Permeability of the Blood-Brain Barrier to Circulating Free Fatty Acids

  • William A. Banks
  • Abba J. Kastin
  • Stanley I. Rapoport


The uptake and incorporation by brain of blood-borne free fatty acids (FFA) is a topic with important physiological and diagnostic ramifications. The passage of FFA from blood into brain requires penetration through the blood-brain barrier (BBB). We review here the basic principles that underlie the concept of the BBB as they apply to FFA permeability and how such principles can be used to study brain FFA metabolism in health and disease.


Positron Emission Tomography Free Fatty Acid Single Photon Emission Compute Tomography Brain Uptake Brain Lipid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alberghina, M., Lupo, G., Anfuso, C. D., and Infarinato, S. (1994) Differential transport of docosahexaenoate and palmitate through the blood-retina and blood-brain barrier of the rat. Neurosci. Lett. 171, 133–136.PubMedCrossRefGoogle Scholar
  2. Anderson, G. J. and Connor, W. E. (1988) Uptake of fatty acids by the developing rat brain. Lipids 23, 286–290.PubMedCrossRefGoogle Scholar
  3. Arai, T., Wakabayashi, S., Channing, M. A., Dunn, B. B., Der, M. G., Bell, J. M., Herscovitch, P., Eckelman, W. C., Rapoport, S. I., and Chang, M. C. (1995) Incorporation of [1-carbon-11]palmitate in monkey brain using positron emission tomography. J. Nuclear Med. 36, 2261–2267.Google Scholar
  4. Banks, W. A. and Kastin, A. J. (1990) Editorial review: peptide transport systems for opiates across the blood-brain barrier. Am. J. Physiol. 259, El-E10.Google Scholar
  5. Banks, W. A. and Kastin, A. J. (1993) Peptide binding in blood and passage across the blood-brain barrier, in Proceedings of the International Symposium on Blood Binding and Drug Transfer ( Tillement, J. P., Eckert, H., Albengres, E., Barre, J., Baumann, P., Belpare, F., and Lemaire, M., eds.), Fort and Clair, Paris, pp. 223–242.Google Scholar
  6. Begley, D. J. (1992) The interaction of some centrally active drugs with the blood- brain barrier and circumventricular organs. Prog. Brain Res. 91, 163–169.PubMedCrossRefGoogle Scholar
  7. Betz, A. L. and Goldstein, G. W. (1978) Polarity of the blood-brain barrier: neutral amino acid transport into isolated brain capillaries. Science (Washington, DC) 202, 225–227.CrossRefGoogle Scholar
  8. Bradbury, M. W. B., Segal, M. B., and Wilson, J. (1972) Transport of potassium at the blood-brain barrier. J. Physiol. (Lond.) 221, 617–632.Google Scholar
  9. Chang, M. C. J., Arai, T., Freed, L. M., Wakabayashi, S., Channing, M. A., Dunn, B. B., Der, M. G., Bell, J. M., Herscovitch, P., Eckelman, W. C., and Rapoport, S. I. (1996) Brain incorporation of [1-11C] arachidonate in normocapnic and hypercapnic monkeys: a PET study. J. Cereb. Blood Flow Metab. (in press).Google Scholar
  10. Chikhale, E. G., Ng, K. Y., Burton, P. S., and Borchardt, R. T. (1994) Hydrogen bonding potential as a determinant of the in vitro and in situ blood-brain barrier permeability of peptides. Pharm. Res. 11, 412–419.PubMedCrossRefGoogle Scholar
  11. Cordon-Cardo, C., O’Brien, J. P., Casals, D., Rittman-Grauer, L., Biedler, J. L., Melamed, M. R., and Bertino, J. R. (1989) Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites. Proc. Nat. Acad. Sci. USA 86, 695–698.PubMedCrossRefGoogle Scholar
  12. Dayson, H., Welch, K., and Segal, M. B. (1987a) Blood-brain-CSF relations, in The Physiology and Pathophysiology of the Cerebrospinal Fluid, Churchill Livingstone, Edinburgh, pp. 375–451.Google Scholar
  13. Dayson, H., Welch, K., and Segal, M. B. (1987b) Morphological aspects of the barriers, in The Physiology and Pathophysiology of the Cerebrospinal Fluid, Churchill Livingstone, Edinburgh, pp. 105–188.Google Scholar
  14. DeGeorge, J. J., Nariai, T., Yamazaki, S., Williams, W. M., and Rapoport, S. I. (1991) Arecoline-stimulated brain incorporation of intravenously administered fatty acids in unanesthetized rats. J. Neurochem. 56, 352–355.PubMedCrossRefGoogle Scholar
  15. DeGeorge, J. J., Noronha, J. G., Bell, J., Robinson, P., and Rapoport, S. I. (1989) Intravenous injection of [1–14C] arachidonate to examine regional brain lipid metabolism in unanesthetized rats. J. Neurosci. Res. 24, 413 423.Google Scholar
  16. Dhopeshwarkar, G. A. (1973) Uptake and transport of fatty acids into the brain and the role of the blood-brain barrier system. Adv. Lipid Res. 11, 109–142.PubMedGoogle Scholar
  17. Drewes, L. R., Conway, W. P., and Gilboe, D. D. (1977) Net amino acid transport between plasma and erythrocytes and perfused dog brain. Am. J. Physiol. 2, E320 - E325.Google Scholar
  18. Hussain, S. T. and Roots, B. I. (1994) Effect of essential fatty acid deficiency and immunopathological stresses on blood brain barrier (B-BB) in Lewis rats: a biochemical study. Biochem. Soc. Trans. 22, 338S.PubMedGoogle Scholar
  19. Jacques, L. and Couture, R. (1990) Studies on the vascular permeability induced by intrathecal substance p and bradykinin in the rat. Eur. J. Pharm. 184, 9–20.CrossRefGoogle Scholar
  20. Johanson, C. E. (1988) The choroid plexus-arachnoid membrane-cerebrospinal fluid system, in Neuromethods: The Neuronal Microenvironment ( Boulton, A. A., Baker, G. B., and Walz, W., eds.), Humana Press, Clifton, NJ, pp. 33–104.CrossRefGoogle Scholar
  21. Jones, C. R., Arai, T., Bell, J. M., and Rapoport, S. I. (1995) Selective in vivo incorporation of [3H] arachidonic acid into rat brain synaptosomal fractions before and after cholinergic stimulation. Unpublished manuscript.Google Scholar
  22. Kety, S. S. (1987) Cerebral circulation and its measurement by inert diffusible tracers, in Encyclopedia of Neuroscience vol. 1 ( Adelman, G., ed.), Birkhäuser, Boston, pp. 206–208.Google Scholar
  23. Nariai, T., DeGeorge, J. J., Greig, N. H., and Rapoport, S. I. (1991) In vivo incorporation of [9,10–3H] palmitate into a rat metastatic brain-tumor mode. J. Neurosurg. 74, 643–649.Google Scholar
  24. Nariai, T., DeGeorge, J. J., Lamour, Y., and Rapoport, S. I. (1991) In vivo brain incorporation of [1–14C] arachidonate in awake rats, with or without cholinergic stimulation, following unilateral lesioning of nucleus basalis magnocellularis. Brain Res. 559, 1–9.PubMedCrossRefGoogle Scholar
  25. Nariai, T., Greig, N. H., DeGeorge, J. J., Genka, S., and Rapoport, S. I. (1993) Intravenously injected radiolabelled fatty acids image brain tumour phospholipids in vivo: differential uptakes of palmitate, arachidonate and docosahexaenoate. Clin. Exp. Metastasis, 11, 141–149.PubMedCrossRefGoogle Scholar
  26. Nilsson, C., Lindvall-Axelsson, M., and Owman, C. (1992) Neuroendocrine regulatory mechanisms in the choroid plexus-cerebrospinal fluid system. Brain Res. Rev. 17, 109–138.PubMedCrossRefGoogle Scholar
  27. Noronha, J. G., Larson, D. M., and Rapoport, S. I. (1989) Regional cerebral incorporation of plasma [14C] palmitate, and cerebral glucose utilization, in water-deprived Long-Evans and Brattleboro rats. Exp. Neurol. 103, 267–276.PubMedCrossRefGoogle Scholar
  28. Oldendorf, W. H. (1973) Carrier-mediated blood-brain barrier transport of short-chain monocarboxylic organic acids. Am. J. Physiol., 224, 1450–1453.PubMedGoogle Scholar
  29. Oldendorf, W. H. (1974) Lipid solubility and drug penetration of the blood-brain barrier. Proc. Soc. Exp. Biol. Med., 147, 813–816.PubMedGoogle Scholar
  30. Pardridge, W. M. and Mietus, L. J. (1980) Palmitate and cholesterol transport through the blood-brain barrier. J. Neurochem. 34, 463–466.PubMedCrossRefGoogle Scholar
  31. Purdon, A. D., Arai, T., and Rapoport, S. I. (1995) No evidence for direct incorporation of esterified palmitic acid from plasma into brain lipids of awake adult rat. Unpublished manuscript.Google Scholar
  32. Rapoport, S. I. (1976) Blood Brain Barrier in Physiology and Medicine. Raven, New York.Google Scholar
  33. Rapoport, S. I. (1996) In vivo labeling of brain phospholipids by long-chain fatty acids: relation to turnover and function. Lipids (in press).Google Scholar
  34. Rapoport, S. I. and Robinson, P. J. (1995) Long-chain fatty acid transport at the blood-brain barrier and incorporation into brain phospholipids: a new in vivo method for examining neuroplasticity, and brain second messenger systems involving phospholipase A2 activation, in New Concepts of a Blood-Brain Barrier ( Greenwood, J., ed.), Plenum, New York, pp. 119–140.Google Scholar
  35. Robinson, R. J., Noronha, J. G., DeGeorge, J. J., Freed, L. M., Nariai, T., and Rapoport, S. I. (1992) A quantitative method for measuring regional in vivo fatty-acid incorporation into and turnover within brain phospholipids: review and critical analysis. Brain Res. Rev. 17, 187–214.PubMedCrossRefGoogle Scholar
  36. Scott, B. L. and Bazan, N. G. (1989) Membrane docosahexaenoate is supplied to the developing brain and retina by the liver. Proc. Natl. Acad. Sci. USA 86, 2903–2907.PubMedCrossRefGoogle Scholar
  37. Spector, R. (1988) Fatty acid transport through the blood-brain barrier. J. Neurochem. 50, 639–643.PubMedCrossRefGoogle Scholar
  38. Spector, R. and Lorenzo, A. V. (1974) The effects of salicylate and probenecid on the cerebrospinal fluid transport of penicillin, aminosalicylic acid and iodide. J. Pharm. Exp. Ther. 188, 55–65.Google Scholar
  39. Tabata, H., Bell, J. M., Miller, J. C., and Rapoport, S. I. (1986) Incorporation of plasma palmitate into the brain of the rat during development. Devel. Brain Res. 29, 1–8.CrossRefGoogle Scholar
  40. Thiès, F., Delachambre, M. C., Bentejac, M., Lagarde, M., and Lecerf, J. (1992) Unsaturated fatty acids esterified in 2-acyl-1-lysophosphatidylcholine bound to albumin are more efficiently taken up by the young rat brain than the unesterified form. J. Neurochem. 59, 1110–1116.PubMedCrossRefGoogle Scholar
  41. Tone, O., Matsushima, Y., Inaba, Y., and Rapoport, S. I. (1990) Regional [14C] palmitate incorporation into the hippocampus after transient cerebral ischemia in awake gerbils. Adv. Neurol., 52, 141–148.PubMedGoogle Scholar
  42. Tone, O., Miller, J. C., Bell, J. M., and Rapoport, S. I. (1988) Regional cerebral palmitate incorporation after unilateral auditory deprivation in immature and adult Fischer-344 rats. Exp. Neurol. 100, 491–505.PubMedCrossRefGoogle Scholar
  43. Tsuji, A., Terasaki, T., Takabatake, Y., Tenda, Y., Tamai, I., Yamashima, T., Moritani, S., Tsuruo, T., and Yamashita, J. (1992) P-glycoprotein as the drug efflux pump in primary cultured bovine brain capillary endothelial cells. Life Sci. 51, 1427–1437.PubMedCrossRefGoogle Scholar
  44. Wakabayashi, S., Freed, L. M., Bell, J. M., and Rapoport, S. I. (1994) In vivo cerebral incorporation of radiolabeled fatty acids after acute unilateral orbital enucleation in adult hooded Long-Evans rats. J. Cereb. Blood Flow Metab. 14, 312–323.PubMedCrossRefGoogle Scholar
  45. Wakabayashi, S., Freed, L. M., Chang, M., and Rapoport, S. I. (1995) In vivo imaging of brain incorporation of fatty acids and of 2-deoxy-D-glucose demonstrates functional and structural neuroplastic effects of chronic unilateral visual deprivation in rats. Brain Res. 679, 110–122.PubMedCrossRefGoogle Scholar
  46. Washizaki, K., Purdon, D., DeGeorge, J., Robinson, R. J., Rapoport, S. I., and Smith, Q. R. (1991) Fatty acid uptake and esterification by the in situ perfused rat brain. Soc. Neurosci. Abst. 17, 864.Google Scholar
  47. Washizaki, K., Smith, Q. R., Rapoport, S. I., and Purdon, A. D. (1994) Brain arachidonic acid incorporation and precursor pool specific activity during intravenous infusion of unesterified [3H] arachidonate in the anesthetized rat. J. Neurochem. 63, 727–736.PubMedCrossRefGoogle Scholar
  48. Yamazaki, S., Noronha, J. G., Bell, J. M., and Rapoport, S. I. (1989) Incorporation of plasma [14C] palmitate into the hypoglossal nucleus following unilateral axotomy of the hypoglossal nerve in adult rat, with and without regeneration. Brain Res. 477, 19–28.PubMedCrossRefGoogle Scholar
  49. Ziylan, Z. Y., Bernard, G. C., Lefauconnier, J. M., Durand, G. A., and Bourre, J. M. (1992) Effect of dietary n-3 fatty acid deficiency on blood-to-brain transfer of sucrose, alpha-aminoisobutyric acid and phenylalanine in the rat. Neurosci. Lett. 137, 9–13.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • William A. Banks
  • Abba J. Kastin
  • Stanley I. Rapoport

There are no affiliations available

Personalised recommendations