Skip to main content

Random Tours

  • Chapter
Monte Carlo

Part of the book series: Springer Series in Operations Research ((ORFE))

Abstract

This chapter considerably broadens the range of application of the Monte Carlo method by introducing the concept of a random tour on discrete, continuous, and general state spaces. This development serves several purposes, of which the ability to sample from a multivariable distribution remains preeminent. Let {F(x), x ∈ ℋ} denote an m-dimensional d.f. defined on a region ℋ ⊆ ℝm, and let {g(x), x ∈ ℋ} denote a known function satisfying ∫ g 2(x)dF(x) < ∞. Suppose that the objective is to evaluate

$$\mu \left( g \right) = \int {_x} g\left( x \right)dF\left( x \right).$$
(0)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aldous, D. (1983). Random walks on finite group and rapidly mixing Markov chains, Proc. of Seminaire de Probabilités XVII, 1981/82, Springer-Verlag, New York.

    Google Scholar 

  • Aldous, D. and P. Diaconis (1987). Strong uniform times and fmite random walks, Adv. Appl. Math., 8, 69–97.

    Article  Google Scholar 

  • Anantharam, V. (1989). Threshold phenomena in the transient behavior of Markovian models of communication networks and databases, Queueing Systems, 5, 77–98.

    Article  Google Scholar 

  • Anily, S. and A. Federgruen (1987). Simulated annealing methods with general acceptance probabilities, J. Appl. Prob., 24, 657–667.

    Article  Google Scholar 

  • Applegate, D., and R. Kannan (1990). Sampling and integration of log-concave functions, Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA.

    Google Scholar 

  • Applegate, D., R. Kannan and N. Polson (1990). Random polynomial time algorithms for sampling from joint distributions, Tech. Rep. # 500, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA.

    Google Scholar 

  • Barker, A.A. (1965). Monte Carlo calculations of the radial distribution functions for a proton-electron plasma, Aust. J. Phys., 18, 119–133.

    Article  Google Scholar 

  • Beckenbach, E.F. and R. Bellman (1961). Inequalities, Springer-Verlag, Heidelberg.

    Book  Google Scholar 

  • Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems, J. Roy. Statist. Soc., B, 36, 192–225.

    Google Scholar 

  • Besag, J. (1986). On the statistical analysis of dirty pictures, J. Roy. Statist. Soc., B, 48, 259–302.

    Google Scholar 

  • Besag, J. (1989). Digital image processing; towards Bayesian image analysis, J. Appl. Statist., 16, 395–407.

    Article  Google Scholar 

  • Boender, C.G.E., R.J. Caron, J.A. McDonald, A.H.G. Rinnooy Kan, J.F.M. Donald, H.E. Romeijn, R.L. Smith, J. Telgen and A.C.F. Vorst (1991). Shake-and-bake algorithms for generating uniform points on the boundary of bounded polyhedra, Oper. Res., 39, 945–954.

    Article  Google Scholar 

  • Broder, A.Z. (1986). How hard is it to marry at random? (on the approximation of the permanent), Proc. Eighteenth ACM Symposium on Theory of Computing, 50–58. Erratum in Proc. Twentieth ACM Symposium on Theory of Computing, 1988, p. 551.

    Google Scholar 

  • CACI (1987). SIMSCRIPT 11.5 Programming Language, CACI Products Company, La Jolla, CA.

    Google Scholar 

  • Cheeger, J. (1970). A lower bound for the smallest eigenvalue of the Laplacian, Problems in Analysis, R.C. Gunning ed., Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Chung, F.K., P. Diaconis and R.L. Graham (1987). Random walks arising from random number generation, Annals of Prob., 15, 1148–1165.

    Google Scholar 

  • Chung, K.L. (1960). Markov Chains with Stationary Transition Probabilities, Springer-Verlag, Heidelberg.

    Book  Google Scholar 

  • Collins, N.E., R.W. Eglese and B.L. Golden (1988). Simulated annealing-an annotated bibliography, College of Business and Management, University of Maryland at College Park.

    Google Scholar 

  • Courant, R., K. Friedrichs and H. Lewy (1928). Über die Partiellen Differenzengleichungen der Matematischen Physik, Math. Annalen, 100, 32–74; translated into English by P. Fox (1956), NYO-7689, ABC Computing Facility, Institute of Mathematical Sciences, New York University, New York.

    Google Scholar 

  • Diaconis, P. and B. Efron (1985). Testing for independence in a two-way table: new interpretations of the chi-square statistic, Ann. Statist. 13, 845–874 and discussion 875–913.

    Google Scholar 

  • Diaconis, P. and J.A. Fill (1990a). Examples for the theory of strong stationary duality with countable state spaces, Prob. in the Eng. and Infor. Sci., 4, 157–180.

    Article  Google Scholar 

  • Diaconis, P. and J.A. Fill (1990b). Strong stationary times via a new form of duality, Tech. Rep. 511, Department of Mathematical Sciences, The Johns Hopkins University, Baltimore, MD.

    Google Scholar 

  • Diaconis, P. and D. Stroock (1991). Geometric bounds for eigenvalues of Markov chains, Annals of Applied Probability, 1, 36–61.

    Article  Google Scholar 

  • Diaconis, P. and B. Sturmfels (1993). Algebraic algorithms for sampling from conditional distributions, Tech. Rep. 430, Department of Statistics, Stanford University, Stanford, CA.

    Google Scholar 

  • Doeblin, W. (1937). Exposé de la theorie des chaines simples constantes de Markov â un nombre fini d’états, Rev. Math. l’Union Interbalkanique, 2, 77–105.

    Google Scholar 

  • Dyer, M. and A. Frieze (1991). Computing the volume of convex bodies: a case where randomness probably helps, Res. Rep. 91–104, Department of Mathematics, Carnegie Mellon University, Pittsburgh, PA.

    Google Scholar 

  • Dyer, M., A. Frieze and R. Kannan (1989). A random polynomial time algorithm for approximating the volume of convex bodies, Proc. of the Twenty-First Symposium on Theory of Computing, 375–381; also in Res. Rep. 88–40, Department of Mathematics, Carnegie Mellon University, Pittsburgh, PA.

    Google Scholar 

  • Fill, J.A. (1990). Eigenvalue bounds on convergence to stationarity for nonreversible Markov chains, Tech. Rep. 513, Department of Mathematical Sciences, The Johns Hopkins University, Baltimore, MD.

    Google Scholar 

  • Fishman, G.S. (1994). Markov chain sampling and the product estimator, Oper. Res., 42, 1137–1146.

    Article  Google Scholar 

  • Frigessi, A., C.-R. Hwang and L. Younes (1992). Optimal spectral structure of reversible stochastic matrices, Monte Carlo methods and the simulation of Markov random fields, Ann. Appl. Prob., 2, 610–628.

    Article  Google Scholar 

  • Gaver, D.P. and I.G. O’Muircheartaigh (1987). Robust empirical Bayes analysis of event rates, Technometrics, 29, 1–15.

    Google Scholar 

  • Gelfand, A.E. and A.F.M. Smith (1990). Sample-based approaches to calculating marginal densities, J. Amer. Statist. Assoc., 85, 398–409.

    Article  Google Scholar 

  • Geman, S. and D. Geman (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images, IEEE Trans. Pattern Anal. and Machine Intel., PAMI-6, 721–740.

    Google Scholar 

  • Glynn, P. and D.L. Iglehart (1988). Conditions under which a Markov chain converges to its steady state in finite time, Prob. in the Eng. and Infor. Sci., 2, 377–382.

    Article  Google Scholar 

  • Goertzel, G. (1949). Quota sampling and importance functions in stochastic solution of particle problems, Tech. Rep. AECD-2793, Oak Ridge National Laboratory, Oak Ridge, TN.

    Google Scholar 

  • Goertzel, G. (1950). A proposed particle attentuation method, Tech. Rep. AECD-2808, Oak Ridge National Laboratory, Oak Ridge, TN.

    Google Scholar 

  • Golden, B.L. and C.C. Skiscim (1986). Using simulated annealing to solve routing and location problems, Naval Res. Log. Quart., 33, 261–279.

    Article  Google Scholar 

  • Grenander, U. (1983). Tutorial in Pattern Theory, Division of Applied Mathematics, Brown University, Providence, RI.

    Google Scholar 

  • Griffeath, D. (1975). A maximal coupling for Markov chains, Zeitschrift far Wahrscheinlichkeitstheorie und Verwandts Gebeite, 31, 96–107.

    Google Scholar 

  • Grimmett, G.R. (1973). A theorem about random fields, Bull. London Math. Soc., 5, 81–84. Grötschel, M., L. Lovâsz and A. Schrijver (1988). Geometric Algorithms and Combinatorial Optimization, Springer-Verlag, New York.

    Google Scholar 

  • Hadley, G. (1961). Linear Algebra, Addison-Wesley, Reading, MA.

    Google Scholar 

  • Hajek, B. (1988). Cooling schedules for optimal annealing, Math of Oper. Res., 13, 311–329.

    Article  Google Scholar 

  • Hammer, P. (1951). Calculation of shielding properties of water for high energy neutrons, Monte Carlo Method, A.S. Householder, G.E. Forsythe, and H.H. Germond eds., Applied Mathematics, Series 12, National Bureau of Standards, Washington, DC.

    Google Scholar 

  • Hammersley, J.M. (1972). Stochastic models for the distribution of particles in space, Adv. Appl. Prob., 4 (special supplement), 47–68.

    Article  Google Scholar 

  • Hammersley, J.M. and D.D. Handscomb (1964). Monte Carlo Methods, Methuen. Hastings, W.K. (1970). Monte Carlo sampling methods using Markov chains and their applications, Biometrika, 57, 92–109.

    Google Scholar 

  • Hendriksen, J.O. (1983). Event list management-a tutorial, Proc. of the 1983 Winter Simulation Conference, S. Roberts, J. Banks, and B. Schmeiser eds.

    Google Scholar 

  • Hendriksen, J. (1994). Personal communication.

    Google Scholar 

  • Horn, R.A. and C.A. Johnson (1985). Matrix Analysis, Cambridge University Press, New York.

    Google Scholar 

  • Iosifescu, M. (1980). Finite Markov Processes and Their Applications,Wiley, New York. Jerrum, M. and A. Sinclair (1988). Conductance and the rapid mixing property for Markov chains: the approximation of the permanent resolved, Proc. of the 20th ACM Symposium on Theory of Computing,235–244.

    Google Scholar 

  • Jerrum, M. and A. Sinclair (1990). Polynomial-time approximation algorithms for the Ising model, Department of Computer Science, University of Pittsburgh, Pittsburgh, PA.

    Google Scholar 

  • Kahn, H. (1950a). Modification of the Monte Carlo method, Proc. Seminar on Scientific Computation, November 1949, International Business Machine Corporation, New York.

    Google Scholar 

  • Kahn, H. (1950b). Random sampling techniques in Neutron attentuation problems-I, Nucleonics, 6, 27–33, 37.

    Google Scholar 

  • Kahn, H. (1950c). Random sampling techniques in Neutron attentuation problems-II, Nucleonics, 6, 60–64.

    Google Scholar 

  • Kelly, F. (1979). Stochastic Networks and Reversibility, Wiley, New York.

    Google Scholar 

  • Kirkpatrick, S., C. Gelatt, and M. Vecchi (1983). Optimization by simulated annealing, Science, 220, 671–680.

    Article  Google Scholar 

  • Kolmogorov, A. (1931). Uber die Analytischen Methoden in der Wahrscheinlichkeitsrechnung, Math. Annalen, 104, 415–458.

    Article  Google Scholar 

  • Letac, G. and L. Takâcs (1979). Random walks on an m-dimensional cube, J. far die Reine und Angewandte Mathematik, 310, 187–195.

    Google Scholar 

  • Lewis, E.E. and F. Böhm (1984). Monte Carlo simulation of Markov unreliability models, Nuclear Eng. and Design, 77, 49–62.

    Article  Google Scholar 

  • Lovâsz, L. and M. Simonovits (1990). The mixing rate of Markov chains, an isoperimetric inequality and computing the volume, Department of Computer Science, Princeton University, and Department of Computer Science, Rutgers University.

    Google Scholar 

  • Lundy, M. and A. Mees (1986). Convergence of an annealing algorithm, Math. Programming, 34, 111–124.

    Article  Google Scholar 

  • Mayer, M. (1951). Report on a Monte Carlo calculation performed with the Eniac, Monte Carlo Method, A.S. Householder, G.E. Forsythe, and H.H. Germond eds., Applied Mathematics, Series 12, National Bureau of Standards, Washington, DC.

    Google Scholar 

  • Metropolis, N. (1989). The beginning of the Monte Carlo problem, From Cardinals to Chaos, Reflections on the Life and Legacy of Stanislaw Ulam, N.G. Cooper ed., Cambridge University Press, New York, pp. 125–130.

    Google Scholar 

  • Metropolis, N., A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller (1953). Equations of state calculations by fast computing machines, J. Chem. Phys., 21, 1087–1092.

    Article  Google Scholar 

  • Meyn, S.P. and R.L. Tweedie (1993). Markov Chains and Stochastic Stability, Springer-Verlag, New York.

    Book  Google Scholar 

  • Mitra, D., F. Romeo, and A.L. Sangiovanni-Vincentelli (1986). Convergence and finite-time behavior of simulated annealing, Adv. Appl. Prob., 18, 747–771.

    Article  Google Scholar 

  • Moussouris, J. (1973). Gibbs and Markov random systems with constraints, J. Statist. Phys., 10, 11–33.

    Article  Google Scholar 

  • Muller, M. (1956). Some continuous Monte Carlo methods for the Dirichlet problem, Ann. Math. Statist., 27, 569–589.

    Article  Google Scholar 

  • Nummelin, E. (1984). General Irreducible Markov Chains and Non-negative Operators, Cambridge University Press, New York.

    Book  Google Scholar 

  • Onsager, L. (1944). Crystal statistics, I. A two-dimensional model with an order-disorder transition, Phys. Rev., 65, 117–149.

    Article  Google Scholar 

  • Pegden, C.D. (1986). Introduction to SIMAN, Systems Modeling Corporation, State College, PA.

    Google Scholar 

  • Petrowsky, I. (1933). Über das Irrfahrtproblem, Math. Annalen, 109, 425–444.

    Article  Google Scholar 

  • Pritsker, A.A.B., C.E. Sigal, and R.D.J. Hammersfahr (1994). SLAM II, Network Models for Decision Support,The Scientific Press.

    Google Scholar 

  • Rayleigh, Lord J.W.S. (1899). On James Bernoulli’s theorem in probabilities, Phil. Mag., 47, 246–251.

    Google Scholar 

  • Roberts, G.O. and A.F.M. Smith (1992). Simple conditions for the convergence of the Gibbs sampler and Metropolis-Hastings algorithms, Res. Rep. 92–30, Statistical Laboratory, University of Cambridge, Cambridge, UK.

    Google Scholar 

  • Ross, S.M. and Z. Schechner (1985). Using simulation to estimate first passage distribution, Management Science, 31, 224–234.

    Article  Google Scholar 

  • Schervish, M.J. and B.P. Carlin (1992). On the convergence of successive substitution sampling, J. Comp. Graph. Statist., 1, 111–127.

    Google Scholar 

  • Schriber, T.J. (1991). An Introduction to Simulation Using GPSS/H,Wiley.

    Google Scholar 

  • Sinclair, A. (1988). Randomized algorithms for counting and generating combinatorial structures, Ph.D. dissertation, Department of Computer Science, University of Edinburgh.

    Google Scholar 

  • Sinclair, A. (1991). Improved bounds for mixing rates of Markov chains and multicommodity flow, ECS-LFS-91–178, Department of Computer Science, University of Edinburgh.

    Google Scholar 

  • Sinclair, A. and M. Jerrum (1989). Approximate counting, uniform generation and rapidly mixing Markov chains, Infor. and Comput., 82, 93–133.

    Article  Google Scholar 

  • Smith, R.L. (1984). Efficient Monte Carlo procedures for generating points uniformly distributed over bounded regions, Oper. Res., 32, 1296–1308.

    Article  Google Scholar 

  • Snee, R.D. (1974). Graphical display of two-way contingency tables, American Statistician, 38, 9–12.

    Google Scholar 

  • Spanier, J. and E.M. Gelbard (1969). Monte Carlo Principles and Neutron Transport Problems,Addison-Wesley, Reading, MA.

    Google Scholar 

  • Subelman, E.J. (1976). On the class of Markov chains with finite convergence time, Stochastic Processes and Their Applications, 4, 253–259.

    Article  Google Scholar 

  • Tierney, L. (1991). Markov chains for exploring posterior distributions, Tech. Rep. 560, School of Statistics, University of Minnesota.

    Google Scholar 

  • Tsitsiklis, J.N. (1988). A survey of large time asymptotics of simulated annealing algorithms, Proc. of Workshop on Stochastic Differential Systems, Stochastic Control Theory and Applications, Minneapolis, MN, Springer-Verlag, New York, pp. 583–589.

    Google Scholar 

  • Tovey, C.A. (1988). Simulated simulated annealing, Amer. J. Math. and Manag. Sci., 8, 389–407.

    Google Scholar 

  • Tricomi, F.G. (1957), Integral Equations, Interscience Publishers, New York.

    Google Scholar 

  • Valiant, L.G. (1979). The complexity of computing the permanent, Theoret. Comput. Sci., 8, 189–201.

    Article  Google Scholar 

  • Wasow, W. (1951). On the mean duration of random walks, J. Res. Nat. Bureau of Standards, 46, 462–471.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fishman, G.S. (1996). Random Tours. In: Monte Carlo. Springer Series in Operations Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2553-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2553-7_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2847-4

  • Online ISBN: 978-1-4757-2553-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics