Skip to main content

Immobilized Enzyme Reactions on Beads and Membranes

  • Chapter
Biofunctional Membranes

Abstract

Immobilized biocatalysts have widespread applications in areas like organic synthesis, pollution control and for diagnostic purposes. Enzymes can be immobilized on different supports like polymeric beads, gels, and membranes. Immobilization eliminates the need to separate an enzyme from the product solution and allows these expensive compounds to be reused. In addition, the thermal stability, pH stability, and storage stability of an enzyme may be increased as a result of immobilization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. F. Taylor, “Protein Immobilization: Fundamentals and Applications”, Marcel Dekker, Inc., New York (1991).

    Google Scholar 

  2. E. Klein, “Affinity Membranes”, John Wiley & Sons, Inc., New York (1990).

    Google Scholar 

  3. J. Koubek, J. Volf, and J. Pasek, Adsorption of amines on alumina, J. Catal., 38:385 (1975).

    Article  CAS  Google Scholar 

  4. R. A. Messing, Simultaneously immobilized glucose oxidase and catalase in controlled-pore titania, Biotechnol. Bioeng., 16: 897 (1974).

    Article  PubMed  CAS  Google Scholar 

  5. P. S. Skerker and D. S. Clark, Catalytic properties and active-site structural features of immobilized horse liver alcohol dehydrogenase, Biotechnol. Bioeng., 28:148 (1988).

    Article  Google Scholar 

  6. T. Hayashi and Y. Ikada, Protease immobilization onto poly-acrolein microspheres, Biotechnol. Bioeng., 35: 518 (1990).

    Article  PubMed  CAS  Google Scholar 

  7. S. Schwimmer, “Source Book of Food Enzymology”, The Avi Publishing Co., Inc. (1981).

    Google Scholar 

  8. J. R. Whitaker, “Principles of Enzymology for the Food Sciences”, Marcel Dekker, Inc., New York (1972).

    Google Scholar 

  9. D. D. Do and M. M. Hossain, A novel method of determination of the internal enzyme distribution within porous solid supports and the deactivation rate constant, Biotechnol. Bioeng., 28: 486 (1986).

    Article  PubMed  CAS  Google Scholar 

  10. D. D. Do and M. M. Hossain, Determination of intrinsic parameters for immobilization reactions of catalase and amyloglucosidase in porous glass supports, Biotechnol. Bioeng., 31:730 (1988).

    Article  PubMed  Google Scholar 

  11. P. T. Vasudevan and R. H. Weiland, Deactivation of catalase by hydrogen peroxide, Biotechnol. Bioeng., 36:783 (1990).

    Article  PubMed  CAS  Google Scholar 

  12. D. I. Metelitsa, E. I. Plyugacheva, V. A. Artomonov and G. M. Baran, Catalytic activity of catalase adsorbed on MIFIL polyamide membranes, Kinetics and Catalysis, 31:1233 (1991).

    Google Scholar 

  13. S. Vishwanath, W. Huang, L. G. Bachas and D. Bhattacharyya, Site-directed and random enzyme immobilization on functionalized membranes: kinetic studies and models, J. Membrane Sci., In press (1995).

    Google Scholar 

  14. D. A. Butterfield, J. Lee, S. Ganapathi and D. Bhattacharyya, Biofunctional membranes part IV. Active-site structure and stability of an immobilized enzyme, papain, on modified polysulfone membranes studied by electron paramagnetic resonance and kinetics, J. Membrane Sci. 91: 47 (1994).

    Article  CAS  Google Scholar 

  15. S. Ganapathi, D. A. Butterfield, D. Bhattacharyya, Flat-sheet and hollow fiber membrane bioreactors: A study of the kinetics and active-site conformational changes of immobilized papain including sorption studies of reaction constituents, J. Chem. Tech. Biotech., In press (1995).

    Google Scholar 

  16. K. Kono, F. Tabeta and T. Takagishi, pH-responsive permeability of poly(acrylic acid) — poly(ethylenimine) complex capsule membrane, J. Membrane Sci., 76:233 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bhattacharyya, D., Ganapathi, S., Vishwanath, S., Summers, M., Butterfield, D.A. (1996). Immobilized Enzyme Reactions on Beads and Membranes. In: Butterfield, D.A. (eds) Biofunctional Membranes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2521-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2521-6_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3254-9

  • Online ISBN: 978-1-4757-2521-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics