Tissue Dissection in Laparoscopic Surgery

  • Jeffrey W. Milsom
  • Bartholomäus Böhm


Generally, in laparoscopie surgery, abdominal cavity tissues are dissected using a combination of cutting and coagulation, often with specialized electrosurgical instruments, lasers, or ultrasonic devices. Precise dissection with minimal bleeding is especially important in laparoscopie surgery. Even minor oozing compromises the laparoscopic view, and clearing blood from the field of vision with suction and irrigation may be difficult. Therefore, dissection must be performed with tools that optimize precise tissue cutting and coagulation.


Laparoscopic Cholecystectomy Laparoscopic Colorectal Surgery Capacitive Coupling Ultrasonic Scalpel Laser Plume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    McKenzie AL. A three-zone model of soft-tissue damage by a CO2 laser. Phys Med Biol. 1986; 31: 967–983.PubMedCrossRefGoogle Scholar
  2. 2.
    Walsh JT, Flotte TJ, Anderson RR, Deutsch TF. Pulsed CO2 laser tissue ablation: effect of tissue type and pulse duration on thermal damage. Lasers Surg Med. 1988; 8: 108–118.PubMedCrossRefGoogle Scholar
  3. 3.
    Zweig AD, Meierhofer B, Muller OM, et al. Lateral thermal damage along pulsed laser incisions. Lasers Surg Med. 1990; 10: 262–274.PubMedCrossRefGoogle Scholar
  4. 4.
    Hemingway A, McClendon JF. The high frequency resistance of human tissue. Am J Physiol. 1932; 102: 56–59.Google Scholar
  5. 5.
    Zeng E, Shao S, Webster JG. Impedance of skeletal muscle from 1 Hz to 1 MHz. IEEE Trans Biomed Eng. 1984;31:477–481. Abstract.Google Scholar
  6. 6.
    Kanai H, Haeno M, Sakamoto K. Electrical measurement of fluid distribution in legs and arms. Med Prog Technol. 1987;12:159–170. Abstract.Google Scholar
  7. 7.
    Ward GE. An efficient method of hemostasis without suture. Med J Record. 1925; 121: 470.Google Scholar
  8. 8.
    Cushing H, Bovie WT. Electrosurgery as an aid to the removal of intracranial tumors. Surg Gynecol Obstet. 1928; 47: 751–785.Google Scholar
  9. 9.
    Tucker RD, Kramlowosky EV, Stasz P. Direct-current potentials created by arcing during monopolar radiofrequency electrosurgery. Biomed Instrum Technol. 1990; 24: 212–216.PubMedGoogle Scholar
  10. 10.
    Schroder T, Brackett K, Joffe SN. An experimental study of the effects of electrocautery and various lasers on gastrointestinal tissue. Surgery. 1987; 101: 691–697.PubMedGoogle Scholar
  11. 11.
    Pearce JA. Electrosurgery. New York, N.Y.: Wiley & Sons; 1986.Google Scholar
  12. 12.
    Corbitt JD. Laparoscopic cholecystectomy: laser versus electrosurgery. Surg Laparosc Endosc. 1991; 1: 85–88.PubMedGoogle Scholar
  13. 13.
    Hunter JG. Laser or electrocautery for laparoscopic cholecystectomy ? Am J Surg. 1991; 161: 345–349.PubMedCrossRefGoogle Scholar
  14. 14.
    Soper NJ, Barteau JA, Clayman RV, Becich MJ. Safety and efficacy of laparoscopic cholecystectomy using monopolar electrocautery in the porcine model. Surg Laparosc Endosc. 1991; 1: 17–22.PubMedGoogle Scholar
  15. 15.
    Bordelon BM, Hobday KA, Hunter KA. Laser vs electrosurgery in laparoscopic cholecystectomy. Arch Surg. 1993; 128: 233–236.PubMedCrossRefGoogle Scholar
  16. 16.
    Gatti JE, Bryant CJ, Noone RB, Murphy JB. The mutagenicity of electrocautery smoke. Plast Reconstr Surg. 1992; 89: 781–784.PubMedCrossRefGoogle Scholar
  17. 17.
    Wenig BL, Stenson KM, Wenig BM, Tracey D. Effects of plume produced by the Nd:YAG laser and electrocautery on the respiratory system. Lasers Surg Med. 1993; 13: 242–245.PubMedCrossRefGoogle Scholar
  18. 18.
    Baggish MS, Poiesz BJ, Joret D, Williamson P, Refai A. Presence of human immunodeficiency virus DNA in laser smoke. Lasers Surg Med. 1991; 11: 197–203.PubMedCrossRefGoogle Scholar
  19. 19.
    Baggish MS, Baltoyannis P, Sze E. Protection of the rat lung from the harmful effects of laser smoke. Lasers Surg Med. 1988; 8: 248–253.PubMedCrossRefGoogle Scholar
  20. 20.
    Matchette SL, Vegella TJ, Faaland RW. Viable bacteriophage in CO2 laser plume: aerodynamic size distribution. Lasers Surg Med. 1993; 13: 18–22.PubMedCrossRefGoogle Scholar
  21. 21.
    Saye WB, Miller W, Hertzman P. Electrosurgery thermal injury. Surg Laparosc Endosc. 1991; 1: 223–228.PubMedGoogle Scholar
  22. 22.
    Grainger DA, Soderstrom RM, Schiff SF, Glickman MG, Decherney AH, Diamond MP. Ureteral injuries at laparoscopy: insights into diagnosis, management, and prevention. Obstet Gynecol. 1990; 75: 839–843.PubMedGoogle Scholar
  23. 23.
    Nezhat C, Nezhat FR. Ureteral injuries at laparoscopy: insights into diagnosis, management, and prevention [letter]. Obstet Gynecol. 1990; 76: 889–890.PubMedCrossRefGoogle Scholar
  24. 24.
    Voyles CR, Tucker RD. Education and engineering solutions for potential problems with laparoscopie monopolar electrosurgery. Am J Surg. 1992; 164: 57–62.PubMedCrossRefGoogle Scholar
  25. 25.
    Tucker RD, Voyles CR, Silvis SE. Capacitive coupled stray currents during laparoscopic and endoscopic electrosurgical procedures. Biomed Instrum Technol. 1992; 26: 303–311.PubMedGoogle Scholar
  26. 26.
    Cuschieri A, Shimi S, Banting S, Vander Velpen G. Endoscopie ultrasonic dissection for thoracoscopic and laparoscopic surgery. Surg Endosc. 1993; 7: 197–199.PubMedCrossRefGoogle Scholar
  27. 27.
    Böhm B, Milsom JW, Kitago K, Brand M, Fazio VW. Monopolar electrosurgery and Nd:YAG Contact Laser in laparoscopic intestinal surgery. Surg Endosc. 1994; 8: 677–681.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Jeffrey W. Milsom
    • 1
  • Bartholomäus Böhm
    • 2
  1. 1.Section of Colorectal Surgery Research, Department of Colorectal SurgeryThe Cleveland Clinic FoundationClevelandUSA
  2. 2.Universitätsklinik und Poliklinik für ChirurgieUniversitätsklinikums CharitéBerlinGermany

Personalised recommendations