Skip to main content

Preparation, Characterization, and Utilization of Biomimetic Membranes

  • Chapter
Biofunctional Membranes
  • 86 Accesses

Abstract

Biological membranes define the very existence of the living cell and are intimately involved in in vivo syntheses, recognition, information transfer, and energy transduction.1 Self-organization, predominantly bimolecular thickness, domain formation, temperature, media- and electrical signal-dependent fluidity, and permeability control are believed to be responsible for the effectiveness of the biological membrane in mediating these myriads of activities. The exploitation of biomembranedependent processes in vitro in relatively simple artificial biomimetic membranes for the compartmentalization of substrates, for acting as carriers, and for altering reaction rates, products, and stereochemistries has been the subject of intensive research activities.2 Biomimetic membranes are defiined by a utilitarian point of view as compartments which are able to. accommodate selected substrates in desired microenvironments. Aqueous micelles, reversed micelles, monolayers, Langmuir-Blodgett (LB) films, bilayer lipid membranes (BLMs), freely suspended ultrathin fiilms, surfactant vesicles (liposomes), cast multilayers, self-assembled films, and even such layered compounds as zeolites and pillared clays (or organoclay complexes) are considered to be biomimetic membranes in this broad definition. In contrast, the term biofunctional membrane is limited to an “entity in which biological molecules (or cells) are attached to polymeric supports cast in the form of porous membranes.”3

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.E. Bittar, “Membrane Structure and Function,” Wiley-Interscience, New York (1968).

    Google Scholar 

  2. J.H. Fendler, “Membrane Mimetic Chemistry,” Wiley-Interscience, New York (1982).

    Google Scholar 

  3. D.A. Butterfield, J. Lee, S. Ganapathi, and D. Bhattacharyya, Biofunctional membranes. 4. Active-site structure and stability of an immobilized enzyme, papain, on modified polysulfone membranes studied by electron-paramagnetic-resonance and kinetics, J. Membr. Sci. 91:47 (1994).

    Article  CAS  Google Scholar 

  4. J.H. Fendler, “Membrane-Mimetic Approach to Advanced Materials,” Springer-Verlag, Berlin (1994).

    Book  Google Scholar 

  5. J.N. Israelachvili, “Intermolecular & Surface Forces,” Second Edition, Academic Press, San Diego, CA (1992).

    Google Scholar 

  6. J.L. Parker, H.K. Christenson, and B.W. Ninham, Surface force apparatus, Rev. Sci. lnstrum. 60:3135 (1989).

    Article  CAS  Google Scholar 

  7. R. Wiesendanger, “Scanning Probe Microscopy and Spectroscopy,” Cambridge University Press, Cambridge (1994).

    Book  Google Scholar 

  8. M. Löche and H. Möhwald, Fluorescence microscopy of monolayers, Rev. Sci. Instr. 55:1968 (1984).

    Article  Google Scholar 

  9. S. Henon and J. Meunier, Microscope at the Brewster angle: direct observation of first-order phase transitions in monolayers, Rev. Sci. lnstr. 62:936(1991).

    Article  CAS  Google Scholar 

  10. D. Hönig and D. Möbius, Direct visualization of monolayers at the air-water interface by Brewster angle microscopy, J. Phys. Chem. 95:4590 (1991).

    Article  Google Scholar 

  11. J. Als-Nielsen and H. Möhwald, Synchrotron x-ray scattering studies of Langmuir films, in: “Handbook on Synchrotron Radiation,” S. Ebashi, M. Koch, and E. Rubinstein, eds., Elsevier, The Netherlands (1991), Vol. 4.

    Google Scholar 

  12. A. Ulman, “An Introduction to Ultrathin Organic Films from Langmuir-Blodgett to SelfAssembly,” Academic Press, Boston (1991).

    Google Scholar 

  13. A. Pockels, Surface tensions, Nature 43:437 (1891).

    Google Scholar 

  14. “Advances in the Applications of Membrane-Mimetic Chemistry,” T.F. Yen, R.D. Gilbert, and J.H. Fendler, eds., Plenum Press, New York (1994).

    Google Scholar 

  15. “Molecular and Biomolecular Electronics,” R.R. Birge, ed., American Chemical Society: Washington, DC (1994).

    Google Scholar 

  16. D.J. Robinson and J.C. Earnshaw, Initiation of aggregation in colloidal particle monolayers, Langmuir 9:1436 (1993).

    Article  CAS  Google Scholar 

  17. G. Onoda, Polystyrene monolayers, Phys. Rev. Lett. 55:226 (1985).

    Article  PubMed  CAS  Google Scholar 

  18. Z. Hórvölgyi, S. Németh, and J.H. Fendler, Spreading of hydrophobic silica beads at water air interfaces, Colloids Surf. A: Physicochem. Eng. Aspects 71:327 (1993).

    Article  Google Scholar 

  19. S. Németh, T.-C. Jao, and J.H. Fendler, Concentration and solvent-dependent excimer formation of 1-pyrenylmethanamine covalently attached to maleic anhydride-grafted ethylene propylene copolymers, Macromol. 27:5449 (1994).

    Article  Google Scholar 

  20. H. Haas and H. Möhwald, Ordered protein arrays as mesophases, Langmuir 10:363 (1994).

    Article  CAS  Google Scholar 

  21. N.A. Kotov, F.C. Meldrum, C. Wu, and J.H. Fendler, Monoparticulate layer and LangmuirBlodgett-type multiparticulate layers of size-quantized, cadmium-sulfide clusters: a colloid-chemical approach to superlattice construction, J. Phys. Chem. 98:2735 (1994).

    Article  CAS  Google Scholar 

  22. N.A. Kotov, F.C. Meldrum, and J.H. Fendler, Monoparticulate layers of titanium dioxide nanocrystallites with controllable interparticle distances, J. Phys. Chem. 98:8827 (1994).

    Article  CAS  Google Scholar 

  23. N.A. Kotov, Y. Tian, F.C. Meldrum, and J.H. Fendler, Unpublished results (1995).

    Google Scholar 

  24. N.A. Kotov, G. Zavala, and J.H. Fendler, Langmuir-Blodgett films prepared from ferroelectric lead zirconium titanate particles, J. Phys. Chem. submitted for publication (1995).

    Google Scholar 

  25. F.C. Meldrum, N.A. Kotov, and J.H. Fendler, Preparation of particulate mono- and multilayers from surfactant-stabilized, nanosized magnetite crystallites, J. Phys. Chem. 98:4506 (1994).

    Article  CAS  Google Scholar 

  26. X.K. Zhao, S. Xu, and J.H. Fendler, Ultrasmall magnetic particles in Langmuir-Blodgett films, J. Phys. Chem. 94:2573 (1990).

    Article  CAS  Google Scholar 

  27. D.W. Grainger, M. Ahlers, P. Meller, R. Blankenburg, A. Reichert, H. Ringsdorf, C. Salesse, J.N. Herron, and K. Lim, Controlling binding and organization of proteins with model biomembrane systems through specific recognition, in: “Biomembrane Structure and Function — the State of the Art,” B.P. Gaber and K.R.K. Easwaran, eds., Adenine Press, New York (1992).

    Google Scholar 

  28. B.R. Heywood and S. Mann, Template-directed nucleation and growth of inorganic materials, Adv. Mater. 6:9 (1994).

    Article  CAS  Google Scholar 

  29. H.A. Lowenstam and S. Weiner, “On Biomineralization,” Oxford University Press, New York (1989).

    Google Scholar 

  30. L. Addadi and S. Weiner, Control and design principles in biological mineralization, Angew. Chem. Int. Ed. Engl. 31:153 (1992).

    Article  Google Scholar 

  31. H.T. Tien, “Bilayer Lipid Membranes (BLM). Theory and Practice,” Marcel Dekker, New York (1974).

    Google Scholar 

  32. B. Hille, “Ionic Channels of Excitable Membranes,” Sinaver Associates, Sunderland, MA (1984).

    Google Scholar 

  33. B. Sackmann and E. Neher, “Single Channel Recording,” Plenum Press, New York (1983).

    Google Scholar 

  34. S. Kato and T. Kunitake, Molecular design of black lipid membranes (BLM) by polymerized double-chain ammonium amphiphiles, Chem. Lett. 261 (1991).

    Google Scholar 

  35. K. Hongyo, J. Joseph, R.J. Huber, and J. Janata, Experimental observation of chemically modulated admittance of supported phospholipid membranes, Langmuir 3:827 (1987).

    Article  CAS  Google Scholar 

  36. X.K. Zhao, S. Baral, R. Rolandi, and J.H. Fendler, Semiconductor particles in bilayer lipid membranes (BLMs). Formation, characterization, and photoelectrochemistry, J. Am. Chem. Soc. 110:1012 (1988).

    Article  CAS  Google Scholar 

  37. X.K. Zhao, P.J. Herve, and J.H. Fendler, Magnetic particulate thin films on bilayer lipid membranes (BLMs), J. Phys. Chem. 93:908 (1989).

    Article  CAS  Google Scholar 

  38. X.K. Zhao, S. Baral, and J.H. Fendler, Electrochemical characterization of bilayer lipid membrane semiconductor junctions, J. Phys. Chem. 94:2043 (1990).

    Article  CAS  Google Scholar 

  39. A.T. Todorov, A.G. Petrov, and J.H. Fendler, Flexoelectricity of charged and dipolar bilayer lipid membranes studied by stroboscopic interferometry, Langmuir 10:2344 (1994).

    Article  CAS  Google Scholar 

  40. F.C. Meldrum, N.A. Kotov, J.H. Fendler, Utilization of surfactant-stabilized colloidal silver nanocrystallites in the construction of mono- and multiparticulate Langmuir-Blodgett films, Langmuir 10:2035 (1994).

    Article  CAS  Google Scholar 

  41. G. Decher, J. Maclennan, and J. Reibel, Highly-ordered ultrathin LC multilayer films on solid substrates, Adv. Mater. 3:617 (1991).

    Article  CAS  Google Scholar 

  42. T. Kunitake and Y. Okahata, A totally synthetic bilayer membrane, J. Am. Chem. Soc. 99:3 860 (1977).

    Google Scholar 

  43. T. Kunitake, Y. Okahata, K. Tamaki, F. Kumamura, and M. Takayanagi, Formation of the bilayer membrane from a series of quaternary ammonium salts, Chem. Lett.(Jpn) 387 (1977).

    Google Scholar 

  44. J.H. Fendler, Membrane mimetic chemistry, C&E News 62:25 (1984).

    Article  CAS  Google Scholar 

  45. J.H. Fendler, Polymerized surfactant vesicles — novel membrane mimetic systems, Science 223:888 (1984).

    Article  PubMed  CAS  Google Scholar 

  46. J.H. Fendler and E.J. Fendler, “Catalysis in Micellar and Macromolecular Systems,” Academic Press, New York (1975).

    Google Scholar 

  47. T. Kunitake, Synthetic bilayer membranes: molecular design, self-organization, and application, Angew. Chem. Int. Ed. Engl. 31:709 (1992).

    Article  Google Scholar 

  48. H. Ringsdorf, B. Schlarb, and J. Venzmer, Molecular architecture and function of polymeric oriented systems: models for the study of organization, surface recognition, and dynamics of biomembranes, Angew. Chem. lnt. Ed. Engl. 27:113 (1988).

    Article  Google Scholar 

  49. J.H. Fendler, Surfactant vesicles as membrane mimetic agents: characterizations and utilizations, Acc. Chem. Res. 13:7 (1980).

    Article  CAS  Google Scholar 

  50. M. Caffrey, D. Moynihan, and J. Hogan, A database of lipid phase transition temperatures and enthalpy changes, Chem. Phys.Lip. 57:275 (1991).

    Article  CAS  Google Scholar 

  51. S.L. Regen, J.-S. Shin, J.F. Hainfeld, and J.S. Wall, Ghost vesicles, J. Am. Chem. Soc. 106:5756 (1984).

    Article  CAS  Google Scholar 

  52. Y. Okahata, Lipid bilayer-corked capsule membranes. Reversible, signal-receptive permeation control. Acc. Chem. Res. 19:57 (1986).

    Article  CAS  Google Scholar 

  53. Y. Okahata, Lipid bilayer-coated capsule membranes. Reversible, signal-receptive permeation control, Acc. Chem. Res. 19:57 (1986).

    Article  CAS  Google Scholar 

  54. Y. Okahata, K. Ariga, and T. Seki, Polymerizable lipid-corked capsule membranes. Polymerization at different positions of corking lipid bilayers on the capsule and effect of polymerization on permeation behavior, J. Am. Chem. Soc. 110–2495 (1988).

    Google Scholar 

  55. N. Nakashima, R. Ando, and T. Kunitake, Casting of synthetic bilayer membranes on glass and spectral variation of mnembrane-bound cyanine and merocyanine dyes, Chem. Lett. 1577 (1983).

    Google Scholar 

  56. M. Shimomura, R. Ando, and T. Kunitake, Orientation and spectral characteristics of the azobenzene chromophore in the ammonium bilayer assembly, Ber. Bunsenges, Phys. Chem. 87:1134 (1983).

    Article  CAS  Google Scholar 

  57. N. Higashi and T. Kunitake, Immobilization of cast bilayer films by 60Co gamma-irradiation and other means, Polymer J. 16:583 (1984).

    Article  CAS  Google Scholar 

  58. M. Shimomura and T. Kunitake, Immobilization of synthetic bilayer membranes as multilayered polymer films, Polymer J. 16:187 (1984).

    Article  CAS  Google Scholar 

  59. T. Kunitake, A. Tsuge, and N. Nakashima, Immobilization of ammonium bilayer membranes by complexation with anionic polymers, Chem. Lett. (Jpn) 1783 (1984).

    Google Scholar 

  60. N. Nakashima, M. Kunitake, T. Kunitake, S. Tone, and T. Kajiyama, Ordered cast films of polymerized bilayer mermbranes, Macromol. 18:1515 (1985).

    Article  CAS  Google Scholar 

  61. S.L. Regen, P. Kirszensztejh, and A. Singh, Polymer supported membranes, Macromol. 16:335 (1983).

    Article  CAS  Google Scholar 

  62. O. Albrecht and A. Laschewsky, Polymer supported membranes, Macromol. 17:1292 (1984).

    Article  CAS  Google Scholar 

  63. S.L. Regen, Z. Foltynowicz, and K. Yamaguchi, Further evidence for polymer supported membranes, Macromol. 17:1293 (1984).

    Article  CAS  Google Scholar 

  64. N. Higashi, T. Kajiyama, T. Kunitake, W. Prass, H. Ringsdorf, and A. Takahara, Cast multibilayer films from polymerizable lipids, Macromol. 20:29 (1987).

    Article  CAS  Google Scholar 

  65. A. Takahara, N. Higashi, T. Kunitake, and T. Kajiyama, State of aggregation and surface chemical composition of composite thin films composed of poly(vinyl alcohol) and fluorocarbon amphiphile, Macromol. 21(8):2443 (1988).

    Article  CAS  Google Scholar 

  66. K. Fukuta, Y. Itami, R. Shimizu, and T. Kunitake, Preparation of multilayered fiilms of poly(stearyl acrylate) using cast films of a novel fluorocarbon amphiphile as twodimensional templates.

    Google Scholar 

  67. S. Asakuma and T. Kunitake, A multi-layered film of a two-dimensionally crosslinked acrylate polymer, Chem. Lett. 2059 (1989).

    Google Scholar 

  68. Y. Okahata and H. Ebato, Application of a quartz-crystal microbalance for detection of phase transitions in liquid crystals and lipid multibilayers, Anal. Chem. 61:2185 (1989).

    Article  CAS  Google Scholar 

  69. K. Sakata and T. Kunitake, A multilayered film of an ultrathin siloxane network, J. Chem. Soc., Chem. Commun. 504 (1990).

    Google Scholar 

  70. Y. Ishikawa and T. Kunitake, Macroscopically oriented copper(II) chelates in cast multibilayer films, J. Am. Chem. Soc. 108:8300 (1986).

    Article  CAS  Google Scholar 

  71. I. Hamachi, S. Noda, and T. Kunitake, Layered arrangement of oriented myoglobins in cast films of a phosphate bilayer membrane, J. Am. Chem. Soc. 112:67–44 (1990).

    Article  Google Scholar 

  72. T. Kunitake, Ultrathin fiilms as biomimetic membranes, Polymer J. 23 :613 (1991).

    Google Scholar 

  73. S. Asakuma, H. Okada, and T. Kunitake, Template synthesis of two-dimensional network of cross-linked acrylate polymer in a cast multibilayer film, J. Am. Chem. Soc. 113:1749 (1991).

    Article  CAS  Google Scholar 

  74. Y. Ishikawa and T. Kunitake, Design of spatial disposition of anionic porphyrins in matrices of ammonium bilayer membranes, J. Am. Chem. Soc. 113 :621 (1991).

    Google Scholar 

  75. K. Sakata and T. Kunitake, Synthesis of polysiloxane films with varied microstructures in matrices of carbazole-containing bilayer membranes, Thin Solid Films 210/211:26 (1992).

    Article  Google Scholar 

  76. H. Okada, K. Sakata, and T. Kunitake, Formation of oriented iron oxide particles in cast multibilayer films, Chem. Mater. 2:89 (1990).

    Article  CAS  Google Scholar 

  77. Y. Okahata, H.-J. Lim, G. Nakamura, and S. Hachiya, A large nylon capsule coated with a synthetic bilayer membrane. Permeability control of NaCI by phase transition of the dialkylammonium bilayer coating, J. Am. Chem. Soc. 105:4855 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fendler, J.H. (1996). Preparation, Characterization, and Utilization of Biomimetic Membranes. In: Butterfield, D.A. (eds) Biofunctional Membranes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2521-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2521-6_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3254-9

  • Online ISBN: 978-1-4757-2521-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics