The Seizing Brain

Phospholipolysis, Oxygen Delivery, and Electrical Activity
  • Francesco Visioli


Epilepsy (from the Greek epilambanein, to surprise) is a widely diffused neurological disorder that affects the lives of about 1% of the Western population. Although a classification of the different kinds of epilepsy goes beyond the scope of this chapter, it is necessary to underline that what is actually called status epilepticus consists in a series of tonic-clonic seizures with no complete recovery in between. The neuronal activation and subsequent damage during serial seizures have been investigated for several years now, elucidating many of the mechanisms that follow cell overstimulation. Few attempts, however, have been made to connect the different areas in which scientists carry out their studies: Physiology and biochemistry, for instance, have seldom been merged in a single investigation. This chapter describes one such study, in which physiological parameters have been correlated to biochemical events in an animal model of status epilepticus.


Status Epilepticus Phosphatidic Acid Free Fatty Acid Level Recurrent Seizure Lipid Metabolite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Auer, R. N. and Siesjö, B. K. (1988) Biological differences between ischemia, hypoglycemia, and epilepsy. Ann. Neurol. 24, 699–707.PubMedCrossRefGoogle Scholar
  2. Bazan, N. (1976) Free arachidonic acid and other lipids in the nervous system during early ischemia and after electroschock, in Function and Metabolism of Phospholipids in the Central Nervous System ( Porcellati, G., Amaducci, L., and Galli, C., eds.), Plenum, New York, pp. 317–335.CrossRefGoogle Scholar
  3. Bazan, N. G. (1971) Changes in free fatty acids of brain by drug-induced convulsions, electroshock and anesthesia. J. Neurochem. 18, 1379–1385.PubMedCrossRefGoogle Scholar
  4. Bazan, N. G. and Rakowski, H. (1970) Increased levels of brain free fatty acids after electroconvulsive shock. Life Sci, 9, 501–507.PubMedCrossRefGoogle Scholar
  5. Bazan, N. G., Rodriguez de Turco, E. B., and Allan, G. (1995) Mediators of injury in neurotrauma: intracellular signal transduction and gene expression. J. Neuro-trauma 12, 791–814.Google Scholar
  6. Birkle, D. L. and Bazan, N. G. (1987) Effect of bicuculline-induced status epilepticus on prostaglandins and hydroxyeicosatetraenoic acids in rat brain subcellular fractionations. J. Neurochem. 48, 1768–1778.PubMedCrossRefGoogle Scholar
  7. Blennow, G., Nilsson, B., and Siesjö, B. K. (1985) Influence of reduced oxygen availability on cerebral metabolic changes during bicuculline-induced seizures in rats. J. Cerebr. Blood Flow Metab. 5, 439–445.CrossRefGoogle Scholar
  8. Caspers, H. and Speckmann, E. J. (1972) Cerebral PO2, PCO2, and pH changes during convulsive activity and their significance for spontaneous arrest of seizures. Epilepsia 13, 699–725.PubMedCrossRefGoogle Scholar
  9. Clark, G. D., Happel, L. T., Zorumski, C. F., and Bazan, N. G. (1992) Enhancement of hippocampal excitatory synaptic transmission by platelet activating factor. Neuron 9, 1211–1216.PubMedCrossRefGoogle Scholar
  10. Devane, W. A. (1994) New dawn of cannabinoid pharmacology. TIPS 15, 40–41.PubMedGoogle Scholar
  11. Devane, W. A. and Axelrod, J. (1994) Enzymatic synthesis of anandamide, an endogenous ligand for the cannabinoid receptor, by brain membranes. Proc. Natl. Acad. Sci. USA 91, 6698–6701.PubMedCrossRefGoogle Scholar
  12. Doucet, J., Squinto, S., and Bazan, N. (1990) Fos-Jun and the primary genomic response in the nervous system: physiological role and possible pathophysiological significance. Mol. Neurobiol. 4, 27–56.PubMedCrossRefGoogle Scholar
  13. Folbergrovâ, J., Ingvar, M., and Siesjö, B. K. (1981) Metabolic changes in cerebral cortex, hippocampus, and cerebellum during sustained bicuculline induced seizures. J. Neurochem. 37, 1228–1238.PubMedCrossRefGoogle Scholar
  14. Folch, J., Lees, M., and Sloane Stanley, G. H. (1957) A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226, 497–509.PubMedGoogle Scholar
  15. Galli, C. and Spagnuolo, C. (1976) The release of brain free fatty acids during ischemia in essential fatty acid-deficient rats. J. Neurochem. 26, 401–404.PubMedCrossRefGoogle Scholar
  16. Hempel, F. G., Kariman, K., and Saltzman, H. A. (1980) Redox transitions in mitochondria of cat cerebral cortex with seizures and hemorrhagic hypotension. Am. J. Physiol. 238, H249 - H256.PubMedGoogle Scholar
  17. Jöbsis, F. F., O’Connor, M., Vitale, A., and Vreman, H. (1971) Intracellular redox changes in functioning cerebral cortex. I. Metabolic effects of epileptiform activity. J. Neurophysiol. 34, 735–749.PubMedGoogle Scholar
  18. Kariman, K., Hempel, F. G., and Jöbsis, F. F. (1983) In vivo comparison of cytochrome aa3 redox state and tissue PO2 in transient anoxia. J. Appl. Physiol. 55, 1057–1063.PubMedGoogle Scholar
  19. Kreisman, N. R., DeBose, M. G., and Barbee, R. W. (1991a) Attenuation of brain blood flow during status epilepticus in rats is related to changes in regional systemic hemodynamics. J. Cereb. Blood Flow Metab. 11 (Suppl. 2), S398.Google Scholar
  20. Kreisman, N. R., LaManna, J. C., Rosenthal, M., and Sick, T. J. (1981a) Oxidative metabolic responses with recurrent seizures in rat cerebral cortex: role of systemic factors. Brain Res. 218, 175–188.PubMedCrossRefGoogle Scholar
  21. Kreisman, N. R., Magee, J. C., and Brizzee, B. L. (1991b) Relative hypoperfusion in rat cerebral cortex during recurrent seizures. J. Cereb. Blood Flow Metab. 11, 77–87.PubMedCrossRefGoogle Scholar
  22. Kreisman, N. R., Sick, T. J., LaManna, J. C., and Rosenthal, M. (1981b) Local tissue oxygen tension-cytochrome aa3 redox relationship in rat cerebral cortex in vivo. Brain Res. 218, 161–174.PubMedCrossRefGoogle Scholar
  23. Kreisman, N. R., Sick, T. J., and Rosenthal, M. (1983) Importance of vascular responses in determining cortical oxygenation during recurrent paroxysmal events of varying duration and frequency of repetition. J. Cereb. Blood Flow Metab. 3, 330–338.PubMedCrossRefGoogle Scholar
  24. Lowry, O. H., Rosembrough, N. J., Farr, A. L., and Randall, R. J. (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 226, 265–275.Google Scholar
  25. Marcheselli, V. L. and Bazan, N. G. (1990) Quantitative analysis of fatty acids in phospholipids, diacylglycerol, free fatty acids, and other lipids. J. Nutr. Biochem. 1, 382–388.PubMedCrossRefGoogle Scholar
  26. Marcheselli, V. L. and Bazan, N. G. (1991) A specific antagonist for intracellular platelet-activating factor (PAF) binding site lacks activity on synaptic membranes. Trans. Am. Soc. Neurochem. 22, 187.Google Scholar
  27. Mayevsky, A. and Chance, B. (1975) Metabolic responses of the awake cerebral cortex to anoxia, hypoxia, spreading depression and epileptiform activity. Brain Res. 98, 149–165.PubMedCrossRefGoogle Scholar
  28. Meldrum, B. S. and Nilsson, B. (1976) Cerebral blood flow and metabolic rate early and late in prolonged epileptic seizures induced in rats by bicuculline. Brain 99, 523–542.PubMedCrossRefGoogle Scholar
  29. Nishizuka, Y. (1992) Intracellular signalling by hydrolysis of phospholipids and activation of protein kinase C. Science 258, 607–614.PubMedCrossRefGoogle Scholar
  30. Pinard, E., Tremblay, E., Ben-ari, Y., and Seylaz, J. (1984) Blood flow compensates oxygen demand in the vulnerable CA3 region of the hippocampus during kainate-induced seizures. Neuroscience 13, 1039–1049.PubMedCrossRefGoogle Scholar
  31. Plum, F., Posner, J. B., and Troy, B. (1968) Cerebral metabolic and circulatory responses to induced convulsions in animals. Arch. Neurol. 18, 1–13.PubMedCrossRefGoogle Scholar
  32. Prescott, S. M., Zimmerman, G. A., and McIntyre, T. M. (1990) Platelet activating factor. J. Biol. Chem. 29, 17,381–17,384.Google Scholar
  33. Reddy, T. S. and Bazan, N. G. (1987) Arachidonic acid, stearic acid and diacylglycerol accumulation correlates with the loss of PI 4,5-bisphosphate in cerebrum 2 seconds after electroconvulsive shock. Complete reversion of changes 5 minutes after stimulation. J. Neurosci. Res. 18, 449–455.PubMedCrossRefGoogle Scholar
  34. Rihn, L. L., Visioli, F., Rodriguez de Turco, E. B., Kreisman, N. R., and Bazan, N. G. (1992) Free fatty acids diacylglycerol levels are related to cerebral 02 during seizures, in The Role of Neu trotransmitters in Brain Injury ( Globus, M. and Dietrich, W. D., eds.), Plenum, New York, pp. 247–252.CrossRefGoogle Scholar
  35. Rosenthal, M., LaManna, J. C., Jöbsis, F. F., Levasseur, J. M., Kontos, H., and Patterson, J. (1976) Effects of respiratory gases on cytochrome a in intact cerebral cortex: is there a critical P02? Brain Res. 108, 143–154.Google Scholar
  36. Shimizu, T. and Wolfe, L. S. (1990) Arachidonic acid cascade and signal transduction. J. Neurochem. 55, 1–15.PubMedCrossRefGoogle Scholar
  37. Siesjö, B. K., Ingvar, M., Folbergrovâ, J., and Chapman, A. G. (1983) Local cerebral circulation and metabolism in bicuculline-induced status epilepticus: relevance for development of cell damage, in Advances in Neurology. vol. 34: Status Epilepticus ( Delgado-Escueta, A. V., Wasterlain, C. G., Treiman, D. M., and Porter, R. J., eds.), Raven, New York, pp. 217–230.Google Scholar
  38. Siesjö, B. K., Ingvar, M., and Westerberg, E. (1982) The influence of bicucullineinduced seizures on free fatty acid concentrations in cerebral cortex, hippocampus, and cerebellum. J. Neurochem. 39, 796–802.PubMedCrossRefGoogle Scholar
  39. Vern, B., Schuette, W. H., Whitehouse, W. C., and Matsuga, N. (1976) Cortical oxygen consumption and NADH fluorescence during metrazol seizures in normotensive and hypotensive cats. Exp. Neurol. 52 83–98.Google Scholar
  40. Visioli, F., Bellomo, G., Montedoro, G. F., and Galli, C., (1995) Low density lipoprotein oxidation is inhibited in vitro by olive oil constituents. Atherosclerosis 117, 25–32.PubMedCrossRefGoogle Scholar
  41. Visioli, E, Rihn, L. L., Rodriguez de Turco, E. B., Kreisman, N. R., and Bazan, N. G. (1993) Free fatty acids and diacylglycerol accumulation in the rat brain during recurrent seizures is related to cortical oxygenation. J. Neurochem. 61, 1835–1842.PubMedCrossRefGoogle Scholar
  42. Visioli, E, Rodriguez de Turco, E. B., and Bazan, N. G. (1994a) Daily electroconvulsive shock treatment alters the inositol lipid system response in the rat hippocampus. Neurochem. Res. 19, 705–708.PubMedCrossRefGoogle Scholar
  43. Visioli, E, Rodriguez de Turco, E. B., Kreisman, N. B., and Bazan, N. G. (1994b) Membrane lipid degradation is related to interictal cortical activity in a series of seizures. Metab. Brain Dis. 9, 161–170.PubMedCrossRefGoogle Scholar
  44. Yoshida, S., Ikeda, M., Busto, R., Santiso, M., Martinez, E., and Ginsberg, M. D. (1987) Cerebral phosphoinositide, triacylglycerol and energy metabolism during sustained seizures induced by bicuculline. Brain Res. 412, 114–124.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Francesco Visioli

There are no affiliations available

Personalised recommendations