport of erythrocytes. The role of membrane fluidity and Ca2+. Gen. Physiol. Biophys. 9, 577–588.PubMedGoogle Scholar
  27. Esteva, O., Baudet, M. F., Lasserre, M., and Jacotot, B. (1986) Influence of the fatty acid composition of high-density lipoprotein phospholipids on the cholesterol efflux from cultured fibroblasts. Biochim. Biophys. Acta 875, 174–182.PubMedCrossRefGoogle Scholar
  28. Fernstrom, J. D. (1981) Effects of the diet on brain function. Acta Astron. 8, 1035–1042.CrossRefGoogle Scholar
  29. Fernstrom, J. D. and Wurtman, R. J. (1971) Brain serotonin content: Increase following ingestion of carbohydrate diet. Science 174, 1023–1025.PubMedCrossRefGoogle Scholar
  30. Fernstrom, J. D. and Wurtman, R. J. (1972). Brain serotonin content: physiological regulation by plasma neutral amino acids. Science 178, 414–416.PubMedCrossRefGoogle Scholar
  31. Field, E. J. (1989) Multiple sclerosis. Thomas, Springfield.Google Scholar
  32. Firestone, L. L., Alifmoff J. K., and Miller, K. W. (1994) Does general anesthetic-induced desensitization of the Torpedo acetylcholine receptor correlate with lipid disordering? Mol. Pharmacol. 46, 508–515.PubMedGoogle Scholar
  33. Flynn, C. J. and Wecker, L. (1987) Concomitant increases in the levels of choline and free fatty acids in rat brain: Evidence supporting the seizure-induced hydrolysis of phosphatidylcholine. J. Neurochem. 48, 1178–1184.PubMedCrossRefGoogle Scholar
  34. Fong, T. M. and McNamee, M. G. (1986) Correlation between acetylcholine receptor function and structural properties of membranes. Biochemistry 25, 830–840.PubMedCrossRefGoogle Scholar
  35. Galarza De Bo, E. R., Atlasovich, F. M., Ermacora, M. R., Torea, J. H., Pasquini, J. M., Santome, J. A., and Soto, E. E. (1992) Rat brain fatty acid-binding protein during development. Neurochem. Int. 21, 237–241.CrossRefGoogle Scholar
  36. Galli, C. and Petroni, A. (1990) Eicosanoids and the central nervous system. Uppsala J. Med. Sci. 48 (Suppl.), 133–144.Google Scholar
  37. Giocondi, M. C., Mamdouh, Z., and Le Grimellec, C. (1995) Benzyl alcohol differently affects fluid phase endocytosis and exocytosis in renal epithelial cells. Biochim. Biophys. Acta 1234, 197–202.PubMedCrossRefGoogle Scholar
  38. Godoy, C. M. and Cukierman, S. (1994) Multiple effects of protein kinase C activators on Na+ currents in mouse neuroblastoma cells. J. Membr. Biol. 140, 101–110.PubMedGoogle Scholar
  39. Goldstein, A., Cox, B. M., Klee, W. A., and Nirenberg, M. (1977) Endorphin from pituitary inhibits cyclic AMP formation in homogenates of neuroblastoma x glioma hybrid cells. Nature 265, 362–363.PubMedCrossRefGoogle Scholar
  40. Gore, J. and Hoinard, C. (1993) Linolenic acid transport in hamster intestinal cells is carrier-mediated. J. Nutr. 123, 66–73.PubMedGoogle Scholar
  41. Grandgirard, A., Bourre, J. M., Julliard, F., Homayoun, P., Dumont, O., Piciotti, M., and Sebedio, J. L. (1994) Incorporation of trans long-chain n-3 polyunsaturated fatty acids in rat brain structures and retina. Lipids 29, 251–258.PubMedCrossRefGoogle Scholar
  42. Greenwood, C. E. and Winocur, G. (1990) Learning and memory impairment in rats fed a high saturated fat diet. Behay. Neural Biol. 53, 74–87.CrossRefGoogle Scholar
  43. Guan, Z. Z., Soderberg, M., Sindelar, R, and Edlund, C. (1994) Content and fatty acid composition of cardiolipin in the brain of patients with Alzheimer’s disease. Neurochem. Int. 25, 295–300.PubMedCrossRefGoogle Scholar
  44. Hagve, T. A., Lie, O., and Gronn, M. (1993) The effect of dietary n-3 fatty acid on osmotic fragility and membrane fluidity of human erythrocytes. Scand. J. Clin. Lab. Investi. 215 (Suppl.), 75–84.CrossRefGoogle Scholar
  45. Harris, R. A. and Bruno, R. (1985) Membrane disordering by anesthetic drugs: Relationship to synaptosomal sodium and calcium fluxes. J. Neurochem. 44, 1274–1281.PubMedCrossRefGoogle Scholar
  46. Holman, R. T., Adams, C. E., Nelson, R. A., Grater, S. J., Jaskiewicz, J. A., Johnson, S. B., and Erdman, J. W., Jr. (1995) Patients with anorexia nervosa demonstrate deficiencies of selected essential fatty acids, compensatory changes in nonessential fatty acids and decreased fluidity of plasma lipids. J. Nutr. 125, 901–907.PubMedGoogle Scholar
  47. Holman, R. T., Johnson, S. B., and Kokmen, E. (1989) Deficiencies of polyunsaturated fatty acids and replacement by nonessential fatty acids in plasma lipids in multiple sclerosis. Proc. Natl. Acad. Sci. USA 86, 4720–4724.PubMedCrossRefGoogle Scholar
  48. Horrobin, D. F. (1977) Schizophrenia as a prostaglandin deficiency disease. Lancet 1, 936, 937.Google Scholar
  49. Horrobin, D. F. (1978) Schizophrenia as a prostaglandin deficiency disease. Prostaglandin Ther. 4, 1–8.CrossRefGoogle Scholar
  50. Horton, J. D., Cuthbert, J. A., and Spady, D. K. (1993) Dietary fatty acids regulate hepatic low density lipoprotein (LDL) transport by altering LDL receptor protein and mRNA levels. J. Clin. Invest. 92, 743–749.PubMedCrossRefGoogle Scholar
  51. Horwitz, J. and Davis, L. L. (1993) The substrate specificity of brain microsomal phospholipase D. T Biochem. J. 295, 793–798.Google Scholar
  52. Houslay, M. D. and Stanley, K. K. (1982) Dynamics of Biological Membranes, Wiley, Chichester, UK.Google Scholar
  53. Huang, K., Lauridsen, E., and Clausen, J. (1994) The uptake of Na-selenite in rat brain. Localization of new glutathione peroxidases in the rat brain. Biol. Trace Element Res. 46, 91–102.CrossRefGoogle Scholar
  54. Hulse, D., Kusel, J. R., O’Donnell, N. G., and Wilkinson, P. C. (1994) Effects of anaesthetics on membrane mobility and locomotor responses of human neutrophils. FEMS Immunol. Med. Microbiol. 8, 241–248.PubMedCrossRefGoogle Scholar
  55. Kang, J. X., Man, S. F., Hirsh, A. J., and Clandinin, M. T. (1994) Characterization of platelet-activating factor binding to human airway epithelial cells: modulation by fatty acids and ion-channel blockers. Biochem. J. 303, 795–802.PubMedGoogle Scholar
  56. Karim, S. M. M. (ed.) (1979) Practical Applications of Prostagladins and their Synthesis Inhibitors. MTP Press, Lancaster, UK.Google Scholar
  57. Kessler, A. R. and Yehuda, S. (1985) Learning-induced changes in brain membrane cholesterol and fluidity: Implications for brain aging. Int. J. Neurosci. 28, 73–82.PubMedCrossRefGoogle Scholar
  58. Kohlschutter, A., Hubner, C., and Gartner, J. (1988) Decreased membrane fluidity of lymphocytes from patients with juvenile neuronal ceroid-lipofuscinosis. Am. J. Med. Gen. 5 (Suppl.), 203–207.CrossRefGoogle Scholar
  59. Laposata, M. (1995) Fatty acids. Am. J. Clin. Path. 104, 172–179.PubMedGoogle Scholar
  60. Lazo, O., Singh, A. K., and Singh, I. (1991) Postnatal development and isolation of peroxisomes from brain. J. Neurochem. 56, 1343–1353.PubMedCrossRefGoogle Scholar
  61. Lejoyeux, M., Daveloose, D., Maziere, J. C., Ades, J., and Viret, J. (1993) A spin label study of the membrane effect of various psychoactive drugs in human erythrocytes. Life Sci. 52, 7–11.CrossRefGoogle Scholar
  62. Levy, E., Garofalo, C., Thibault, L., Dionne, S., Daoust, L., Lepage, G., and Roy, C. C. (1992) Intraluminal and intracellular phases of fat absorption are impaired in essential fatty acid deficiency. Am. J. Physiol. 262, 319–326.Google Scholar
  63. Lopez-Candales, A., Bosner, M. S., Spilburg, C. A., and Lange, L. G. (1993) Cholesterol transport function of pancreatic cholesterol esterase: directed sterol uptake and esterification in enterocytes. Biochemistry 32, 12085–12089.PubMedCrossRefGoogle Scholar
  64. Lundbaek, J. A. and Andersen, O. S. (1994) Lysophospholipids modulate channel function by altering the mechanical properties of lipid bilayers. J. Gen. Physiol. 104, 645–673.PubMedCrossRefGoogle Scholar
  65. Lynch, M. A., Voss, K. L., and Gower, A. J. (1994) Impaired spatial memory in aged rats is associated with alterations in inostitol phospholipid metabolism. Neuroreport 5, 1493–1497.PubMedCrossRefGoogle Scholar
  66. Malnoe, A., Won, H., and Reme, C. (1990) Effect of in vivo modulation of membrane docosahexaenoic acid levels on the dopamine-dependent adenylate cyclase activity in the rat retina. J. Neurochem. 55, 1480–1485.PubMedCrossRefGoogle Scholar
  67. Medow, M. S., Kieffer, L. B., and Trachtman, H. (1994) Increased lipid fluidity in synaptosomes from brains of hyperosmolal rats. Biochim. Biophys. Acta 1193, 323–329.PubMedCrossRefGoogle Scholar
  68. Moltz, H. (1993) Fever: causes and consequences. Neurosci. Biobehay. Rev. 17, 237–269.CrossRefGoogle Scholar
  69. Mori, I., Hiramatsu, M., Toda, N., Koide, Y., and Miyagawa, E (1994) Effects of alcohol on membrane fluidity of human erythrocyte. Acta Med. Okayama 48, 117–122.PubMedGoogle Scholar
  70. Morin, R, Conserva, A. R., Lippolis, R., Casalino, E., and Landriscina, C. (1991) Differential action of thyroid hormones on the activity of certain enzymes in rat kidney and brain. Biochem. Med. Metab. Biol. 46, 169–176.CrossRefGoogle Scholar
  71. Myers, B. M., Prendergast, F. G., Holman, R., Kuntz, S. M., and LaRusso, N. F. (1991) Alterations in the structure, physicochemical properties, and pH of hepatocyte lysosomes in experimental iron overload. J. Clin. Invest. 88, 1207–1215.PubMedCrossRefGoogle Scholar
  72. Nakada, T., Kwee, I. L., and Ellis, W. G. (1990) Membrane fatty acid composition shows delta-6-desaturase abnormalities in Alzheimer’s disease. Neuroreport 1, 153–155.PubMedCrossRefGoogle Scholar
  73. Nariai, T., DeGeorge, J. J., Greig, N. H., Genka, S., Rapoport, S. I., and Purdon, A. D. (1994) Differences in rates of incorporation of intravenously injected radiolabeled fatty acids into phospholipids of intracerebrally implanted tumor and brain in awake rats. Clin. Exp. Metastasis 12, 213–225.PubMedCrossRefGoogle Scholar
  74. Navarro, E., Romero, S. D., and Yaksh, T. L. (1989) CNS stimulation and PGE2 release. III. Pentamethylenetetrazole-induced seizures. J. Cereb. Blood Flow Metab. 9, 180–186.PubMedCrossRefGoogle Scholar
  75. Ney, D. M., Ziboh, V. A., and Schneeman, B. O. (1987) Reduction in plasma apolipoprotein E and HDL1 levels in rats with essential fatty acid deficiency. J. Nutr. 117, 2016–2020.Google Scholar
  76. Nicholas, H. J. and Taylor, J. (1994) Central nervous system demyelinating disease and increased release of cholesterol into the urinary system of rats. Lipids 29, 611–617.PubMedCrossRefGoogle Scholar
  77. Nightingale, S., Woo, E., Smith, A. D., French, J. M., Gale, M. M., Sinclair, H. M., Bates, D., and Shaw, D. A. (1990) Red blood cell and adipose tissue fatty acids in mild inactive multiple sclerosis. Acta Neurol. Scand. 82, 43–50.PubMedCrossRefGoogle Scholar
  78. Ohnishi, S. T., Tominaga, T., and Katsuoka, M. (1989) Inhibition of ischemic brain edema formation by post-ischemic administration of prostaglandin oligomer. Prostaglandins Leukotrienes Essential Fatty Acids 37 107–111.CrossRefGoogle Scholar
  79. Oka, T. and Hori, T. (1994) EP1-receptor mediation of prostaglandin E2-induced hyperthermia in rats. Am. J. Physiol. 267, 289–294.Google Scholar
  80. Okuyama, H. (1992) Minimum requirements of n-3 and n-6 essential fatty acids for the function of the central nervous system and for the prevention of chronic disease. Proc. Soc. Exp. Biol. Med. 200, 174–176.PubMedGoogle Scholar
  81. Oloyede, O. B., Folayan, A. T., and Odutuga, A. A. (1992) Effects of low-iron status and deficiency of essential fatty acids on some biochemical constituents of rat brain. Biochem. Int. 27, 913–922.Google Scholar
  82. Oner, G. and Senturk, U. K. (1995) Reversibility of manganese-induced learning defect in rats. Food Chem. Toxicol. 33, 559–563.PubMedCrossRefGoogle Scholar
  83. Palestini, P., Masserini, M., Fiorilli, A., Calappi, E., and Tettamanti, G. (1993) Age-related changes in the ceramide composition of the major gangliosides present in rat brain subcellular fractions enriched in plasma membranes of neuronal and myelin origin. J. Neurochem. 61, 955–960.PubMedCrossRefGoogle Scholar
  84. Parent, A., Rowe, W., Meaney, M. J., and Quirion, R. (1995) Increased production of inositol phosphates and diacyglycerol in aged cognitively impaired rats after stimulation of muscarinic, metabotropic-glutamate and endothelin receptors. J. Pharmacol. Exp. Ther. 272, 1110–1116.PubMedGoogle Scholar
  85. Pepe, S., Bogdanov, K., Hallaq, H., Spurgeon, H., Leaf, A., and Lakatta, E. (1994) Omega 3 polyunsaturated fatty acid modulates dihydropyridine effects on L-type Ca2+ channels, cytosolic Ca2+, and cotranction Ca2+, and contraction in adult rat cardiac myocytes. Proc. Natl. Acad. Sci. USA 91, 8832–8836.PubMedCrossRefGoogle Scholar
  86. Petrou, S., Ordway, R. W., Kirber, M. T., Dopico, A. M., Hamilton, J. A., Walsh, J. V., Jr., and Singer, J. J. (1995) Direct effects of fatty acids and other charged lipids on ion channel activity in smooth muscle cells. Prostaglandins Leukotrienes Essential Fatty Acids 52, 173–178.CrossRefGoogle Scholar
  87. Philbrick, D. J., Mahadevappa, V. G., Ackman, R. G., and Holub, B. J. (1987) Ingestion of fish oil or a derived n-3 fatty acid concentrate containing eicosapentaenoic acid (EPA) affects fatty acid compositions of individual phospholipids of rat brain, sciatic nerve and retina. J. Nutr. 117, 1663–1670.PubMedGoogle Scholar
  88. Ross, B. M. Kim, D. K., Bonventre, J. V., and Kish, S. J. (1995) Characterization of a novel phospholipase A2 activity in human brain. J. Neurochem. 64, 2213–2221.Google Scholar
  89. Ross, B. M., and Kish, S. J. (1994) Characterization of lysophospholipid metaboliz-ing enzymes in human brain. J. Neurochem. 63, 1839–1848.PubMedCrossRefGoogle Scholar
  90. Ross, D. L., Swaiman, K. F., Torres, F., and Hansen, J. (1985) Early biochemical and EEG correlates of the ketogenic diet in children with atypical absence epilepsy. Pediatr. Neurol. 1, 104–108.PubMedCrossRefGoogle Scholar
  91. Schaechter, J. D. and Benowitz, L. I. (1993) Activation of protein kinase C by arachidonic acid selectively enhances the phosphorylation of GAP-43 in nerve terminal membranes. J. Neurosci. 13, 4361–4371.PubMedGoogle Scholar
  92. Scheuer, K., Stoll, S., Paschke, U., Weigel, R., and Muller, W. E. (1995) N-methyl-Daspartate receptor density and membrane fluidity as possible determinants of the decline of passive avoidance performance in aging. Pharmacol. Biochem. Behay. 50, 65–70.CrossRefGoogle Scholar
  93. Schroeder, F., Butko, P., Hapala, I., and Scallen, T. J. (1990) Intermembrane cholesterol transfer: Role of sterol carrier proteins and phosphatidylserine. Lipids 25, 669–674.Google Scholar
  94. Schwartz, R. D. and Yu, X. (1992) Inhibition of GABA-gated chloride channel function by arachidonic acid. Brain Res. 585, 405–410.PubMedCrossRefGoogle Scholar
  95. Sellinger, M., Weinman, S. A., Henderson, R. M., Zweifach, A., Boyer, J. L., and Graf, J. (1992) Anion channels in rat liver canalicular plasma membranes reconstituted in planar. Am. J. Physiol. 262, 1027–1032.Google Scholar
  96. Senisterra, G. and Epand, R. M. (1993) Role of membrane defects in the regulation of the activity of protein kinase C. Arch. Biochem. Biophys. 300, 378–383.PubMedCrossRefGoogle Scholar
  97. Shanklin, J., Whittle, E., and Fox, B. G. (1994) Eight histidine residues are catalytically essential in a membrane-associated iron enzyme, stearolyl-CoA desaturase, and are conserved in alkane hydroxylase and xylene monooxygenase. Biochemistry 33, 12, 787–12, 794.Google Scholar
  98. Shimada, S. G., Otterness, I. G., and Stitt, J. T. (1994) A study of the mechanism of action of the mild analgesic dipyrone. Agents Actions 41, 188–192.PubMedCrossRefGoogle Scholar
  99. Shimizu, T. and Wolfe, I. S. (1990). Arachidonic acid cascade and signal transduc-tion. J. Neurochem. 55, 1–15.PubMedCrossRefGoogle Scholar
  100. Simpson, C. W., Ruwe, W. D., and Myers, R. D. (1994) Prostaglandins and hypothalamic neurotransmitter receptors involved in hyperthermia: a critical evaluation. Neurosci. Biobehay. Rev. 18, 1–20.CrossRefGoogle Scholar
  101. Singer, B. J. and Nicoloson, G. L. (1972) The fluid mosaic model of the structure of cell membrane. Science 178, 720–731.CrossRefGoogle Scholar
  102. Skinner, E. R., Watt, C., Besson, J. A., and Best, R V. (1993) Differences in the fatty acid composition of the gray and white matter of different regions of the brains of patients with Alzheimer’s disease and control subjects. Brain 116, 717–725.PubMedCrossRefGoogle Scholar
  103. Slater, S. J., Cox, K. J., Lombardi, J. V., Ho, C., Kelly, M. B., Rubin, E., and Stubbs, C. D. (1993) Inhibition of protein kinase C by alcohols and anaesthetics. Nature 364, 82–84.PubMedCrossRefGoogle Scholar
  104. Soderberg, M., Edlund C., Kristensson, K., and Dallner, G. (1991) Fatty acid composition of brain phospholipids in aging and in Alzheimer’s disease. Lipids 26, 421–425.PubMedCrossRefGoogle Scholar
  105. Sri Kantha, S., Matsumura, H., Kubo, E., Kawase, K., Takahata, R., Serhan, C. N., and Hayaishi, O. (1994) Effects of prostaglandin D2, lipoxins and leukotrienes on sleep and brain temperature of rats. Prostaglandins Leukotrienes Essential Fatty Acids 51, 87–93.CrossRefGoogle Scholar
  106. Strubbs, C. D. and Smith, A. D. (1984) The modification of mammalian membrane polyunsaturated fatty acids composition in relation to membrane fluidity and function. Biochim. Biophys. Acta, 779, 89–137.CrossRefGoogle Scholar
  107. Sved, A. F. (1983) Precursor control of the function of monoaminergic neurons, in Nutrition and Behavior vol. 5 ( Wurtman, R. J. and Wurtman, J. J., eds.), Raven, New York, pp. 223–275.Google Scholar
  108. Swank, R. L. and Grimsgaard, A. (1988) Multiple sclerosis: the lipid relationship. Am. J. Clin. Nutr., 48, 1387–1393.PubMedGoogle Scholar
  109. Szamel, M., Leufgen, H., Kurrle, R., and Resch, K. (1995) Differential signal transduction pathways regulating interleukin-2 synthesis and interleukin-2 receptor expression in stimulated human lymphocytes. Biochim. Biophys. Acta 1235, 33–42.PubMedCrossRefGoogle Scholar
  110. Tacconi, M. T., Cizza, G., Fumagalli, G., Sarzi Sartori, R, and Salmona, M. (1991) Effect of hypothyroidism induced in adult rats on brain membrane fluidity and lipid content and composition. Res. Commun. Chem. Pathol. Pharmacol. 71, 85–103.PubMedGoogle Scholar
  111. Toth, P., Lukacs, H., Hiatt, E. S., Reid, K. H., Iyer, V., and Rao, C. V. (1994) Administration of human chorionic gonadotropin affects sleep-wake phases and other associated behaviors in cycling female rats. Brain Res. 654, 181–190.PubMedCrossRefGoogle Scholar
  112. Tsuda, K., Ueno, Y., Nishio, I., and Masuyama, Y. (1992) Membrane fluidity as a genetic marker of hypertension. Clin. Exp. Pharmacol. Physiol. 20 (Suppl.), 11–16.Google Scholar
  113. Umezawa, M., Ohta, A., Tojo, H., Yagi, H., Hosokawa, M., and Takeda, T. (1995) Dietary alpha-linolenate/linoleate balance influences learning and memory in the senescence-accelerated mouse (SAM). Brain Res. 669, 225–233.PubMedCrossRefGoogle Scholar
  114. Van Rooijen, L. A., Vadnal, R., Dobard, P., and Bazan, N. G. (1986) Enhanced inositide turnover in brain during bicuculline-induced status epilepticus. Biochem. Biophys. Res. Commun. 136, 827–834.PubMedCrossRefGoogle Scholar
  115. Viani, P., Cervato, G., Fiorilli, A., and Cestaro, B. (1991) Age-related differences in synaptosomal peroxidative damage and membrane properties. J. Neurochem. 56, 253–258.PubMedCrossRefGoogle Scholar
  116. Visioli, F., Rodriguez de Turco, E. B., Kreisman, N. R., and Bazan, N. G. (1994) Membrane lipid degradations related to interictal cortical activity in a series of seizures. Metab. Brain Dis. 9, 161–170.PubMedCrossRefGoogle Scholar
  117. Wainwright, P. E. (1992) Do essential fatty acids play a role in brain and behavioral development? Neurosci. Biobehay. Rev. 16, 193–205.CrossRefGoogle Scholar
  118. Wainwright, P. E., Huang, Y. S., Bulman-Fleming, B., Levesque, S., and McCutcheon, D. (1994a) The effects of dietary fatty acid composition combined with environmental enrichment on brain and behavior in mice. Behay. Brain Res. 60, 125–136.CrossRefGoogle Scholar
  119. Wainwright, P. E., Huang, Y. S., Coscina, D. V., Levesque, S., and McCutcheon, D. (1994b) Brain and behavioral effects of dietary n-3 deficiency in mice: a three generational study. Dev. Psychobiol. 27, 467–487.PubMedCrossRefGoogle Scholar
  120. Williams, K. A. and Deber, C. M. (1993). The structure and function of central nervous system myelin. Crit. Rev. Clin. Lab. Sci. 30, 29–64.PubMedCrossRefGoogle Scholar
  121. Wilson, R. and Tocher, D. R. (1991) Lipid and fatty acid composition is altered in plaque tissue from multiple sclerosis brain compared with normal brain white matter. Lipids 26, 9–15.PubMedCrossRefGoogle Scholar
  122. Woollett, L. A. and Dietschy, J. M. (1994) Effect of long-chain fatty acids on lowdensity-lipoprotein-cholesterol metabolism. Am. J. Clin. Nutr. 60 (Suppl. 6), 991–996.Google Scholar
  123. Wurtman, R. J. (1982) Nutrients that modify brain function. Sci. Am. 246, 50–59.PubMedCrossRefGoogle Scholar
  124. Wurtman, R. J. and Wurtman, J. J. (1984). Nutritional control of central neurotrans- mitters, in Psychobiology of Anorexia Nervosa ( Pirke K. M., and Ploog D., eds.), Springer, Berlin, pp. 4–12.CrossRefGoogle Scholar
  125. Yamamoto, N., Hashimoto, A., Takemoto, Y, Okuyama, H., Nomura, M., Kitajima, R., Togashi, T., and Tamai, Y. (1988) Effect of the dietary alpha-linolenate/linoleate balance on lipid compositions and learning ability of rats. II. Discrimination process, extinction process, and glycolipid compositions. J. Lipid Res. 29, 1013–1021.PubMedGoogle Scholar
  126. Yamamoto, N., Okaniwa, Y., Mori, S., Nomura, M., and Okuyama, H. (1991) Effects of a high linoleate and a high-alpha-linolenate diet on the learning ability of aged rats. Evidence against an autoxidation-related lipid peroxide theory of aging. J. Gerontol. 46, 17–22.CrossRefGoogle Scholar
  127. Yehuda, S. (1987) Nutrients, brain biochemistry, and behavior: a possible role for the neuronal membrane. Int. J. Neurosci. 35, 21–36.PubMedCrossRefGoogle Scholar
  128. Yehuda, S. (1993) Nutrition, nutrients and epilepsy, in ( Mostofsky, D. I., ed.), Neurobehavioral Treatment of Epilepsy, Eribaum, Hillsdale, NJ, pp. 123–138.Google Scholar
  129. Yehuda, S. and Carasso, R. L. (1987) Effects of dietary fats on learning, pain threshold, thermoregulation and motor activity in rats: Interaction with the length of feeding period. Int. J. Neurosci. 32, 919–925.PubMedCrossRefGoogle Scholar
  130. Yehuda, S., Carasso, R. L., and Mostofsky, D. I. (1994) Essential fatty acid preparation (SR-3) raises the seizure threshold in rats. Eur. J. Pharmacol. 254, 193–198.PubMedCrossRefGoogle Scholar
  131. Yehuda, S., Carasso, R. L., and Mostofsky, D. I. (1995) Essential fatty acids preparation (SR-3) rehabilitates learning deficits induced by A64A and 5,7-DHT. Neuroreport 6, 511–515.PubMedCrossRefGoogle Scholar
  132. Yehuda, S., Leprohon-Greenwood, C. E., Dixon, L. M., and Coscina, D. V. (1986) Effects of dietary fat on pain threshold, thermoregulation and motor activity in rats. Pharmacol. Biochem. Behay. 24, 1775–1777.CrossRefGoogle Scholar
  133. Yehuda, S., Rabinovitz, S., Mostofsky, D. I., Huberman, M., and Sredni, B. (1997) Essential fatty acids preparation rehabilitates biochemical and cognitive functions in EAE rats. Pharmacol. Biochem. Behay. in press.Google Scholar
  134. Yu, G. S., Steinkirchner, T. M., Rao, G. A., and Larkin, E. C. (1986) Effect of prena- tal iron deficiency on myelination in rat pups. Am. J. Pathol. 125, 620–624.PubMedGoogle Scholar
  135. Zerouga, M., Beauge, F., Niel, E., Durand, G., and Bourre, J. M. (1991) Interactive effects of dietary (n-3) polyunsaturated fatty acids and chronic ethanol intoxication on synaptic membrane lipid composition and fluidity in rats. Biochim. Biophys. Acta 1086, 295–304.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Shlomo Yehuda
  • Sharon Rabinovitz
  • David I. Mostofsky

There are no affiliations available

Personalised recommendations