Clinically Useful Biosensor Membrane Development

  • Robert R. McCaffrey
  • Paul A. D’Orazio
  • Richard W. Mason
  • Thomas C. Maley
  • Peter G. Edelman


This paper will begin with a conventional definition of a biosensor and the author’s definition of clinically useful. To help define clinically useful, there is a brief discussion of performance specifications and system compatibility. Next there is a description of the function of biosensor membranes and membrane types. Membrane attributes as they pertain to sensor non-linearity is explained in some detail. The complete sensor construction process is described.


Glucose Sensor Interpenetrate Polymer Network Glucose Biosensor Ethyl Acrylate Spin Speed 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.O. Westgard, HFCA/CLIA Proficiency Testing for Analytical Quality, Clin. Chem. 38/7, 1226–1233, (1992).PubMedGoogle Scholar
  2. 2.
    W.L. Clarke, D. Cox, L.A. Gonder-Frederick, W. Carter and S.L. Pohl, Evaluating Clinical Accuracy of Systems for Self-Monitoring of Blood Glucose, Diabetes Care, 10/5, 622–628, (1987).PubMedCrossRefGoogle Scholar
  3. 3.
    P.H. Treloar, I.M. Christie and P M. Vadgama, “Engineering the Right Membranes for Electrodes at the Biological Interface; Solvent Cast and Electropolymerized”, Biosens. & Bioelec., 10, 195–201, (1995).CrossRefGoogle Scholar
  4. 4.
    H.B. Lück, B. Heinrich and G. Wedell, “Particle Track Technology for Custom-made Membranes”, Polym. Mat., Sci. and Eng. Preprints, 70, 327, (1994).Google Scholar
  5. 5.
    D. Pfeiffer, K. Setz, T. Schulmeister, F.W. Scheller, H.B. Lück and D. Pfeiffer, “Development and Characterization of an Enzyme-based Lactate Probe for Undiluted Media”, Biosens. and Bioelec., 7, 661–671, (1992).CrossRefGoogle Scholar
  6. 6.
    L.S. Kuhn and S.G. Weber, “Novel Solvent Systems for the Preparation of Phase-Inversion Cellulose Acetate Size Exclusion Membranes: Voltammetric Investigations”, Electroanalysis, 3, 941–948, (1991).CrossRefGoogle Scholar
  7. 7.
    H. Suzuli, A. Sugama, N. Kojima, F. Takei and K. Ikegami, “A Miniature Clark-type Oxygen Electrode Using a Polyelectrolyte and its Application as a Glucose Sensor”, Biosensors and Bioelectronics, 6, 395–400, (1991).CrossRefGoogle Scholar
  8. 8.
    L.C. Clark, Jr., L.K. Noyes, R.B. Spokane R. Sudan and M.L. Miller, “Long-term Implantation of Voltammetric Oxidase/peroxide Glucose Sensors in the Rat Peritoneum,” in K. Mosbach (ed), Methods in Enzymology, Vol. 137, Academic Press, New York, 1988, pp68–89.Google Scholar
  9. 9.
    L.C. Clark, “Electrochemical Device for Chemical Analysis”, US Patent 2,913,386, Nov. 17, 1959.Google Scholar
  10. 10.
    L.C. Clark, Jr., Trans. Am. Soc. Artif. Organs, 2, 41, (1956).Google Scholar
  11. 11.
    P. Atanasov and E. Wilkins, “Glucose Biosensor Baed on Oxygen Electrode Part II: Long-term Operational Stability of the Rechargeable Glucose Biosensor”, Anal. Lett., 26(10), 2079–2094, (1993).CrossRefGoogle Scholar
  12. 12.
    K.R. Greenough, A.W. Skillen and C.J. McNeil, “Potential Glucose Sensor for Perioperative Blood Glucose Control in Diabetes Mellitus”, Biosens. & Bioelec., 9, pp23–28, (1994).CrossRefGoogle Scholar
  13. 13.
    G. Urban, G. Jobst, F. Keplinger, E. Aschauer, O. Tilado, R. Fasching, and F. Kohl, “Miniaturized Multi-enzyme Biosensors Integrated with pH Sensor on Flexible Polymer Carriers for in vivo Applications”, Biosens. and Bioelec., 7, 733–739, (1992).CrossRefGoogle Scholar
  14. 14.
    G. Urban, G. Jobst, F. Kohl, A. Jachimowicz, F. Olcaytug, O. Tilado, P. Goiser, G. Nuer, F. Pittner, T. Schalkhammer & E. Mann-Buxbaum, “Miniaturized Thin-Film Biosensors using Covalently Immobilized Glucose Oxidase, Biosens. & Bioelectronics, 6, pp555–562, (1991).CrossRefGoogle Scholar
  15. 15.
    M.A. Genshaw, “Enzyme Electrode for Determining Glucose in Whole-blood, Clin. Chem., 34 1717–1719, (1988).PubMedGoogle Scholar
  16. 16.
    D.T. Liles and H.V. Lefler III, “Silicone Rubber Latex Technology”, Proc. 18th Water-Borne, Higher-Solids and Powder Coatings Symp., R.F. Sotrey and S.F. Thames, Eds., Feb. 6–8, 1991, 161–173.Google Scholar
  17. 17.
    J.C. Saam, D. Graiver and M. Baile, “Room-Temperature-Cured Polydimethylsiloxane Elastomers from Aqueous Dispersions”, Rubb. Chem. Tech., 54, 976–87, (1981).CrossRefGoogle Scholar
  18. 18.
    P.J. Flory, Principles of Polymer Chemistry, Cornell University Press, ©1953, p. 635.Google Scholar
  19. 19.
    I. Ohmine and T. Tanaka, “Salt Effects on the Phase Transition of Ionic Gels.” J. Chem Phys., 77(11), (1982) 5725–5729.CrossRefGoogle Scholar
  20. 20.
    T. Sawai, S. Yamazaki, Y. Ikariyama and M. Aizawa, “pH-Responsive Swelling of the Ultrafine Microsphere”, Macromolecules (1991), 24, 2117–2118.CrossRefGoogle Scholar
  21. 21.
    Kinetics of the Cooperative Complex Formation and Dissociation of Poly(acrylic acid) and Poly(oxyethylene)”. B. Bednar, H. Morawetz and J.A. Shafer, Macromolecules 1984, 17, 1634–1636.CrossRefGoogle Scholar
  22. 22.
    V. Yu. Baranovsky, S. Shenkov and G. Borisov, “Complexation of Poly(methacrylic Acid) with Poly(ethylene Glycol) Nonionic Surfactants in Aqueous Solutions, European Polymer Journal, 29/8, 1137–1142, (1993).CrossRefGoogle Scholar
  23. 23.
    S. Nishi and T. Kotaka, “Complex-Forming Oxyethylene:Poly(acrylic acid) Interpenetrating Polymer Networks III. Swelling and Mechanochemical Behavior”, Polymer Journal, 21/5, 393–402, (1989).CrossRefGoogle Scholar
  24. 24.
    Teitz Textbook of Clinical Chemistry, 2nd Edition, D.A. Burtis and E.R. Ashwood, © 1986, W.B. Saunders Company.Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Robert R. McCaffrey
    • 1
  • Paul A. D’Orazio
    • 1
  • Richard W. Mason
    • 1
  • Thomas C. Maley
    • 1
  • Peter G. Edelman
    • 1
  1. 1.Ciba Corning DiagnosticsMedfieldUSA

Personalised recommendations