Spatial Resolution and Minimum Detectability

  • David B. Williams
  • C. Barry Carter

Abstract

Often, when you do X-ray microanalysis of thin foils, you are seeking information that is close to the limits of spatial resolution. Before you carry out any such microanalysis you need to understand the various controlling factors, which we explain in this chapter. Minimizing your specimen thickness is perhaps the most critical aspect of obtaining the best spatial resolution, so we summarize the various ways you can measure your foil thickness at the analysis point.

Keywords

Thin Foil Specimen Thickness Foil Thickness Good Spatial Resolution Thin Specimen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

General References

  1. Berriman, J., Bryan, R.K., Freeman, R., and Leonard, K.R. (1984) Ultra-microscopy 13, 351.CrossRefGoogle Scholar
  2. Goldstein, J. I., Williams, D.B., and Cliff, G. (1986) in Principles of Analytical Electron Microscopy (Eds. D.C. Joy, A.D. Romig Jr., and J.I. Goldstein), p. 155, Plenum Press, New York.Google Scholar
  3. Scott, V.D. and Love, G. (1987) Mat. Sci. Tech. 3, 600.CrossRefGoogle Scholar

Specific References

  1. Currie, L.A. (1968) Anal. Chem. 40, 586.CrossRefGoogle Scholar
  2. Goldstein J.I., Costley, J.L., Lorimer, G.W., and Reed, S.J.B. (1977) Scanning Electron Microscopy, 1 (Ed. O. Johari), p. 315, HMI, Chicago, Illinois.Google Scholar
  3. Heinrich, K.F.J., Newbury, D.E., and Yakowitz, H., Eds. (1975) NBS Special Publication 460, U.S. Dept. of Commerce, Washington, D.C.Google Scholar
  4. Horita, Z., Ichitani, K., Sano, T., and Nemoto, M. (1989) Phil. Mag. A59, 939.CrossRefGoogle Scholar
  5. Joy, D.C. (1995) Monte Carlo Modeling for Electron Microscopy and Microanalysis, Oxford University Press, New York.Google Scholar
  6. Lorimer, G.W., Cliff, G., and Clark, J.N. (1976) in Developments in Electron Microscopy and Analysis (Ed. J.A. Venables), p. 153, Academic Press, London.Google Scholar
  7. Lyman, C.E. (1987) in Physical Aspects of Microscopic Characterization of Materials (Eds. J. Kirschner, K. Murata, and J.A. Venables), p. 123, Scanning Microscopy International, AMF O’Hare, Illinois.Google Scholar
  8. Lyman, C.E. and Michael, J.R. (1987) in Analytical Electron Microscopy-1987 (Ed. D.C. Joy), p. 231, San Francisco Press, San Francisco, California.Google Scholar
  9. Lyman, C.E., Goldstein, J.I., Williams, D.B., Ackland, D.W., Von Harrach, S., Nicholls, A.W., and Statham, P.J. (1994) J. Microsc. 176, 85.CrossRefGoogle Scholar
  10. Michael, J.R., Williams, D.B., Klein, C.F., and Ayer, R. (1990) J. Microsc. 160, 41.CrossRefGoogle Scholar
  11. Porter, D.A. and Westengen, H. (1981) in Quantitative Microanalysis with High Spatial Resolution (Eds. M.H. Jacobs, G.W. Lorimer, and P. Doig), p. 94, The Metals Society, London.Google Scholar
  12. Reed, S.J.B. (1982) Ultramicroscopy 7, 405.CrossRefGoogle Scholar
  13. Williams, D.B., Michael, J.R., Goldstein, J.I., and Romig, A.D. Jr. (1992) Ultramicroscopy 47, 121.CrossRefGoogle Scholar
  14. Zemyan, S.M. (1995) Ph.D. dissertation, Lehigh University.Google Scholar
  15. Zemyan, S.M. and Williams, D.B. (1994) J. Microsc. 174, 1.CrossRefGoogle Scholar
  16. Ziebold, T.O. (1967) Anal. Chem. 39, 858.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • David B. Williams
    • 1
  • C. Barry Carter
    • 2
  1. 1.Lehigh UniversityBethlehemUSA
  2. 2.University of MinnesotaMinneapolisUSA

Personalised recommendations