Introduction

  • Friedrich O. Huck
  • Carl L. Fales
  • Zia-ur Rahman
Part of the The Springer International Series in Engineering and Computer Science book series (SECS, volume 409)

Abstract

The fundamental problem of communication, as Shannonl stated it, is that of reproducing at one point either exactly or approximately a message selected at another point. In the classical model of communication (Fig. 1.1), the information source selects a desired message from a set of possible messages which the transmitter changes into the signal that is actually sent over the communication channel to the receiver. The receiver changes this signal back into a message, and hands this message to the destination. Ordinarily, the signal is perturbed by noise during transmission or at the terminals. Consequently, the received signal is not necessarily the same as that sent out by the transmitter.

Keywords

Visual Quality Digital Image Processing Image Restoration Information Rate Visual Communication 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. E. Shannon, “A mathematical theory of communication,” Bell Sys. Tech. J. 27, 379–423Google Scholar
  2. C. E. Shannon, “A mathematical theory of communication,” Bell Sys. Tech. J. 28, 623–656 (1948)Google Scholar
  3. C. E. Shannon and W. Weaver, The Mathematical Theory of Communication (U. Illinois Press, Urbana, 1964 ).Google Scholar
  4. 2.
    P. Mertz and F. Gray, “Theory of scanning and its relation to the characteristics of the transmitted signal in telephotography and television,” Bell Syst. Tech. J. 13, 494–515 (1934).Google Scholar
  5. 3.
    O. H. Schade, Sr., “Image gradation, graininess and sharpness in television and motion-picture systems,” J. Soc. Motion Pict. Telev. Eng. 56, 137–174 (1951)Google Scholar
  6. O. H. Schade, Sr., “Image gradation, graininess and sharpness in television and motion-picture systems,” J. Soc. Motion Pict. Telev. Eng. 58, 181–222 (1952)Google Scholar
  7. O. H. Schade, Sr., “Image gradation, graininess and sharpness in television and motion-picture systems,” J. Soc. Motion Pict. Telev. Eng. 61, 97–164 (1953)Google Scholar
  8. O. H. Schade, Sr., “Image gradation, graininess and sharpness in television and motion-picture systems,” J. Soc. Motion Pict. Telev. Eng. 64, 593–617 (1955).Google Scholar
  9. 4.
    W. F. Schreiber, Fundamentals of Electronic Imaging Systems (Springer-Verlag, New York, Third edition, 1993 ).CrossRefGoogle Scholar
  10. 5.
    H. C. Andrews and B. R. Hunt, Digital Image Restoration (Prentice Hall, Englewood Cliffs, New Jersey, 1977 ).Google Scholar
  11. 6.
    W. K. Pratt, Digital Image Processing ( Wiley, New York, 1978 ).Google Scholar
  12. 7.
    R. C. Gonzalez and P. Wintz, Digital Image Processing (Addison-Wesley, Reading, Massachusetts, 1977; Second edition, 1987 ).Google Scholar
  13. 8.
    A. Rosenfeld and A. C. Kak, Digital Picture Processing ( Academic Press, New York, 1982 ).Google Scholar
  14. 9.
    A. K. Jain, Fundamentals of Digital Image Processing (Prentice Hall, Englewood Cliffs, New Jersey, 1989 ).MATHGoogle Scholar
  15. 10.
    R. C. Gonzalez and R. E. Wood, Digital Image Processing (Addison-Wesley, Reading, Massachusetts, Third edition, 1992 ).Google Scholar
  16. 11.
    J. Teuber, Digital Image Processing ( Prentice Hall, New York, 1992 ).Google Scholar
  17. 12.
    B. Jähne, Digital Image Processing (Springer-Verlag, New York, Second edition, 1993 ).Google Scholar
  18. 13.
    D. Gabor, “Theory of communication,” Proc. of IEEE, 93, 429–457 (1946).Google Scholar
  19. 14.
    N. Wiener, Extrapolation, Interpolation, and Smoothing of Stationary Time Series ( Wiley, New York, 1949 ).MATHGoogle Scholar
  20. 15.
    T. N. Cornsweet, Visual Perception ( Academic Press, New York, 1970 ).Google Scholar
  21. 16.
    F. Crick, The Astonishing Hypothesis: The Scientific Search for the Soul ( Scribners, New York, 1994 ).Google Scholar
  22. 17.
    B. R. Frieden, “Information, and the restorability of images,” J. Opt. Soc. Am. 60, 575–576 (1970).CrossRefGoogle Scholar
  23. 18.
    F. O. Huck and S. K. Park, “Optical-mechanical line-scan imaging process: Its information capacity and efficiency,” Appl. Opt. 14, 2508–2520 (1975).CrossRefGoogle Scholar
  24. 19.
    F. O. Huck, N. Halyo and S. K. Park, “Information efficiency of line-scan imaging mechanisms,” Appl. Opt. 20, 1990–2007 (1981).CrossRefGoogle Scholar
  25. 20.
    C. L. Fales, F. O. Huck and R. W. Samms, “Imaging system design for improved information capacity,” Appl. Opt. 23, 872–888 (1984).CrossRefGoogle Scholar
  26. 21.
    F. O. Huck, C. L. Fales, D. J. Jobson, S. K. Park and R. W. Samms, “Image-plane processing of visual information,” Appl. Opt. 23, 3160–3167 (1984).CrossRefGoogle Scholar
  27. 22.
    F. O. Huck, C. L. Fales, N. Halyo, R. W. Samms and K. Stacy, “Image gathering and processing: Information and fidelity,” J. Opt. Soc. Am. A2, 1644–1666 (1985).CrossRefGoogle Scholar
  28. 23.
    F. O. Huck, C. L. Fales, J. A. McCormick and S. K. Park, “Image-gathering system design for information and fidelity,” J. Opt. Soc. Am. A5, 285–299 (1988).CrossRefGoogle Scholar
  29. 24.
    C. L. Fales, F. O. Huck, J. A. McCormick and S. K. Park, “Wiener restoration of sampled image data: End-to-end analysis,” J. Opt. Soc. Am. A5, 300–315 (1988).CrossRefGoogle Scholar
  30. 25.
    J. A. McCormick, R. Alter-Gartenberg and F. O. Huck, “Image gathering and restoration: Information and visual quality,” J. Opt. Soc. Am. A6, 987–1005 (1989).CrossRefGoogle Scholar
  31. 26.
    C. L. Fales and F. O. Huck, “An information theory of image gathering,” Information Sciences 57, 58, 245–285 (1991).MathSciNetCrossRefGoogle Scholar
  32. 27.
    F. O. Huck, R. Alter-Gartenberg and Z. Rahman, “Image gathering and restoration for fidelity and visual quality,” CVGIP: Graphical Models and Image Processing 53, 71–84 (1992).CrossRefGoogle Scholar
  33. 28.
    R. Alter-Gartenberg, C. L. Fales, F. O. Huck, Z. Rahman and S. E. Reichenbach, “Multiresponse imaging: Information and fidelity,” Multidimensional Systems and Signal Processing 3, 81–102 (1992).CrossRefGoogle Scholar
  34. 29.
    C. L. Fales, F. O. Huck, R. Alter-Gartenberg and Z. Rahman, “Multiresolution image gathering and restoration,” J. Visual Comm. and Image Represent. 3, 356–363 (1992).CrossRefGoogle Scholar
  35. 30.
    F. O. Huck, C. L. Fales, R. Alter-Gartenberg, Z. Rahman and S. E. Reichenbach, “Visual communication: Information and fidelity,” J. Visual Comm. and Image Represent. 4, 62–78 (1993).CrossRefGoogle Scholar
  36. 31.
    F. O. Huck, C. L. Fales, R. Alter-Gartenberg and Z. Rahman, “Visual communication: Information and data transmission,” J. Visual Comm. and Image Represent. 5, 282–300 (1994).CrossRefGoogle Scholar
  37. 32.
    F. O. Huck, C. L. Fales, D. J. Jobson and Z. Rahman, “Electro-optical design for efficient visual communication,” Opt. Eng. 34, 795–813 (1995).CrossRefGoogle Scholar
  38. 33.
    F. O. Huck, C. L. Fales and Z. Rahman, “An information theory of visual communication,” Philos. Trans. Roy. Soc. London A 354, 2193–2248 (1996).MATHCrossRefGoogle Scholar
  39. 34.
    C. L. Fales, F. O. Huck, R. Alter-Gartenberg and Z. Rahman, “Image gathering and digital restoration,” Philos. Trans. Roy. Soc. London A 354, 2249–2287 (1996).MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Friedrich O. Huck
    • 1
  • Carl L. Fales
    • 1
  • Zia-ur Rahman
    • 2
  1. 1.Research and Technology GroupNASA Langley Research CenterUSA
  2. 2.Department of Computer ScienceCollege of William & MaryUSA

Personalised recommendations