Characterization of Liposomal Systems Entrapping Boron-Containing Compounds in Response to pH Gradients

  • Angela M. Moraes
  • Maria Helena A. Santana
  • Ruben G. Carbonell


Boron neutron capture therapy (BNCT) is based on the nuclear reaction that occurs when a stable isotope, Boron-10, is irradiated with low-energy thermal neutrons to yield ionizing Helium and Lithium ions that are highly damaging and usually lethal to cells. The successful treatment of cancer by BNCT requires the selective concentration of Boron-10 within malignant tumors. Liposomes have been used as drug delivery vehicles for in vivo application, including several anticancer agents. The ability of two Boron-containing compounds, 1-p-borono-phenylalanine (BPA) HCl and o-carboranylpropylamine chloride (CPA) to accumulate within unilamellar liposomes passively and in response to a transmembrane pH gradient are compared. Characterization of the obtained systems is performed for conventional and polyethylene glycol (PEG)-modified (stealth) liposomes, in terms of lipid and drug contents, vesicle size and stability. The results indicate that BPA can be successfully encapsulated in conventional liposomes by passive loading, while the active loading approach is more suitable for the entrapment of CPA.


Active Loading Boron Neutron Capture Therapy Trapping Efficiency Boron Compound Detergent Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barth, R. F.; Soloway, A. H. and Fairchild, R. G. — Perspectives in cancer research: boron neutron capture therapy of cancer — Cancer Research, vol. 50, pp. 1061–1070, 1990.PubMedGoogle Scholar
  2. Barth, R. F.; Soloway, A. H.; Fairchild, R. G. and Brugger, R. M. — Boron neutron capture therapy for cancer: realities and prospects — Cancer, vol. 70, No. 12, pp. 2995–3007, 1992.PubMedCrossRefGoogle Scholar
  3. Chen Jr., P. S.; Toribara, T. Y. and Warner, H. — Microdetermination of phosphorus — Analytical Chem., vol. 28, No. 11, pp. 1756–1758, 1956.CrossRefGoogle Scholar
  4. Coderre, J. A.; Glass, J. D.; Fairchild, R. G.; Micca, P. L.; Fand, I. and Joel, D. D. — Selective delivery of boron by the melanin precursor analogue p–boronophenylalanine to tumors other than melanoma — Cancer Research, vol. 50, pp. 138–141, 1990.PubMedGoogle Scholar
  5. Edwards, K.; Almgren, M.; Bellare, J. and Brown, W. — Effects of Triton X-100 on sonicated lecithin vesicles — Langmuir, vol. 5, pp. 473–478, 1989.CrossRefGoogle Scholar
  6. Edwards, K. and Almgren, M. — Kinetics of surfactant–induced leakage and growth of unilamellar vesicles – Progress in Colloid & Polymer Science, vol. 82, pp. 190–197, 1990.CrossRefGoogle Scholar
  7. Feakes, D. A.; Shelly, K.; Knobler, C. B. and Hawthorne, F. — Na3[B20H17NH3]: Synthesis and liposomal delivery to murine tumors — Proc. Natl. Acad. Sci. USA, vol. 91, pp. 3029–3033, 1994.PubMedCrossRefGoogle Scholar
  8. Feakes, D. A.; Shelly, K. and Hawthorne, M. F. — Selective boron delivery to murine tumors by lipophilic species incorporated in the membranes of unilamellar liposomes — Proc. Natl. Acad. Sci. USA, vol. 92, pp. 1367–1370, 1995.PubMedCrossRefGoogle Scholar
  9. Ford, N. C. Jr. — In Dynamic Light Scattering: Applications of Photon Correlation Spectroscopy — R. Pecora (Ed.), Plenum Press, New York, pp.7–57, 1985.CrossRefGoogle Scholar
  10. Fukuda, H.; Ichihashi, M. and Mishima, Y. — [Neutron capture therapy for cancer] — Gan To Kagaku Ryoho, vol. 21, No. 3, pp. 374–378, 1994.PubMedGoogle Scholar
  11. Hawthorne, F. M. — The role of chemistry in the development of boron neutron capture therapy of cancer —Angewandte Chemie (International Edition in English), vol. 32, pp. 950–984, 1993.CrossRefGoogle Scholar
  12. Lasic, D. and Martin, F. (Editors) — Stealth Liposomes, CRC Press, Inc., Boca Raton, 1995.Google Scholar
  13. MacDonald, R. C.; MacDonald, R. I.; Menco, B. P.M.; Takeshita, K.; Subbarao, N. K. and Hu, L. — Small-volume extrusion apparatus for preparation of large, unilamellar vesicles — Biochimica et Biophysica Acta, vol. 1061, pp. 297–303, 1991.PubMedCrossRefGoogle Scholar
  14. Madden, T. D.; Harrigan, P. R.; Tai, L. C. L.; Bally, M. B.; Mayer, L. D.; Redelmeier, T. E.; Loughrey, H. C.; Tilcock, C. P. S.; Reinish, L. W. and Cullis, P. R. — The accumulation of drugs within large unilamellar vesicles exhibiting a proton gradient: a survey — Chemistry and Physics of Lipids, vol. 53, pp. 37–46, 1990.PubMedCrossRefGoogle Scholar
  15. Matalka, K. Z.; Bailey, M. Q.; Barth, R. F.; Staubus, A. E.; Soloway, A H.; Moeschberger, M. L.; Coderre, J. A. and Rofstad, E. K. — Boron neutron capture therapy of intracerebral melanoma using boronophenylalanine as a capture agent — Cancer Research, vol. 53, pp. 3308–3313, 1993.PubMedGoogle Scholar
  16. Matalka, K. Z.; Barth, R. F.; Staubus, A. E.; Moeschberger, M. L. and Coderre, J. A. — Neutron capture therapy of a rat glioma using boronophenylalanine as a capture agent — Radiation Research, vol. 137, pp. 44–51, 1994.PubMedCrossRefGoogle Scholar
  17. Mayer, L. D.; Hope, M. J.; Cullis, P. R. and Janoff, A. S. — Solute distributions and trapping efficiencies observed in freeze-thawed multilamellar vesicles — Biochimica et Biophysica Acta, vol. 817, pp. 193–196, 1985.PubMedCrossRefGoogle Scholar
  18. Mayer, L. D.; Bally, M. B.; Hope, M. J. and Cullis, P. R. — Techniques for encapsulating bioactive agents into liposomes — Chemistry and Physics of Lipids, vol. 40, pp. 333– 345, 1986.PubMedCrossRefGoogle Scholar
  19. Mayer, L. D.; Tai, L. C. L.; Bally, M. B.; Mitilenes, G. N.; Ginsberg, R. S. and Cullis, P. R. — Characterization of liposomal systems containing doxorubicin entrapped in response to pH gradients — Biochimica et Biophysica Acta, vol. 1025, pp. 143–151, 1990.PubMedCrossRefGoogle Scholar
  20. Mayer, L. D.; Madden, T. D.; Bally, M. B. and Cullis, P. R. — pH Gradient-mediated drug entrapment in liposomes, in Liposome Technology, edited by Gregoriadis, G., 2nd edition, vol.II, pp. 27–44, CRC Press Inc., Boca Raton, 1993.Google Scholar
  21. New, R. R. C. (Editor) — Liposomes: A Practical Approach, Oxford University Press, Oxford, 1990.Google Scholar
  22. Nichols, J. W. and Deamer, D. W. — Catecholamine uptake and concentration by liposomes maintaining pH gradients — Biochimica et Biophysica Acta, vol. 455, pp. 269–271, 1976.PubMedCrossRefGoogle Scholar
  23. Nilsson, K.; Almgren, M.; Brown, W. and Jansson, M. — Effects of a non-ionic surfactant on small unilamellar lecithin vesicles — Mol. Cryst. Liq. Cryst., vol. 152, pp. 181–203, 1987.Google Scholar
  24. Saris, S. C.; Solares, G. R.; Wazer, D. E.; Cano, G.; Kerley, S. E.; Joyce, M. A.; Adelman, L. S.; Harling, O. K.; Madoc-Jones, H. and Zamenhof, R. G. — Cancer Research, vol. 52, pp. 4672–4677, 1992.PubMedGoogle Scholar
  25. Shelly, K.; Feakes, D. A.; Hawthorne, M. F.; Schmidt, P. G.; Krisch, T. A and Bauer, W. F. — Model studies directed toward the boron neutron–capture therapy of cancer: boron delivery to murine tumors with liposomes — Proc. Natl. Acad. Sci. USA, vol. 89, pp. 9039–9043, 1992.PubMedCrossRefGoogle Scholar
  26. Szoka, F. and Papahadjopoulos, D. — Comparative properties and methods of preparation of lipid vesicles (liposomes) — Ann. Rev. Biophys. Bioeng., vol. 9, pp. 467–508, 1980.CrossRefGoogle Scholar
  27. Steffen, D. M. — The effect of cholesterol, phosphatidylethanolamine and immobilized horseradish peroxidase on the stability of phosphatidylcholine vesicles when treated with nonionic surfactant — Master Thesis, Department of Chemical Engineering, NCSU, Raleigh, NC, 1993.Google Scholar
  28. Yanagié, H.; Tomita, T.; Kobayashi, H.; Fujii, Y.; Takahashi, T.; Hasumi, K.; Nariuchi, H. and Sekiguchi, M. — Application of boronated anti–CEA immunoliposome to tumor cell growth inhibition in in vitro boron neutron capture therapy model — The British Journal of Cancer, vol. 63, No. 4, pp. 522–526, 1991.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Angela M. Moraes
    • 1
  • Maria Helena A. Santana
    • 1
  • Ruben G. Carbonell
    • 2
  1. 1.Dept. Proc. Químicos/FEQ/StateUniversity of CampinasCampinasBrazil
  2. 2.Dept. of Chemical EngineeringNorth Carolina State UniversityRaleighUSA

Personalised recommendations