Skip to main content

Molecular Recognition of Photoimprinted Surfaces

  • Chapter
Biofunctional Membranes

Abstract

The overall goal of this work was to prepare synthetic receptor matrices that combined the Properties of antibodies (specificity and selectivity of recognition) with those of synthetic polymeric membranes (stability, durability, solvent resistance, etc.). The approach taken involved imprinting molecular recognition complexes onto membrane pore surfaces using photochemistry. Fluor-containing membranes possessing photo-imprinted surfaces can be used in competitive binding scintillation proximity assays. This would overcome the two major limitations of radioimmunoassay, i.e., antibodies would be replaced by stable synthetic receptors, and the bound radioligand would not need to be separated from the unbound radioligand because only the bound radioligand would be in close enough proximity to the fluors in the membrane to induce scintillations. Furthermore, this would permit detection of beta-emitting radioligands without using a scintillation cocktail. This would have a positive economic and environmental impact by greatly reducing the generation of “mixed” (radioactive and organic) waste, the disposal of which is difficult and expensive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M Newcomb, JL Toner, RC Helgeson and DL Cram. Host-Guest Complexation. Chiral recognition in transport as a molecular basis for a catalytic resolving machine. J Am Chem Soc 101:4941(1979).

    Article  CAS  Google Scholar 

  2. K Johnson, RK Allemann, H Widmer and SA Benner. Synthesis, structure and activity of artificial rationally designed catalytic polypeptides. Nature 365:530 (1993).

    Article  Google Scholar 

  3. SD Erickson, JA Simon and WC Still. Practical synthesis of a highly enantioselctive receptor for peptides. J Org Chem 58:1305 (1993).

    Article  CAS  Google Scholar 

  4. CT Seto, JP Mathias and GM Whitesides. Molecular self-assembly through hydrogen bonding: aggregation of five molecules to form a discrete supramolecular structure. J Am Chem Soc 115:1321 (1993).

    Article  CAS  Google Scholar 

  5. MM Conn, G Deslongchamps, J de Mendoza and J Rebek. Convergent functional groups. 13. fligh-affinity complexation of adenosine derivatives within induced binding pockets. JAm Chem Soc 115:3548 (1993).

    Article  CAS  Google Scholar 

  6. R Curti and U Colombo. Chromatography of stereoisomers with “tailor made” compounds. J Am Chem Soc 74:3961 (1952).

    Article  CAS  Google Scholar 

  7. G Wulff, A Sarhan and K Zabrocki. Enzyme-analogue built polymers and their use for the resolution of racemates. Tetrahedron Lett No. 44, 4329 (1973).

    Article  Google Scholar 

  8. G Wulff, W Vesper, R Grobe-Einsler and A Sarhan. Enzyme-analogue built polymers: On the synthesis of polymers containing chiral activities and their use for the resolution of racemates. Makromol Chem 178:2799 (1977).

    Article  CAS  Google Scholar 

  9. G Wulff, B Heide and G Helfmeier. Molecular recognition through the exact placement of functional groups on rigid matrices via a template approach. J Am Chem Soc 108:1089 (1986).

    Article  CAS  Google Scholar 

  10. J Damen and DC Neckers. Memory of synthesized vinyl polymers for their origins. J Org Chem 45:1328 (1980).

    Article  Google Scholar 

  11. KJ Shea and EA Thompson. Template synthesis of macromolecules. Selective functionalization of an organic polymer. J Org Chem 43:4253 (1978).

    Article  CAS  Google Scholar 

  12. KJ Shea, EA Thompson, SD Pandey and PS Beauchamp. Template synthesis of macromolecules. Synthesis and chemistry of functionalized macroporous polydivinylbenzene. J Am Chem Soc 102:3149 (1980).

    Article  CAS  Google Scholar 

  13. KJ Shea and TK Dougherty. Molecular recognition on synthetic amorphous surfaces. The influence of functional group positioning on the effectiveness of molecular recognition. JAm Chem Soc 108:1091 (1986).

    Article  CAS  Google Scholar 

  14. KJ Shea and DY Sasaki. On the control of microenvironment shape of functionalized network polymers prepared by template polymerization. J Am Chem Soc 111:3442 (1989).

    Article  CAS  Google Scholar 

  15. R Arshady and K Mosbach. Synthesis of substrate-selective polymers by host-guest polymerization. Makromol Chem 182:687 (1981).

    Article  CAS  Google Scholar 

  16. O Norrlow, MO Mansson and K Mosbach. Improved chromatogrphy: prearranged distances between boronate groups by the molecular imprinting approach. J Chromatog 396:374 (1987).

    Article  Google Scholar 

  17. DJ O’Shannessy, LI Andersson and K Mosbach. Molecular recognition in synthetic polymers. J Mol Recognition 2:1 (1989)

    Article  Google Scholar 

  18. B Ekberg and K Mosbach. Molecular imrpinting: a technique for producing specific separation materials. Tibtech 7:92 (1989).

    Article  CAS  Google Scholar 

  19. LI Andersson, DJ O’Shannessy and K Mosbach. Molecular recognition in synthetic polymers: preparation of chiral stationary phases by molecular imprinting of amino acids. J Chromatog 513:167 (1990).

    Article  CAS  Google Scholar 

  20. LI Andersson and K Mosbach. Enantiomeric resolution on molecularly imprinted polymers prepared with only non-covalent and non-ionic interactions. J Chromatog 516:313 (1990).

    Article  CAS  Google Scholar 

  21. LI Andersson, A Miyabayashi, DJ O’Shannessy and K Mosbach. Enantiomeric resolution of amino acids on molecularly imprinted polymers as monitored by potentiometric measurements. J Chromatog 516:323 (1990).

    Article  CAS  Google Scholar 

  22. L Fischer, R Muller, B Ekberg and K Mosbach. Direct enantioseparation of b-adrebergic blockers using a chiral stationary phase prepared by molecular imprinting. J Am Chem Soc 113:9358 (1991).

    Article  CAS  Google Scholar 

  23. B Sellergren and K Shea. Influence of polymer morphology on the ability of imprinted network polymers to resolve enantiomers. J Chromatog 635:31 (1993).

    Article  CAS  Google Scholar 

  24. J Matsui, T Kato, T Takeuchi, M Suzuki, K Yokoyama, E Tamiya and I Karube. Molecular recognition in continuous polymer rods prepared by a molecular imprinting technique. Analyt Chem 65:2223 (1993).

    Article  CAS  Google Scholar 

  25. DJ O’Shannessy, B Ekberg, LI Andersson and K Mosbach. Recent advances in the preparation and use of molecularly imprinted polymers for enatiomeric resolution of amino acid derivatives. J Chromatog 470: 391 (1989).

    Article  Google Scholar 

  26. A Leonhardt and K Mosbach. Enzyme-mimicking polymers exhibiting specific substrate binding and catalytic functions. React Polymer 6:285 (1987).

    CAS  Google Scholar 

  27. SE Bystrom, A Borje and B Akerman. Selective reduction of steroid 3- and 17-ketones using LiAlH4 activated template polymers. J Am Chem Soc 115:2081 (1993).

    Article  Google Scholar 

  28. M Glad, O Norrlow, B Sellergren, N Siegbahn and K Mosbach. Use of silane monomers for molecular imprinting and enzymes entrapment in polysiloxane-coated porous silica. J Chromatog 347:11 (1985).

    Article  CAS  Google Scholar 

  29. S Mann. Molecular tectonics in biomineralization and biomimetic materials chemistry. Nature 365:499 (1993).

    Article  CAS  Google Scholar 

  30. RK Mansfield. Ph.D. Dissertation, University of Kentucky, 1992.

    Google Scholar 

  31. G Vlatakis, LI Anderson, R Muller and K Mosbach. Drug assay using antibody mimics made by molecular imprinting. Nature 361: 645 (1993).

    Article  PubMed  CAS  Google Scholar 

  32. MJ Swanson, SG Dunkirk, JA Pietig and PE Guire. Use photochemistry to modify membranes. Chemtech 624 (Oct 1992).

    Google Scholar 

  33. H Sigrist, H Guo and B Wegmuller. Light-dependent covalent immobilization of biomolecules on inert surfaces. Bio/Technology 10:1026 (1992).

    Article  PubMed  CAS  Google Scholar 

  34. SG Dunkirk, SL Gregg, LW Duran, JD Monfils, JE Haapala, JA Marcy, DL Clapper, RA Amos and PE Guire. Photochemical coatings for the prevention of bacterial colonization. J Biomaterials Applications 6:131 (1991).

    Article  CAS  Google Scholar 

  35. F Borle, M Sanger and H Sigrist. Planar bilayer membranes from photoactivable phospholipids. Biochim Biophys Acta 106:144 (1991).

    Google Scholar 

  36. RL Potter and BE Haley. Photoaffinity labeling of nucleotide binding sites with 8-azidopurine analogs: Techniques and applications. Meth Enzymol 91:613 (1983)

    Article  PubMed  CAS  Google Scholar 

  37. K Rajagopalan, AJ Chavan, BE Haley and DS Watt. Synthesis and application of bidentate photoaffinity cross-lining reagents. J Biol Chem 268:14230 (1993).

    PubMed  CAS  Google Scholar 

  38. HE Hart and EB Greenwald. A unique radioassay using scintillation proximity beads. Mol Immunol 16:265 (1979).

    Article  PubMed  CAS  Google Scholar 

  39. S Udenfriend, LG Gerber, L Brink and S Spector. Scintillation proximity radioimmunoassay utilizing I-125 labelled ligands. Proc Natl Acad Sci USA 82:8672 (1985).

    Article  PubMed  CAS  Google Scholar 

  40. S Udenfriend, L Gerber and N Nelson. Scintillation proximity assay: A sensitive and continuous isotopic method for monitoring ligand/receptor and antigen/antibody interactions. Analyt Bichem 161:494 (1987).

    Article  CAS  Google Scholar 

  41. N Nelson. A novel method for detection of receptors and membrane proteins by scintillation proximity assay. Analyt Biochem 165:287 (1987).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jay, M., Mattingly, C.D. (1996). Molecular Recognition of Photoimprinted Surfaces. In: Butterfield, D.A. (eds) Biofunctional Membranes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2521-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2521-6_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3254-9

  • Online ISBN: 978-1-4757-2521-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics