Skip to main content

Arachidonic Acid, Neurotrauma, and Neurodegenerative Diseases

  • Chapter

Abstract

Polyunsaturated fatty acids are important constituents of membrane phospholipids throughout the central nervous system (CNS). They serve not only to maintain the fluid crystalline state of the lipid bilayer, but also to provide the membrane with adequate flexibility necessary to stabilize regions of high curvature. The functional properties of such membranes include: maintaining suitable ion permeability, providing a substrate for cellular signal transduction, and participating in biosynthetic pathways. Since approximately half of the dry weight of neural tissue in the CNS is lipid, with a large portion being phospholipid, a considerable amount of investigation has focused on studying the relationship between lipid structure and neural function. Advances include the involvement of the inositides, phosphatidylcholine, and, recently, sphingomyelin in signal transduction processes. The functions of fatty acid metabolites (eicosanoids) and other nonmembrane lipids (steroid hormones) have also been studied quite extensively and have been shown to influence cellular function.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arbuckle, L. D., MacKinnon, M. J., and Innis, S. M. (1994) Formula 18:2 (n-6) and 18:3 (n-3) content and ratio influence long-chain polyunsaturated fatty acids in the developing piglet liver and central nervous system. J. Nutr., 124, 289–298.

    PubMed  CAS  Google Scholar 

  • Arduini, A., Denisova, N., Virmani, A., Avrova, N., Federici, G., and ArrigoniMartelli, E. (1994) Evidence for the involvement of carnitine-dependent long-chain acyltransferases in neuronal triglyceride and phospholipid fatty acid turnover. J. Neurochem. 62, 1530–1538.

    Article  PubMed  CAS  Google Scholar 

  • Axelrod, J. (1990) Receptor-mediated activation of phospholipase A2 and arachidonic acid release in signal transduction. Biochem. Soc. Trans. 18, 503–507.

    PubMed  CAS  Google Scholar 

  • Bazan, N. G. (1970) Effects of ischemia and electroconvulsive shock on free fatty acid pool in the brain. Biochim. Biophys. Acta, 218, 1–10.

    Article  PubMed  CAS  Google Scholar 

  • Bazan, N. G. (1989) Arachidonic acid in the modulation of excitable membrane function and at the onset of brain damage. Ann. NY Acad. Sci., 559, 1–16.

    Article  PubMed  CAS  Google Scholar 

  • Bazan, N. G. and Rodriguez de Turco, E. B. (1980) Membrane lipids in the pathogenesis of brain edema: phospholipids and arachidonic acid, the earliest membrane components changed at the onset of ischemia, in Advances in Neurology, Vol. 28: Brain Edema ( Cervos-Navarro, J. and Ferszt, R., eds.), Raven, New York, pp. 197–205.

    Google Scholar 

  • Blobe, G. C., Khan, W. A., and Hannun, Y. A. (1995) Protein kinase C: cellular target of the second messenger arachidonic acid? [Review]. Prostaglandins Leukotrienes Essential Fatty Acids 52, 129–135.

    Article  CAS  Google Scholar 

  • Bondy, S. C. (1995) The relation of oxidative stress and hyperexcitation to neurological disease. Proc. Soc. Exp. Biol. Med. 208, 337–345.

    PubMed  CAS  Google Scholar 

  • Butterfield, D. A., Hensley, K., Harris, M., Mattson, M., and Carney, J. (1994) [3-Amyloid peptide free radical fragments initiate synaptosomal lipoperoxidation in a sequence-specific fashion: implications to Alzheimer’s disease. Biochem. Biophys. Res. Commun. 200, 710–715.

    Google Scholar 

  • Carlson, S. E., Werkman, S. H., Peeples, J. M., Cooke, R. J., and Tolley, E. A. (1993) Arachidonic acid status correlates with first year growth in preterm infants. Proc. Natl. Acad. Sci. USA 90, 1073–1077.

    Article  PubMed  CAS  Google Scholar 

  • Caspers, M. L., Bussone, M., Dow, M. J., Ulanski, L. J., and Grammas, P. (1993) Alterations of cerebromicrovascular Na+, K(+)-ATPase activity due to fatty acids and acute hypertension. Brain Res. 602, 215–220.

    Article  PubMed  CAS  Google Scholar 

  • Cazevieille, C., Muller, A., Meynier, E, Dutrait, N., and Bonne, C. (1994) Protection by prostaglandins from glutamate toxicity in cortical neurons. Neurochem. Int. 24, 395–398.

    Article  PubMed  CAS  Google Scholar 

  • Chan, R. H. and Fishman, R. A. (1978) Brain edema: induction in cortical slices by polyunsaturated fatty acids. Science 201, 358–360.

    Article  PubMed  CAS  Google Scholar 

  • Chan, R. H., Kerlan, R., and Fishman, R. A. (1983) Reductions of gamma-aminobutyric acid and glutamate uptake and (Nat, K+)-ATPase activity in brain slices and synaptosomes by arachidonic acid. J. Neurochem. 40, 309–316.

    Article  PubMed  CAS  Google Scholar 

  • Chilton, F. H., Fonteh, A. N., Surette, M. E., Triggiani, M., and Winkler, J. D. (1996) Control of arachidonate levels within inflammatory cells. Biochim. Biophys. Acta 1299, 1–15.

    Article  PubMed  Google Scholar 

  • Chow, C. K. (1991) Vitamin E and oxidative stress. Free Radical Biol. Med. 11, 215–232.

    Article  CAS  Google Scholar 

  • Clarke, S. D. and Jump, D. B. (1993) Regulation of gene transcription by polyunsaturated fatty acids [Review]. Prog. Lipid Res. 32, 139–149.

    Article  PubMed  CAS  Google Scholar 

  • Corrigan, F. M., Van Rhijn, A., and Horrobin, D. F. (1991) Essential fatty acids in Alzheimer’s disease. Ann. NY Acad. Sci. 640, 250–252.

    PubMed  CAS  Google Scholar 

  • Damron, D. S. and Bond, M. (1993) Modulation of Cat+ cycling in cardiac myocytes by arachidonic acid. Circ. Res. 72, 376–386.

    Article  PubMed  CAS  Google Scholar 

  • Demediuk, R, Saunders, R. D., Anderson, D. K., Means, E. D., and Horrocks, L. A. (1982) Membrane lipid changes in laminectomized and traumatized cat spinal cord. Proc. Natl. Acad. Sci. USA 82, 7071–7075.

    Article  Google Scholar 

  • Dexter, D. T., Carter, C. J., Wells, F. R., Javoy-Agid, F., Agid, Y., Lees, A., Jenner, P., and Marsden, C. D. (1989) Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease. J. Neurochem. 52, 381–389.

    Article  PubMed  CAS  Google Scholar 

  • Doolan, C. M. and Keenan, A. K. (1994) Inhibition by fatty acids of cyclic AMP-dependent protein kinase activity in brush border membranes isolated from human placental vesicles. Br. J. Pharmacol. 111, 509–514.

    Article  PubMed  CAS  Google Scholar 

  • Dykens, J. A. (1994) Isolated cerebral and cerebellar mitochondria produce free radicals when exposed to elevated Cat+ and Nat: implications for neurodegeneration. J. Neurochem. 63, 584–591.

    Article  PubMed  CAS  Google Scholar 

  • Edgar, A. D., Strosznajder, J., and Horrocks, L. A. (1982) Activation of ethanolamine phospholipase A2 in brain during ischemia. J. Neurochem. 39, 1111–1116.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui, A. A., Haun, S. E., and Horrocks, L. A. (1994) Ischemia and hypoxia, in Basic Neurochemistry ( Siegel, G. J., Agranoff, B. W., Albers, R. W, and Molinoff, P. B., eds.), Raven, New York, pp. 867–883.

    Google Scholar 

  • Farooqui, A. A., Liss, L., and Horrocks, L. A. (1988) Neurochemical aspects of Alzheimer’s disease: involvement of membrane phospholipids. Metab. Brain Dis. 3, 19–35.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui, A. A., Rammohan, K. W., and Horrocks, L. A. (1989) Isolation, characterization and regulation of diacylglycerol lipases from bovine brain. Ann. N.Y. Acad. Sci. 559, 25–36.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui, A. A., Wells, K., and Horrocks, L. A. (1995) Breakdown of membrane phospholipids in Alzheimer disease: involvement of excitatory amino acid receptors. Mol. Chem. Neuropathol. 25, 155–173.

    Article  PubMed  CAS  Google Scholar 

  • Gattaz, W. F., Schmitt, A., and Maras, A. (1995) Increased platelet phospholipase A2 activity in schizophrenia. Schizophr. Res. 16, 1–6.

    Article  PubMed  CAS  Google Scholar 

  • Ginsberg, L., Rafique, S., Xuereb, J. H., Rapoport, S. I., and Gershfeld, N. L. (1995) Disease and anatomic specificity of ethanolamine plasmalogen deficiency in Alzheimer’s disease brain. Brain Res. 698, 223–226.

    Article  PubMed  CAS  Google Scholar 

  • Halliwell, B. (1994) Free radicals, antioxidants, and human disease: curiosity, cause, or consequence? Lancet 344, 721–724.

    Article  PubMed  CAS  Google Scholar 

  • Han, J. W., McCormick, F., and Macara, I. G. (1991) Regulation of Ras-GAP and the neurofibromatosis-1 gene product by eicosanoids. Science 252, 576–579.

    Article  PubMed  CAS  Google Scholar 

  • Harris, M. E., Hensley, K., Butterfield, D. A., Leedle, R. A., and Carney, J. M. (1995) Direct evidence of oxidative injury produced by the Alzheimer’s ß-amyloid peptide (1–40) in cultured hippocampal neurons. Exp. Neurol. 131, 193–202.

    Article  PubMed  CAS  Google Scholar 

  • Hayes, R. L., Jenkins, L. W., and Lyeth, B. G. (1992) Neurotransmitter-mediated mechanisms of traumatic brain injury: acetylcholine and excitatory amino acids. J. Neurotrauma 9, S173 - S187.

    Article  PubMed  Google Scholar 

  • Hirashima, Y., Farooqui, A. A., Mills, J. S., and Horrocks, L. A. (1992) Identification and purification of calcium-independent phospholipase A2 from bovine brain cytosol. J. Neurochem. 59, 708–714.

    Article  PubMed  CAS  Google Scholar 

  • Holman, R. T., Johnson, S. B., and Hatch, T. F. (1982) A case of human linolenic acid deficiency involving neurological abnormalities. Am. J. Clin. Nutr. 35, 617–623.

    PubMed  CAS  Google Scholar 

  • Horrobin, D. F., Manku, M. S., Hillman, H., Iain, A., and Glen, M. (1991) Fatty acid levels in the brains of schizophrenics and normal controls. Biol. Psychiatry 30, 795–805.

    Article  PubMed  CAS  Google Scholar 

  • Horrobin, D. F., Manku, M. S., Morse-Fisher, N., Vaddadi, K. S., Courtney, P., Glen, A. I., Glen, E., Spellman, M., and Bates, C. (1989) Essential fatty acids in plasma phospholipids in schizophrenics. Biol. Psychiatry 25, 562–568.

    Article  PubMed  CAS  Google Scholar 

  • Jenner, P. (1994) Oxidative damage in neurodegenerative disease. Lancet 344, 796–798.

    Article  PubMed  CAS  Google Scholar 

  • Jump, D. B., Clarke, S. D., Thelen, A., and Limatta, M. (1994) Coordinate regulation of glycolytic and lipogenic gene expression by polyunsaturated fatty acids. J. Lipid Res. 35, 1076–1084.

    PubMed  CAS  Google Scholar 

  • Jurivich, D. A., Sistonen, L., Sarge, K. D., and Morimoto, R. I. (1994) Arachidonate is a potent modulator of human heat shock gene transcription. Proc. Natl. Acad. Sci. USA 91, 2280–2284.

    Article  PubMed  CAS  Google Scholar 

  • Kaiya, H. (1991) Prostaglandin E1 suppression of platelet aggregation response in schizophrenia. Schizophr. Res. 5, 67–80.

    Article  PubMed  CAS  Google Scholar 

  • Katsuki, H. and Okuda, S. (1995) Arachidonic acid as a neurotoxic and neurotrophic substance. Prog. Neurobiol. 46, 607–636.

    Article  PubMed  CAS  Google Scholar 

  • Khouja, A. and Jones, C. T. (1993) Modulation by protein kinase C of arachidonic acid release from permeabilised myometrial cells of guinea pig uterus. J. Dey. Physiol. 19, 1–7.

    CAS  Google Scholar 

  • Kim, D., Sladek, C. D., Aguado-Velasco, C., and Mathiasen, J. R. (1995) Arachidonic acid activation of a new family of K+ channels in cultured rat neuronal cells. J. Physiol. 484, 643–660.

    PubMed  CAS  Google Scholar 

  • Kovalchuk, Y., Miller, B., Sarantis, M., and Attwell, D. (1994) Arachidonic acid depresses non—NMDA receptor currents. Brain Res. 643, 287–295.

    Article  PubMed  CAS  Google Scholar 

  • Lenzen, S., Görlich, J., and Rustenbeck, I. (1989) Regulation of transmembrane ion transport by reaction products of phospholipase A2. I. Effects of lysophospholipids on mitochondrial Cat+ transport. Biochim. Biophys. Acta 982, 140–146.

    Article  PubMed  CAS  Google Scholar 

  • Liscovitch, M. and Cantley, L. C. (1994) Lipid second messengers [Review]. Cell 77, 329–334.

    Article  PubMed  CAS  Google Scholar 

  • Lynch, M. A. and Voss, K. L. (1990) Arachidonic acid increases inositol phospholipid metabolism and glutamate release in synaptosomes prepared from hippocampal tissue. J. Neurochem. 55, 215–221.

    Article  PubMed  CAS  Google Scholar 

  • Mahadik, S. P., Mukherjee, S., Correnti, E. E., Kelkar, H. S., and Wakade, C. G. (1994) Plasma membrane phospholipid and cholesterol distribution of skin fibroblasts from drug-naive patients at the onset of psychosis. Schizophr. Res. 13, 239–247.

    Article  PubMed  CAS  Google Scholar 

  • Makrides, M., Neumann, M., Simmer, K., Pater, J., and Gibson, R. (1995) Are long-chain polyunsaturated fatty acids essential nutrients in infancy? Lancet 345, 1463–1468.

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Cayuela, M. (1995) Oxygen free radicals and human disease [Review]. Biochimie 77, 147–161.

    Article  PubMed  CAS  Google Scholar 

  • Morais Cabral, J. H., Atkins, G. L., Sonchez, L. M., Lopez-Baodo, Y. S., Lopez-Oton, C., and Sawyer, L. (1995) Arachidonic acid binds to apolipoprotein D: implications for the protein’s function. FEBS Lett. 366, 53–56.

    Article  Google Scholar 

  • Murphy, E. J., Behrmann, D., Bates, C. M., and Horrocks, L. A. (1994) Lipid alterations following impact spinal cord injury in the rat. Mol. Chem. Neuropathol. 23, 13–26.

    Article  PubMed  CAS  Google Scholar 

  • Nakada, T., Kwee, I. L., and Ellis, W. (1990) Membrane fatty acid composition shows delta-6-desaturase abnormalities in Alzheimer’s disease. NeuroReport 1, 153–155.

    Article  PubMed  CAS  Google Scholar 

  • O’Brien, J. S., Sampson, E. I., and Stern, M. B. (1967) Lipid composition of myelin from the peripheral nervous system: intradural spinal roots. J. Neurochem. 14, 357–363.

    Article  PubMed  Google Scholar 

  • Okuda, S., Saito, H., and Katsuki, H. (1994) Arachidonic acid: toxic and trophic

    Google Scholar 

  • effects on cultured hippocampal neurons. Neuroscience 63, 691–699.

    Google Scholar 

  • Palmer, A. M. and Burns, M. A. (1994) Selective increase in lipid peroxidation in the inferior temporal cortex in Alzheimer’s disease. Brain Res. 645, 338–342.

    Article  PubMed  CAS  Google Scholar 

  • Peet, M., Laugharne, J. D. E., Horrobin, D. F., and Reynolds, G. P. (1994) Arachidonic acid: a common link in the biology of schizophrenia? Arch. Gen. Psychiatry 51, 665–666.

    Article  PubMed  CAS  Google Scholar 

  • Piomelli, D. and Greengard, P. (1990) Lipoxygenase metabolites of arachidonic acid in neuronal transmembrane signalling. Trends Pharmacol. Sci. 11, 367–373.

    Article  PubMed  CAS  Google Scholar 

  • Piomelli, D., Wang, J. K., Sihra, T. S., Nairn, A. C., Czernik, A. J., and Greengard, P. (1989) Inhibition of Cat+/calmodulin-dependent protein kinase H by arachidonic acid and its metabolites. Proc. Natl. Acad. Sci. USA 86, 8550–8554.

    Article  PubMed  CAS  Google Scholar 

  • Porter, N. A., Caldwell, S. E., and Mills, K. A. (1995) Mechanisms of free radical oxidation of unsaturated lipids. Lipids 30, 277–290.

    Article  PubMed  CAS  Google Scholar 

  • Rajakumar, D. V. and Rao, M. N. A. (1993) Dehydrozingerone and isoeugenol as inhibitors of lipid peroxidation and as free radical scavengers. Biochem. Pharmacol. 46, 2067–2072.

    Article  PubMed  CAS  Google Scholar 

  • Rao, G. H. R. (1993) Signal transduction, second messengers, and platelet function. J. Lab. Clin. Med. 121, 18–20.

    PubMed  CAS  Google Scholar 

  • Rao, K. V., Vaidyanathan, V. V., and Sastry, P. S. (1994) Diacylglycerol kinase is stimulated by arachidonic acid in neural membranes. J. Neurochem. 63, 1454–1459.

    PubMed  CAS  Google Scholar 

  • Rordorf, G., Uemura, Y., and Bonventre, J. V. (1991) Characterization of phospholipase A2 (PLA2) activity in gerbil brain: enhanced activities of cytosolic, mitochondrial, and microsomal forms after ischemia and reperfusion. J. Neurosci. 11, 1829–1836.

    PubMed  CAS  Google Scholar 

  • Ruan, C. L., Liu, X. F., Man, H. S., Ma, X. L., Lin, G. Z., Duan, G. H., DeFrancesco, C. A., and Connor, W. E. (1995) Milk composition in women from five different regions of China: the great diversity of milk fatty acids. J. Nutri. 125, 2993–2998.

    CAS  Google Scholar 

  • Sakata, A., Ida, E., Tominaga, M., and Onoue, K. (1987) Arachidonic acid acts as an intracellular activator of NADPH-oxidase inFc gamma receptor-mediated superoxide generation in macrophages. J. Immunol. 138, 4353–4359.

    PubMed  CAS  Google Scholar 

  • Saunders, R. and Horrocks, L. A. (1987) Eicosanoids, plasma membranes, and molecular mechanisms of spinal cord injury [Review]. Neurochem. Pathol. 7, 1–22.

    Article  PubMed  CAS  Google Scholar 

  • Shearman, M. S., Sekiguchi, K., and Nishizuka, Y. (1989) Modulation of ion channel activity: a key function of the protein kinase C enzyme family. Pharmacol. Rev. 41, 211–237.

    PubMed  CAS  Google Scholar 

  • Shearman, M. S., Shinomura, T., Oda, T., and Nishizuka, Y. (1991) Protein kinase C subspecies in adult rat hippocampal synaptosomes. Activation by diacylglycerol and arachidonic acid. FEBS Lett. 279, 261–264.

    Article  PubMed  CAS  Google Scholar 

  • Shohami, E., Shapira, Y., Yadid, G., Reisfeld, N., and Yedgar, S. (1989) Brain phospholipase A2 is activated after experimental closed head injury in the rat. J. Neurochem. 53, 1541–1546.

    Article  PubMed  CAS  Google Scholar 

  • Siesjö, B. K. Ingvar, M., and Westerberg, E. (1982) The influence of bicucullineinduced seizures on free fatty acid concentrations in cerebral cortex, hippocampus, and cerebellum. J. Neurochem. 39, 796–802.

    Google Scholar 

  • Siesjö, B. K. and Wieloch, T. (1986) Epileptic brain damage: pathophysiology and neurochemical pathology, in Advances in Neurology, Vol. 44 ( Delgado-Escueta, A. V., Ward, A. A., Jr., Woodbury, D. M., and Porter, R. J., eds.), Raven, New York, pp. 813–847.

    Google Scholar 

  • Skulachev, V. P. (1991) Fatty acid circuit as a physiological mechanism of uncoupling of oxidative phosphorylation [Review]. FEBS Lett. 294, 158–162.

    Article  PubMed  CAS  Google Scholar 

  • Smith, S. L., Andrus, P. K., Zhang, J. R., and Hall, E. D. (1994a) Direct measurement of hydroxyl radicals, lipid peroxidation, and blood-brain barrier disruption following unilateral cortical impact head injury in the rat. J. Neurotrauma 11, 393–404.

    Article  PubMed  CAS  Google Scholar 

  • Smith, M. A., Richey, P. L., Taneda, S., Kutty, R. K., Sayre, L. M., Monnier, V. M., and Perry, G. (1994b) Advanced Maillard reaction end products, free radicals, and protein oxidation in Alzheimer’s disease. Ann. N.Y. Acad. Sci. 738, 447–454.

    Article  CAS  Google Scholar 

  • Soderberg, M., Edlund, C., Kristensson, K., and Dallner, G. (1991) Fatty acid composition of brain phospholipids in aging and in Alzheimer’s disease. Lipids 26, 421–425.

    Article  PubMed  CAS  Google Scholar 

  • Sorg, O., Pellerin, L., Stolz, M., Beggah, S., and Magistretti, P. J. (1995) Adenosine triphosphate and arachidonic acid stimulate glycogenolysis in primary cultures of mouse cerebral cortical astrocytes. Neurosci. Lett. 188, 109–112.

    Article  PubMed  CAS  Google Scholar 

  • Stankova, J. and Rola-Pleszczynski, M. (1992) Leukotriene B4 stimulates c-fos and c-jun gene transcription and AP-1 binding activity in human monocytes. Biochem. J. 282, 625–629.

    PubMed  CAS  Google Scholar 

  • Staub, F., Winkler, A., Peters, J., Kempski, O., Kachel, V., and Baethmann, A. (1994) Swelling, acidosis, and irreversible damage of glial cells from exposure to arachidonic acid in vitro. J. Cereb. Blood Flow Metab. 14, 1030–1039.

    Article  PubMed  CAS  Google Scholar 

  • Subbarao, K. V., Richardson, J. S., and Ang, L. C. (1990) Autopsy samples of Alzheimer’s cortex show increased peroxidation in vitro. J. Neurochem. 55, 342–345.

    Article  PubMed  CAS  Google Scholar 

  • Tebbey, P. W. and Buttke, T. M. (1992) Arachidonic acid regulates unsaturated fatty acid synthesis in lymphocytes by inhibiting stearoyl-CoA desaturase gene expression. Biochim. Biophys. Acta, 1171, 27–34.

    Article  PubMed  CAS  Google Scholar 

  • Tomaska, L. and Resnick, R. J. (1993) Suppression of platelet-derived growth factor receptor tyrosine kinase activity by unsaturated fatty acids. J. Biol. Chem. 268, 5317–5322.

    PubMed  CAS  Google Scholar 

  • Trotti, D., Volterra, A., Lehre, K. P., Rossi, D., Gjesdal, O., Racagni, G., and Danbolt, N. C. (1995) Arachidonic acid inhibits a purified and reconstituted glutamate transporter directly from the water phase and not via the phospholipid membrane. J. Biol. Chem. 270, 9890–9895.

    Article  PubMed  CAS  Google Scholar 

  • Vijayaraghavan, S., Huang, B., Blumenthal, E. M., and Berg, D. K. (1995) Arachidonic acid as a possible negative feedback inhibitor of nicotinic acetylcholine receptors on neurons. J. Neurosci. 15, 3679–3687.

    PubMed  CAS  Google Scholar 

  • Volterra, A., Trotti, D., and Racagni, G. (1994) Glutamate uptake is inhibited by arachidonic acid and oxygen radicals via two distinct and additive mechanisms. Mol. Pharmacol. 46, 986–992.

    PubMed  CAS  Google Scholar 

  • Wei, E. R, Lamb, R. G., and Kontos, H. A. (1982) Increased phospholipase C activity after experimental brain injury. J. Neurosurg. 56, 695–698.

    Article  PubMed  CAS  Google Scholar 

  • Wells, K., Farooqui, A. A., Liss, L., and Horrocks, L. A. (1995) Neural membrane phospholipids in Alzheimer disease. Neurochem. Res. 20, 1329–1333.

    Article  PubMed  CAS  Google Scholar 

  • Wolfe, L. S. and Horrocks, L. A. (1994) Eicosanoids, in Basic Neurochemistry ( Siegel, G. J., Agranoff, B. W., Albers, R. W., and Molinoff R B., eds.), Raven, New York, pp. 475–490.

    Google Scholar 

  • Yavin, E., Goldin, E., Magal, E., Tomer, A., and Harel, S. (1989) Ischemia stress and arachidonic acid metabolites in the fetal brain. Ann. N.Y. Acad. Sci. 559, 248–258.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida, S., Ikeda, M., Busto, R., Santiso, M., and Martinez, E. (1986) Cerebral phosphoinositide, triacylglycerol, and energy metabolism in reversible ischemia: origin and fate of free fatty acids. J. Neurochem. 47, 744–757.

    Article  PubMed  CAS  Google Scholar 

  • Yu, A. C., Chan, R H., and Fishman, R. A. (1986) Effects of arachidonic acid on glutamate and gamma-aminobutyric acid uptake in primary cultures of rat cerebral cortical astrocytes and neurons. J. Neurochem. 47, 1181–1189.

    Article  PubMed  CAS  Google Scholar 

  • Zerangue, N., Arriza, J. L., Amara, S. G., and Kavanaugh, M. P. (1995) Differential modulation of human glutamate transporter subtypes by arachidonic acid. J. Biol. Chem. 270, 6433–6435.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, J. P. and Sun, G. Y. (1995) Free fatty acids, neutral glycerides, and phosphoglycerides in transient focal cerebral ischemia. J. Neurochem. 64, 1688–1695.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, L. and Dorman, R. V. (1993) Synergistic potentiation of glutamate release by arachidonic acid and oleoyl-acetyl-glycerol. Brain Res. Bull. 32, 437–441.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Farooqui, A.A., Rosenberger, T.A., Horrocks, L.A. (1997). Arachidonic Acid, Neurotrauma, and Neurodegenerative Diseases. In: Yehuda, S., Mostofsky, D.I. (eds) Handbook of Essential Fatty Acid Biology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4757-2582-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2582-7_13

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-017-5

  • Online ISBN: 978-1-4757-2582-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics