Phase-Contrast Images

  • David B. Williams
  • C. Barry Carter


We see phase contrast any time we have more than one beam contributing to the image. In fact, whenever we say “fringes,” we are essentially referring to a phase-contrast phenomenon. Although we often distinguish phase and diffraction contrast, this distinction is generally artificial. For example, as we saw in Chapters 23 and 24, even thickness fringes and stacking-fault fringes are phase-contrast images although we usually think of them as two-beam diffraction-contrast images.


Lattice Fringe Fringe Spacing Objective Aperture Moire Fringe Dark Fringe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Specific References

  1. Boersch, H., Hamisch, H., Wohlleben, D., and Grohmann, K. (1960) Z. Phys. 167, 72.Google Scholar
  2. Bursill, L.A., Barry, J.C., and Hudson, P.R.W. (1978) Phil. Mag. A37, 789.CrossRefGoogle Scholar
  3. Carter, C.B., Elgat, Z., and Shaw, T.M. (1987) Phil. Mag. 55, 1.Google Scholar
  4. Clarke, D.R. (1979) Ultramicroscopy 4, 33.CrossRefGoogle Scholar
  5. Fukushima, K., Kawakatzu, H., and Fukami, A. (1974) J. Phys. D7, 257.Google Scholar
  6. Heavens, O.S. and Ditchburn, R.W. (1991) Insight into Optics, p. 73, John Wiley and Sons, New York.Google Scholar
  7. Hetherington, C.J.D. and Dahmen, U. (1992) Scanning Microscopy Supplement 6, p. 405, Scanning Microscopy International, AMF O’Hare, Illinois.Google Scholar
  8. Hirsch, P.B. Howie, A., Nicholson, R.B., Pashley, D.W., and Whelan, M.J. (1977) Electron Microscopy of Thin Crystals,2nd edition, Krieger, Huntington, New York.Google Scholar
  9. Horiuchi, S. (1994) Fundamentals of High-Resolution Transmission Electron Microscopy, North-Holland, AmsterdamGoogle Scholar
  10. Krivanek, O.L. and Rez, P. (1980) Proc. 38th Ann. EMSA Meeting (Ed. G.W. Bailey), p. 170, Claitors, Baton Rouge, Louisiana.Google Scholar
  11. Minter, J.W. (1956) Proc. Roy. Soc. (London) A236 119.Google Scholar
  12. Ness, J.N., Stobbs, W.M., and Page, T.F. (1986) Phil. Mag. 54, 679.CrossRefGoogle Scholar
  13. Norton, M.G. and Carter, C.B. (1995) J. Mater. Sci. 30, 381.CrossRefGoogle Scholar
  14. Rasmussen, D.R. and Carter, C.B. (1990) Ultramicroscopy 32, 337.CrossRefGoogle Scholar
  15. Rasmussen, D.R., Simpson, Y.K., Kilaas, R., and Carter, C.B. (1989) Ulramicroscopy 30, 52.CrossRefGoogle Scholar
  16. Ross, F.M. and Stobbs, W.M. (199la) Phil. Mag. A63 1.Google Scholar
  17. Ross, F.M. and Stobbs, W.M. (199 lb) Phil. Mag. A63 37.Google Scholar
  18. Rühle, M. and Sass, S.L. (1984) Phil. Mag. A49, 759.CrossRefGoogle Scholar
  19. Rühle, M. and Wilkens, M. (1975) Crystal Lattice Defects 6, 129.Google Scholar
  20. Simpson, Y.K., Carter, C.B., Morrissey, K.J., Angelini, P., and Bentley, J. (1986) J. Mater. Sci. 21, 2689.Google Scholar
  21. Tafto, J., Jones, R.H., and Heald, S.M. (1986) J. Appl. Phys. 60, 4316.CrossRefGoogle Scholar
  22. Vincent, R. (1969) Phil. Mag. 19, 1127.CrossRefGoogle Scholar
  23. Wilkens, M. (1975) in Electron Microscopy in Materials Science, II (Eds. U. Valdrè and E. Ruedl), p. 647, CEC, Brussels.Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • David B. Williams
    • 1
  • C. Barry Carter
    • 2
  1. 1.Lehigh UniversityBethlehemUSA
  2. 2.University of MinnesotaMinneapolisUSA

Personalised recommendations