Biomimetic Approach to the Design of Selective Oxoanion Receptors for Use in Membrane-Based Potentiometric Sensors

  • Richard S. Hutchins
  • Leonidas G. Bachas


The need to selectively recognize and complex ions and molecules is common in many areas of science and industry. Nature’s ability to selectively detect or sense specific compounds in a variety of ways and under many different conditions has long been the source of inspiration in the application and development of recognition-based chemistry. Biofunctional membranes present one such example where polymeric membranes can be designed with a desired function by using or mimicking natural chemical recognition systems. The components found in living organisms that have selective recognition features (i.e., proteins, enzymes, membrane systems, sensory neurons, etc.) have been the subject of much intense study. The rapid, selective, and sensitive response of natural sensory systems that employ recognition chemistry can serve as a model in the development of biosensors. This includes mimicking natural receptors,1 antibiotics,2,3 and even olfactory membranes4 to accomplish desired tasks. One group has successfully immobilized double-helical DNA directly onto an electrode surface and obtained a biosensor that responded selectively to DNA-binding substances (via intercalation) as well as to magnesium ion.5 The applications which await the development of novel biosensors cover a wide range of disciplines, including environmental, medical, industrial, and other venues of research.


Crown Ether Potentiometric Sensor Biomimetic Approach Lipophilic Anion Guanidinium Moiety 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    Tohda, K.; Naganawa, R.; Lin, X. M.; Tange, M.; Umezawa, K.; Odashima, K.; Umezawa, Y.; Furuta, H.; Sessler, J. L. Sens. Actuators B 1993, 13–14, 669–672.CrossRefGoogle Scholar
  2. 2).
    Siswanta, D.; Hisamoto, H.; Tohma, H.; Yamamoto, N.; Suzuki, K. Chem. Lett. 1994, 945–948.Google Scholar
  3. 3).
    Cygan, A.; Luboch, E.; Biernat, J. F. J. Incl. Phenom. 1988, 6, 215–220.CrossRefGoogle Scholar
  4. 4).
    Krull, U. J.; Thompson, M. Trends Anal. Chem. 1985, 4, 90–96.CrossRefGoogle Scholar
  5. 5).
    Maeda, M.; Nakano, K.; Takagi, M. ACS Symp. Ser. 1994, 556, 238–251.CrossRefGoogle Scholar
  6. 6).
    Rechnitz, G. A.Chem. Eng. News 1988, September 5, 24–36.Google Scholar
  7. 7).
    Simon, W. Swiss Pat. 1969, 479870.Google Scholar
  8. 8).
    Simon, W. Pure Appl. Chem. 1971, 25, 811–823.CrossRefGoogle Scholar
  9. 9).
    Covington, A. K.; Kumar, N. Anal. Chim. Acta 1976, 85, 175–178.PubMedCrossRefGoogle Scholar
  10. 10).
    Erne, D.; Stojunac, N.; Ammann, D.; Hofstetter, P.; Pretsch, E.; Simon, W. Helv. Chim. Acta 1980, 63, 2271–2279.CrossRefGoogle Scholar
  11. 11).
    Schindler, J. G.; Schindler, M. M. Fresenius’ Z. Anal. Chem. 1985, 320, 258–260.CrossRefGoogle Scholar
  12. 12).
    Lockhart, J. C. In Inclusion Compounds, Vol. 5; Atwood, J. L., Davies, J. E. D., MacNicol, D. D., Eds.; Oxford University Press: New York, 1991; pp 345–363.Google Scholar
  13. 13).
    Allen, J. R.; Cynkowski, T.; Desai, J.; Bachas, L. G. Electroanalysis 1992, 4, 533–537.CrossRefGoogle Scholar
  14. 14).
    Ohki, A.; Lu, J. P.; Huang, X.; Bartsch, R. A.Anal. Chem. 1994, 66, 4332–4336.CrossRefGoogle Scholar
  15. 15).
    Lindner, E.; Gráf, E.; Niegreisz, Z.; Tóth, K.; Pungor, E.; Buck, R. P. Anal. Chem. 1988, 60, 295–301.CrossRefGoogle Scholar
  16. 16).
    Schulthess, P.; Ammann, D.; Simon, W.; Caderas, C.; Stepánek, R.; Kräutler, B. Helv. Chim. Acta 1984, 67, 1026–1032.CrossRefGoogle Scholar
  17. 17).
    Schulthess, P.; Ammann, D.; Kräutler, B.; Caderas, C.; Stepánek, R.; Simon, W. Anal. Chem. 1985, 57, 1397–1401.CrossRefGoogle Scholar
  18. 18).
    Stepánek, R.; Kräutler, B.; Schulthess, P.; Lindemann, B.; Ammann, D.; Simon, W. Anal. Chim. Acta 1986, 182, 83–90.CrossRefGoogle Scholar
  19. 19).
    Daunert, S.; Witkowski, A.; Bachas, L. G. Prog. Clin. Biol. Res. 1989, 292, 215–225.PubMedGoogle Scholar
  20. 20).
    Florido, A.; Daunert, S.; Bachas, L. G. Electroanalysis 1991, 3, 177–182.CrossRefGoogle Scholar
  21. 21).
    Hofmeister, F. Arch. Exp. Pathol. Pharmakol. 1888, 24, 247–260.CrossRefGoogle Scholar
  22. 22).
    Pratt, J. M. Inorganic Chemistry of VitaminB12; Academic Press: New York, 1972; pp 14–29.Google Scholar
  23. 23).
    Daunert, S.; Bachas, L. G. Anal. Chem. 1989, 61, 499–503.CrossRefGoogle Scholar
  24. 24).
    Ammann, D.; Huser, M.; Krautler, B.; Rusterholz, B.; Schulthess, P.; Lindemann, B.; Halder, E.; Simon, W. Helv. Chim. Acta. 1986, 69, 849–854.CrossRefGoogle Scholar
  25. 25).
    Hodinár, A.; Jyo, A. Chem. Lett. 1988, 993–996.Google Scholar
  26. 26).
    Hodinár, A.; Jyo, A. Anal. Chem. 1989, 61, 1169–1171.CrossRefGoogle Scholar
  27. 27).
    Daunert, S.; Wallace, S.; Florido, A.; Bachas, L. G. Anal. Chem. 1991, 63, 1676–1679.CrossRefGoogle Scholar
  28. 28).
    Brown, D.; Chaniotakis, N.; Lee, I.; Ma, S.; Park, S.; Meyerhoff, M. E. Electroanalysis 1989, 1, 477–484.CrossRefGoogle Scholar
  29. 29).
    Chaniotakis, N. A.; Park, S. B.; Meyerhoff, M. E. Anal. Chem. 1989, 61, 566–570.PubMedCrossRefGoogle Scholar
  30. 30).
    Park, S. B.; Matuszewski, W.; Meyerhoff, M. E.; Liu, Y. H.; Kadish, K. M. Electroanalysis 1991, 3, 909–916.CrossRefGoogle Scholar
  31. 31).
    Li, X; Harrison, D. J. Anal. Chem. 1991, 63, 2168–2174.CrossRefGoogle Scholar
  32. 32).
    Malinowska, E.; Meyerhoff, M. E. Anal. Chim. Acta 1995, 300, 33–43.CrossRefGoogle Scholar
  33. 33).
    Abe, H.; Kokufuta, E. Bull. Chem. Soc. Jpn. 1990, 63, 1360–1364.CrossRefGoogle Scholar
  34. 34).
    Yuan, R.; Chai, Y. Q.; Lin, D.; Gao, D.; Li, J. Z.; Yu, R. Q. Anal. Chem. 1993, 65, 2572–2575.CrossRefGoogle Scholar
  35. 35).
    Yim, H. S.; Kibbey, C. E.; Ma, S. C.; Kliza, D. M.; Liu, D.; Park, S. B.; Torre, C. E.; Meyerhoff, M. E. Biosens. Bioelectron. 1993, 8, 1–38.PubMedCrossRefGoogle Scholar
  36. 36).
    Ma, S. C.; Yang, V. C.; Fu, B.; Meyerhoff, M. E. Anal. Chem. 1993, 65, 2078–2084.PubMedCrossRefGoogle Scholar
  37. 37).
    Schmidtchen, F. P.; Gleich, A.; Schummer, A. Pure Appl. Chem. 1989, 61, 1535–1546.CrossRefGoogle Scholar
  38. 38).
    Luecke, H.; Quiocho, F. A. Nature 1990, 27, 402–406.CrossRefGoogle Scholar
  39. 39).
    Herzberg, O.; Reddy, P.; Sutrina, S.; Saier, M. H. Jr.; Reizer, J.; Kapadia, G. Proc. Natl. Acad. Sci. USA 1992, 89, 2499–2503.PubMedCrossRefGoogle Scholar
  40. 40).
    Chakrabarti, P. J. Mol. Biol. 1993, 234, 463–482.PubMedCrossRefGoogle Scholar
  41. 41).
    Gleich, A.; Schmidtchen, F. P.; Mikulcik, P.; Muller, G. J. Chem. Soc., Chem. Commun. 1990, 55–57.Google Scholar
  42. 42).
    Muller, G.; Riede, J.; Schmidtchen, F. P. Angew. Chem. Int. Ed. Engl. 1988, 27, 1516–1518.CrossRefGoogle Scholar
  43. 43).
    Echavarren, A.; Galán, A.; Lehn, J. M.; de Mendoza, J.In Inclusion Phenom. Mol. Recognit., (Proc. Int. Symp.), 5th; Atwood, J. L., Ed.; Plenum: New York, NY, 1990; pp 119–124.CrossRefGoogle Scholar
  44. 44).
    Schmidtchen, F. P. Chem. Ber. 1980, 113, 2175–2182.CrossRefGoogle Scholar
  45. 45).
    Molina, P.; Alajarín, M.; Vidal, A. J. Org. Chem. 1993, 58, 1687–1695.CrossRefGoogle Scholar
  46. 46).
    Hutchins, R. S.; Molina, P.; Alajarín, M.; Vidal, A.; Bachas, L. G. Anal. Chem. 1994, 66, 3188–3192.CrossRefGoogle Scholar
  47. 47).
    Hutchins, R. S.; Bansal, P.; Molina, P.; Alajarín, M.; Vidal, A.; Bachas, L. G. manuscript in preparation.Google Scholar
  48. 48).
    Shurmer, H. V.; Gardner, J. W. Sens. Actuators, B 1992, B8, 1–11.CrossRefGoogle Scholar
  49. 49).
    Otto, M.; Thomas, J. D. R. Anal. Chem. 1985, 57, 2647–2651.CrossRefGoogle Scholar
  50. 50).
    Goldberg, H. D.; Brown, R. B.; Liu, D. P.; Meyerhoff, M. E. Sens. Actuators, B 1994, B21, 171–183.CrossRefGoogle Scholar
  51. 51).
    Lindner, E.; Cosofret, V. V.; Ufer, S.; Buck, R. P.; Kusy, R. P.; Ash, R. B.; Nagle, H. T. J. Chem. Soc., Faraday Trans. 1993, 89, 361–367.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Richard S. Hutchins
    • 1
  • Leonidas G. Bachas
    • 1
  1. 1.Department of Chemistry and Center of Membrane SciencesUniversity of KentuckyLexingtonUSA

Personalised recommendations