Advertisement

Electro-Optical Design

  • Friedrich O. Huck
  • Carl L. Fales
  • Zia-ur Rahman
Part of the The Springer International Series in Engineering and Computer Science book series (SECS, volume 409)

Abstract

This final chapter extends the information-theoretic assessment to the electrooptical design of the image-gathering device (Fig. 7.1). Section 7.1 ties the basic design specifications of this device to the model of image gathering given in Section 2.1. Section 7.2 addresses the objective lens diffraction, variable transmittance shading, and defocus; Section 7.3 addresses the photodetectorarray sampling geometry and focal-plane processing; and Section 7.4 addresses the line-scan photodetector aperture shaping and sampling interval. The remainder of this chapter covers topics that combine electro-optical design with digital image processing for specific applications.

Keywords

Lateral Inhibition Information Rate Visual Communication Photo Detector Circular Aperture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. N. Slater, Remote Sensing: Optics and Optical Systems ( Addison-Wesley, Reading, Mass., 1980 ).Google Scholar
  2. 2.
    R. W. Boyd, Radiometry and the Detection of Optical Radiation ( John Wiley and Sons, New York, 1983 ).Google Scholar
  3. 3.
    H. H. Hopkins, “The frequency response of a defocused optical system,” Proc. Roy. Soc. A 231, 91–103 (1955).MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    M. Born and E. Wolf, Principles of Optics ( Pergamon, New York, 1965 ).Google Scholar
  5. 5.
    J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, Second edition, 1996 ).Google Scholar
  6. 6.
    M. Mino and Y. Okano, “Improvement in the OTF of a defocused optical system through the use of shaded apertures,” Appl. Opt. 10, 2219–2225 (1971).CrossRefGoogle Scholar
  7. 7.
    J. M. Enoch and F. L. Tobey, Eds., Vertebrate Photoreceptor Optics ( Springer-Verlag, New York, 1981 ).Google Scholar
  8. 8.
    H. J. Metcalf, “Stiles-Crawford Apodization,” J. Opt. Soc. Am. 55, 72–74 (1965).CrossRefGoogle Scholar
  9. 9.
    J. P. Carroll, “Apodization Model of the Stiles-Crawford Effect,” J. Opt. Soc. Am. 70, 1155–1156 (1980).CrossRefGoogle Scholar
  10. 10.
    D. P. Peterson and D. Middleton, “Sampling and reconstruction of wavenumber-limited functions in n-dimensional Euclidean spaces,” Inform. and Control, 5, 279–323 (1962).CrossRefGoogle Scholar
  11. 11.
    R. M. Mersereau, “Two-dimensional signal processing from hexagonal rasters,” Proc. IEEE 67, 930–949 (1979).CrossRefGoogle Scholar
  12. 12.
    D. H. Pritchard, “Stripe-color-encoded single-tube color-television camera systems,” RCA Rev. 34, 217–266 (1973).Google Scholar
  13. 13.
    J. J. Brandings, G. L. Fredendall and D. H. Pritchard, “Striped color encoded single tube color television systems,” in Advances in Image Pickup and Display, Vol. 2, ed. B. Kazan (Academic Press, New York, 1975 ).Google Scholar
  14. 14.
    K. A. Parulski, “Color filters and processing alternatives for one-chip cameras,” IEEE Trans. Electron. Devices 32, 1381–1389 (1985).CrossRefGoogle Scholar
  15. 15.
    J. E. Greivenkamp, “Color dependent optical prefilter for the suppression of aliasing artifacts,” Appl. Opt. 29, 67–684 (1990).CrossRefGoogle Scholar
  16. 16.
    H. B. Barlow, “Critical limiting factors in the design of the eye and visual cortex,” Proc. R. Soc. London B212, 1–34 (1981).CrossRefGoogle Scholar
  17. 17.
    A. W. Snyder and W. H. Miller, “Photoreceptor diameter and spacing for highest resolving power,” J. Opt. Soc. Am. 67, 696–698 (1977).CrossRefGoogle Scholar
  18. 18.
    R. L. Valois and K. K. Valois, Spatial Vision ( Oxford University Press, Oxford, 1990 ).Google Scholar
  19. 19.
    P. Lennie, P. W. Haake and D. R. Williams, “The design of chromatically opponent receptive fields,” in Computational Models of Visual Processing, ed. M. S. Landy and J. A. Movshon ( MIT Press, Cambridge, Mass., 1991 ).Google Scholar
  20. 20.
    M. J. Hawken and A. J. Parker, “Spatial receptive field organization in monkey Vl and its relationship to the cone mosaic,” Computational Models of Visual Processing, ed. M. S. Landy and J. A. Movshon ( MIT Press, Cambridge, Mass, 1991 ).Google Scholar
  21. 21.
    C. Mead and M. A. Mahowald, “A silicon model of early visual processing,” Neural Networks 1, 91–97 (1988)CrossRefGoogle Scholar
  22. C. Mead, Analog VLSI and Neural Systems (Addison-Wesley, Reading, Mass, 1989 ).Google Scholar
  23. 22.
    C. Mead, “Neuromorphic electronic system,” Proc. IEEE 78, 1629–1636 (1990).CrossRefGoogle Scholar
  24. 23.
    J. J. Atick, “Could information theory provide an ecological theory of sensory processing?” Network 3, 213–251 (1992).zbMATHCrossRefGoogle Scholar
  25. 24.
    P. Mertz and F. Gray, “Theory of scanning and its relation to the characteristics of the transmitted signal in telephotography and television,” Bell Syst. Tech. J. 13, 494–515 (1934).Google Scholar
  26. 25.
    S. J. Katzberg, F. O. Huck and S. D. Wall, “Photosensor aperture shaping to reduce aliasing in optical-mechanical line-scan imaging systems,” Appl. Opt. 12, 1054–1060 (1973).CrossRefGoogle Scholar
  27. 26.
    R. D. Kell, A. V. Bedford and M. A. Trainer, “An experimental television system, part 2,” Proc. IRE 22, 1246–1246 (1934).CrossRefGoogle Scholar
  28. 27.
    S. C. Hsu, “The Kell factor: Past and present,” SMPTE Journal, 206–214 (February 1986).Google Scholar
  29. 28.
    W. F. Schreiber, Fundamentals of Electronic Imaging Systems (Springer-Verlag, New York, Third edition, 1993 ).Google Scholar
  30. 29.
    D. J. Jobson, Z. Rahman and G. A. Woodell, “Properties and performance of a center/surround retinex,” IEEE Trans. on Image Processing, 6, 451–462 (1997).CrossRefGoogle Scholar
  31. 30.
    E. H. Land, “An alternative technique for the computation of the designator in the retinex theory of color vision,” Proc. Nat. Acad. Sci., vol. 83, pp. 3078–3080 (1986).CrossRefGoogle Scholar
  32. 31.
    T. N. Cornsweet and J. I. Yellott, Jr., “Intensity-dependent spatial summation,” J. Opt. Soc. Am. A2, 1769–1789 (1985).MathSciNetCrossRefGoogle Scholar
  33. 32.
    T. N. Cornsweet, “A simple retinal mechanism that has complex and profound effects on perception,” Am. J. Optometry and Physiological Optics 62, 427–438 (1985).CrossRefGoogle Scholar
  34. 33.
    J. I. Yellott, Jr., “Photon noise and constant-volume operators,” J. Opt. Soc. Am. A4, 2418–2446 (1987).Google Scholar
  35. 34.
    S. Najand, D. Blough and G. Healey, “Forward and inverse model for the intensity-dependent spread filter,” J. Opt. Soc. Am. A13, 1305–1314 (1996).CrossRefGoogle Scholar
  36. 35.
    T. N. Cornsweet, Visual Perception ( Academic Press, New York, 1970 ).Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Friedrich O. Huck
    • 1
  • Carl L. Fales
    • 1
  • Zia-ur Rahman
    • 2
  1. 1.Research and Technology GroupNASA Langley Research CenterUSA
  2. 2.Department of Computer ScienceCollege of William & MaryUSA

Personalised recommendations