Skip to main content

Abstract

β and γ turns have been recognized as forming an important group of regular or ordered secondary structures of proteins. β turns are sites where the polypeptide chain reverses its overall direction. Using a hard-sphere model-building technique, Venkatachalam (1968) explored favorable H-bonded conformations of the three consecutive amide units of β turns (see Chou and Fasman, 1977, and references therein). The x-ray structural analysis of an increasing number of proteins (Richardson, 1981; Kabsch and Sander, 1983) has revealed that β turns are common in proteins, accounting for 25–30% of the residues of the total molecule. Lewis et al. (1973) found that about one-fourth of β turns do not possess the H-bond stipulated by Venkatachalam.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 209.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 269.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdel-Rahman, S., and Hattaba, A., 1988, Conformation and biologic studies of synthesized Trp4Met5 enkephalin N-protected with 3,5-dimethoxy-alpha, alpha-dimethyl-benzoylcarbonyl group, Pharmazie 43: 116–117.

    PubMed  CAS  Google Scholar 

  • Agris, P. F., Guenther, R. H., Sierzputowska-Gracz, H., Easter, L., Smith, W., and Hardin, C. C., 1992, Solution structure of a synthetic peptide corresponding to a receptor binding region of FSH (hFSHbeta 33–53), J. Protein Chem. 11: 495–507.

    Article  PubMed  CAS  Google Scholar 

  • Ananthanarayanan, V. S., and Cameron, I. S., 1988, Proline-containing beta-turns. IV. Crystal and solution conformations of tert.-butyloxycarbonyl-L-prolyl-o-alanine and tert.-butyloxycarbonyl-Lprolyl-o-alanyl-L-alanine, Int. J. Peptide Protein Res. 31: 399–411.

    Article  CAS  Google Scholar 

  • Ananthanarayanan, V. S., Saint-Jean, A., and Jiang, P., 1992, Conformation of a synthetic hexapeptide substrate of collagen lysyl hydroxylase, Arch. Biochem. Biophys. 298: 21–28.

    Article  PubMed  CAS  Google Scholar 

  • Ananthanarayanan, V. S., Saint-Jean, A., Cheesman, B. V., Hughes, D. W., and Bain, A. D., 1994, Conformational studies on calcium binding by tBoc-Leu-Pro-Tyr-Ala-NHCH3, a tyrosine kinase substrate, in a nonpolar solvent, J. Biomol. Struct. Dyn. 11: 509–528.

    Article  Google Scholar 

  • Aoyagi, H., Lee, S., Kanmera, T., Mihara, H., and Kato, T., 1987, Interaction of synthetic fragments of the extension peptide of cytochrome P-150(SCC) precursor with phospholipid bilayer, J. Biochem. 102: 813–820.

    PubMed  CAS  Google Scholar 

  • Arad, O., and Goodman, M., 1990, Depsipeptide analogues of elastin repeating sequences: Conformational analysis, Biopolymers 29: 1652–1668.

    PubMed  CAS  Google Scholar 

  • Atkinson, R. A., and Pelton, J. T., 1992, Conformational study of cyclo[D-Trp-D-Asp-Pro-D-Val-Leu], an endothelin-A receptor-selective antagonist, FEBS Lett. 296: 1–6.

    Article  PubMed  CAS  Google Scholar 

  • Atreya, P. L., and Ananthanarayanan, V. S., 1991, Interaction of prolyl 4-hydroxylase with synthetic peptide substrates. A conformational model for collagen proline hydroxylation, J. Biol. Chem. 266: 2852–2858.

    PubMed  CAS  Google Scholar 

  • Aubry, A., and Marraud, M., 1985, Interactions squelette-chaîne latérale dans les peptides. III. Structure de pivaloyl-L-prolyl-N-méthyl-L-thréoninamide, C15H27N3O4, Acta Crystallogr. C41: 65–67.

    Google Scholar 

  • Aubry, A., Ghermani, N., and Marraud, M., 1984, Backbone side chain interactions in peptides, Int. J. Peptide Protein Res. 23: 113–122.

    Article  CAS  Google Scholar 

  • Aubry, A., Cung, M. T., and Marraud, M., 1985, 31- and (3II-turn conformations in model dipeptides with the Pro-Xaa sequences, J. Am. Chem. Soc. 107: 7640–7647.

    Google Scholar 

  • Azzena, U., and Luisi, P. L., 1986, Models of thioredoxin hairpin structures: Conformational properties of 13-turn containing sequences, Biopolymers 25: 555–570.

    Article  PubMed  CAS  Google Scholar 

  • Ball, J. B., Andrews, P. R., Alewood, P. F., and Hughes, R. A., 1990, A one-variable topographical descriptor for the p-turns of peptides and proteins, FEBS Leu. 273: 15–18.

    Article  CAS  Google Scholar 

  • Bandekar, J., 1992, Amide modes and protein conformation, Biochim. Biophys. Acta 1120: 123–143.

    Google Scholar 

  • Bandekar, J., Evans, D. J., Krimm, S., Leach, S. J., Lee, S., Mcquie, J. R., Minasian, E., Nemethy, G., Pottle, M. S., Scheraga, H. A., Stimson, E. R., and Woody, R. W., 1982, Conformations of cyclo(Lalanyl-L-alanyl-e-aminocapryl) and of cyclo(L-alanyl-D-alanyl-c-aminocapryl) cyclised dipeptide models for specific types of p-bends, Int. J. Peptide Protein Res. 19: 187–205.

    Google Scholar 

  • Barlow, A., Gounarides, J. S., Naider, F., and Diem, M., 1993, Infrared vibrational CD of polypeptides containing beta-turns—cyclic and linear analogs of yeast alpha-factor, Biophys. J. 64: A377.

    Google Scholar 

  • Blanco, F. J., Jimenez, M. A., Rico, M., Santoro, J., Herranz, J., and Nieto, J. L., 1991, Tendamistat (12–26) fragment. NMR characterization of isolated beta-turn folding intermediates, Eur. J. Biochem. 200: 345–351.

    Article  PubMed  CAS  Google Scholar 

  • Bobba, A., Cavatorta, P., Attimonelli, M., Ricco, P., Masotti, L., and Quagliariello, E., 1990, Estimation of protein secondary structure from circular dichroism spectra: A critical examination of the CONTIN program, Protein Seq. Data Anal. 3: 7–10.

    PubMed  CAS  Google Scholar 

  • Bohm, G., Muhr, R., and Jaenicke, R., 1992, Quantitative anlaysis of protein far UV circular dichroism spectra by neural networks, Protein Eng. 5: 191–195.

    Article  PubMed  CAS  Google Scholar 

  • Bolotina, J. A., Chekhov, V. O., Lugauskas, V. Y., Finkelstein, A. V., and Ptitsyn, O. B., 1980a, Determination of protein secondary structure from circular dichroism spectra I. Protein derived basic spectra of circular dichroism for a-, 13- and irregular structures, Mol. Biol. 14: 891–901.

    CAS  Google Scholar 

  • Bolotina, J. A., Chekhov, V. O., Lugauskas, V. Y., and Ptitsyn, O. B., 1980b, Determination of protein secondary structure from circular dichroism spectra II. Protein-derived basic spectra of circular dichroism from 13-bends, Mol. Biol. 14: 902–909.

    CAS  Google Scholar 

  • Bolotina, J. A., Chekov, V. O., Lugauskas, V. Y., and Ptitsyn, O. B., 1981, Determination of protein secondary structure from circular dichroism spectra III. Protein-derived basic spectra of circular dichroism for antiparallel and parallel 13-structures, Mol. Biol. 15: 167–175.

    CAS  Google Scholar 

  • Boussard, G., Marraud, M., and Aubry, A., 1986, Backbone–side chain interactions in peptides, Int. J. Peptide Protein Res. 28: 508–517.

    Article  CAS  Google Scholar 

  • Brahmachari, S. K., Bhatnagar, R. S., and Ananthanarayanan, V. S., 1982, Proline-containing β-turns in peptides and proteins. II. Physiochemical studies on tripeptides with the Pro-Gly sequence, Biopolymers 21: 1107–1125.

    Article  CAS  Google Scholar 

  • Brahms, S., and Brahms, J., 1980, Determination of protein secondary structure in solution by vacuum ultraviolet circular dichroism, J. Mol. Biol. 138: 149–178.

    Article  PubMed  CAS  Google Scholar 

  • Brahms, S., Brahms, J., Spach, G., and Brack, A., 1977, Identification of 13,β-turns and unordered conformations in polypeptide chains by vacuum ultraviolent circular dichroism, Proc. Natl. Acad. Sci. USA 74: 3208–3212.

    Article  PubMed  CAS  Google Scholar 

  • Brakch, N., Rholam, M., Boussetta, H., and Cohen, P., 1993a, Role of beta-turn in proteolytic processing of peptide hormone precursors at dibasic sites, Biochemistry 32: 4925–4930.

    Article  PubMed  CAS  Google Scholar 

  • Brakch, N., Boileau, G., Simonetti, M., Nault, C., Joseph-Bravo, P., Rholam, M., and Cohen, P., 1993b, Prosomatostatin processing in Neuro2A cells. Role of beta-turn structure in the vicinity of the Arg-Lys cleavage site, Eur. J. Biochem. 216: 39–47.

    Article  PubMed  CAS  Google Scholar 

  • Braun, W., 1987, Distance geometry and related methods for protein structure determination from NMR data, Q. Rev. Biophys. 19: 115–157.

    Article  PubMed  CAS  Google Scholar 

  • Breese, K., Friedrich, T., Andersen, T. T., Smith, T. F., and Figge, J., 1991, Structural characterization of a 14-residue peptide ligand of the retinoblastoma protein: Comparison with a nonbinding analog, Peptide Res. 4: 220–226.

    CAS  Google Scholar 

  • Brooks, B. B., Bruccelori, R. E., Olafson, B. D., States, D. J., Swaminathan, S., and Karplus, M., 1983, CHARM: A program for macromolecular energy minimization and dynamics calculations, J. Comp. Chem. 4: 187.

    Article  CAS  Google Scholar 

  • Bruch, M. D., Rizo, J., and Gierasch, L. M., 1992, Impact of a micellar environment on the conformations of two cyclic pentapeptides, Biopolymers 32: 1741–1754.

    Article  PubMed  CAS  Google Scholar 

  • Burke, C., Mayo, K. H., Skubitz, A. P., and Furcht, L. T., 1991,’H NMR and CD secondary structure analysis of cell adhesion promoting peptide F-9 from laminin, J. Biol. Chem. 266: 19407–19412.

    Google Scholar 

  • Burton, J., Wood, S. G., Pedyczak, A., and Siemion, I. Z., 1989, Conformational preferences of sequential fragments of the hinge region of human IgAl immunoglobulin molecule II, Biophys. Chem. 33: 39–45.

    Article  PubMed  CAS  Google Scholar 

  • Byler, D. M., and Susi, H., 1986, Examination of the secondary structure of proteins by deconvolved FTIR spectra, Biopolymers 25: 469–487.

    Article  PubMed  CAS  Google Scholar 

  • Bystrov, V. F., Portnova, S. L., Tsetlin, V. I., Ivanov, V. T., and Ovchinnikov, Y. A., 1969, Conformational studies of peptide systems. The rotational states of the NH-CH fragment of alanine dipeptides by nuclear magnetic resonance, Tetrahedron 25: 493–515.

    Article  PubMed  CAS  Google Scholar 

  • Cann, J. R., London, R. E., Unkefer, C. J., Vavrek, R. J., and Stewart, J. M., 1987, CD-n.m.r. study of the solution conformation of bradykinin analogs containing alpha-aminoisobutyric acids, Int. J. Peptide Protein Res. 29: 486–496.

    Google Scholar 

  • Carbone, F. R., and Leach, S. J., 1985, Studies of repeating synthetic peptides designed to adopt a cross 3-conformation, Int. J. Peptide Protein Res. 26: 498–508.

    Article  CAS  Google Scholar 

  • Cavatorta, P., Sartor, G., Neyroz, P., Farruggia, G., Franzoni, L., and Szabo, A. G, 1991, Fluorescence and CD studies on the conformation of the gastrin releasing peptide in solution and in the presence of model membranes, Biopolymers 31: 653–661.

    Article  PubMed  CAS  Google Scholar 

  • Cerrini, S., Gavuzzo, E., Lucente, G., Luisi, G., Pinnen, F., and Radics, L., 1991, Ten membered cyclopeptides III. Synthesis and conformation of cyclo(Me- βAla-Phe-Pro) and cyclo(Me βAla-PheD-Pro), Int. J. Peptide Protein Res. 38: 289.

    Article  CAS  Google Scholar 

  • Chandrasekhar, K., Profy, A. T., and Dyson, H. J., 1991, Solution conformational preferences of immunogenic peptides derived from the principal neutralizing determinant of the HIV-1 envelope glycoprotein gp120, Biochemistry 30: 9187–9194.

    Article  PubMed  CAS  Google Scholar 

  • Chang, C. T., Wu, C. S. C., and Yang, J. T., 1978, Circular dichroic analysis of protein conformation; inclusion of the (3-turns, Anal. Biochem. 91: 13–31.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Y.-H., and Yang, J. T., 1971, New approach to the calculation of secondary structures of globular proteins by optical rotatory dispersion and circular dichroism, Biochem. Biophys. Res. Commun. 44: 1285.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Y.-H., and Yang, J. T., 1972, Determination of the secondary structures of proteins by circular dichroism and optical rotatory dispersion, Biochemistry 11: 4120.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Y.-H., Yang, J. T., and Chau, K. H., 1974, Determination of the helix and (3-form of proteins in aqueous solution by circular dichroism, Biochemistry 13: 3350.

    Article  PubMed  CAS  Google Scholar 

  • Chou, P., and Fasman, G. D., 1977, β-Turns in proteins, J. Mol. Biol. 115: 135–175.

    Google Scholar 

  • Chou, P., and Fasman, G. D., 1978, Empirical predictions of protein conformation, Annu. Rev. Biochem. 47: 251–276.

    Article  PubMed  CAS  Google Scholar 

  • Compton, L. A., and Johnson, W. C., Jr., 1986, Analysis of protein circular dichroism spectra for

    Google Scholar 

  • secondary structure using a simple matrix multiplication, Anal. Biochem. 155:155–167.

    Google Scholar 

  • Condon, E. U., Altar, W., and Eyring, H., 1937, One electron rotatory power, J. Chem. Phys. 5: 753–775.

    Article  CAS  Google Scholar 

  • Crisma, M., Fasman, G. D., Balaram, H., and Balaram, P., 1984, Peptide models for beta-turns. A circular dichroism study, Int. J. Peptide Protein Res. 23: 411–419.

    Article  CAS  Google Scholar 

  • Csâszâr, A., 1992, Conformers of gasous glycine, J. Am. Chem. Soc. 114: 9568–9575.

    Article  Google Scholar 

  • Czugler, M., Sasvâri, K., and Hollósi, M., 1982, Crystal structure of cyclo (GIy-L-Pro-L-Pro-Gly-L-ProL-Pro) tryhydrate. Unusual conformational characteristics of a cyclic hexapeptide, J. Am. Chem. Soc. 104: 4465–4469.

    Article  CAS  Google Scholar 

  • Deber, C. M., Madison, V., and Blout, E. R., 1976, Why cyclic peptides? Complementary approaches to conformations, Acc. Chem. Res. 9: 106–113.

    Article  CAS  Google Scholar 

  • Deibler, G. E., Stone, A. L., and Kies, M. W., 1990, Role of phosphorylation in conformational adoptability of bovine myelin basic-protein, Proteins 7: 32–40.

    Article  PubMed  CAS  Google Scholar 

  • Dentino, A. R., Raj, P. A., Bhandary, K. K., Wilson, M. E., and Levine, M. J., 1991, Role of peptide backbone conformation on biological activity of chemotactic peptides, J. Biol. Chem. 266: 18460–18468.

    PubMed  CAS  Google Scholar 

  • Drakenberg, T., and Forsen, S., 1971, Barrier to internal rotation of amides I. Formamide, J. Chem. Soc. Chem. Commun. 1971: 1404.

    Google Scholar 

  • Drewes, J. A., and Rowlen, K. L., 1993, Evidence for a -y-turn motif in antifreeze glycopeptides, Biophys. J. 65: 985–991.

    Article  PubMed  CAS  Google Scholar 

  • Dyson, H. J., and Wright, P. E., 1991, Defining solution conformations of small linear peptides, Annu. Rev. Biophys. Biochem. Chem. 20: 519–538.

    Article  CAS  Google Scholar 

  • Dyson, H. J., Rance, M., Houghten, R. A., Lerner, R. A., and Wright, P. E., 1988, Folding of immunogenic peptide fragments of proteins in water solution. I, J. Mol. Biol. 201: 161–200.

    Article  PubMed  CAS  Google Scholar 

  • Epps, D. E., Havel, H. A., Sawyer, T. K., Staples, D. J., Chung, N. N., Schiller, P. W., Hartrodt, B., and Barth, A., 1991, Spectroscopic analysis of [Trp3]-β-casomorphin analogs, Int. J. Peptide Protein Res. 37: 257–267.

    Article  CAS  Google Scholar 

  • Erard, M., Lakhdar-Ghazal, F., and Amalric, F., 1990, Repeat peptide motifs which contain beta-turns and modulate DNA condensation in chromatin, Eur. J. Biochem. 191: 19–26.

    Article  PubMed  CAS  Google Scholar 

  • Fabian, H., Szendrei, G. I., Mantsch, H. H., and Ötvös, L., Jr., 1993, Comparative analysis of human-and Dutch-type Alzheimer beta-amyloid peptides by infrared-spectroscopy and circular dichroism, Biochem. Biophys. Res. Commun. 191: 232–239.

    Article  PubMed  CAS  Google Scholar 

  • Fasman, G. D., 1989, The development of the prediction of protein structure, in: Prediction of Protein Structure and the Principles of Protein Conformation ( G. D. Fasman, ed.), pp. 193–316, Plenum Press, New York.

    Chapter  Google Scholar 

  • Fasman, G. D., Park, K., and Schlesinger, D. H., 1990, Conformational analysis of the immunodominant epitopes of the circumsporozoite protein of Plasmodium falciparum and knowlesi, Biopolymers 29: 123–130.

    Article  PubMed  CAS  Google Scholar 

  • Fontenot, J. D., Finn, O. J., Dales, N., Andrews, P. C., and Montelaro, R. C., 1994, Synthesis of large multideterminant peptide immunogens using a poly-proline beta-turns helix motif, Peptide Res. 6: 330–336.

    Google Scholar 

  • Freidinger, R. M., Perlow, D. S., Randall, W. C., Saperstein, R., Arison, B. H., and Veber, D. F., 1984, Conformational modifications of cyclic hexapeptide somatostatin analogs, Int. J. Peptide Protein Res. 23: 142–150.

    Article  CAS  Google Scholar 

  • Fry, D. C., Madison, V. S., Bolin, D. R., Greeley, D. N., Toome, V., and Wegrzynski, B. B., 1989, Solution structure of an analogue of vasoactive intestinal peptide as determined by two-dimensional NMR and circular dichroism spectroscopies and constrained molecular dynamics, Biochemistry 28: 2399–2409.

    Article  PubMed  CAS  Google Scholar 

  • Gallo, E. A., and Gellman, S. H., 1993, Hydrogen-bond-mediated folding in depsipeptide models of beta-turns and alpha-helical turns, J. Am. Chem. Soc. 115: 9774–9788.

    Article  CAS  Google Scholar 

  • Garcia-Echeverria, C., Siligardi, G., Mascagni, P., Gibbons, W., Giralt, E., and Pons, M.,1991, Conformational analysis of two cyclic disulfide peptides, Biopolymers 31: 835–843.

    Google Scholar 

  • Gierasch, L. M., Deber, C. M., Madison, V., Niu, C. H., and Blout, E. R., 1981, Conformations of (XL-Pro-Y)2 cyclic hexapeptides. Preferred fl-turn conformers and implications for β-turns in proteins, Biochemistry 20: 4730–4738.

    Article  PubMed  CAS  Google Scholar 

  • Goodman, M., Rone, R., Manesis, N., Hassan, M., and Mammi, N., 1987, Peptidomimetics: Synthesis, spectroscopy, and computer simulations, Biopolymers 26: S26 - S32.

    Article  Google Scholar 

  • Goossens, J. F., Ommery, N., Lohez, M., Pommery, J., Helbecque, N., Cotelle, P., Lhermitte, M., and Henichart, J. P., 1992, Antagonistic effect of a vasoactive intestinal peptide fragment, vasoactive intestinal peptide (1–11), on guinea pig trachea smooth muscle relaxation, Mol. Pharmacol. 41: 104–109.

    PubMed  CAS  Google Scholar 

  • Gray, R. A., Vander-Belde, D. G., Burke, C. J., Manning, M. C., Middaugh, C. R., and Borchardt, R. T., 1994, Delta-sleep-inducing peptide: Solution conformational studies of a membrane-permeable peptide, Biochemistry 33: 1323–1331.

    Article  PubMed  CAS  Google Scholar 

  • Greenfield, N., and Fasman, G. D., 1969, Computed circular dichroism spectra for the evaluation of protein conformation, Biochemistry 8: 4108–4116.

    Article  PubMed  CAS  Google Scholar 

  • Grizzuti, K., and Perlmann, G. E., 1973, Binding magnesium and calcium ions to the phosphoglycoprotein phosvitin, Biochemistry 12: 4399–4403.

    Article  PubMed  CAS  Google Scholar 

  • Grizzuti, K., and Perlmann, G. E., 1975, Further studies on the binding of divalent cations to the phosphoglycoprotein phosvitin, Biochemistry 14: 2171–2175.

    Article  PubMed  CAS  Google Scholar 

  • Gupta, A., and Chauhan, V. S., 1990, Synthetic and conformational studies on dehydroalanine-containing model peptides, Biopolymers 30: 395–403.

    Article  PubMed  CAS  Google Scholar 

  • Halford, N. G., Tatham, A. S., Sui, E., Daroda, L., Dreyer, T., and Shewry, P. R., 1992, Identification of a novel beta-turn-rich repeat motif in the D hordeins of barley, Biochim. Biophys. Acta 1122: 118–122.

    Article  PubMed  CAS  Google Scholar 

  • Heider, R. C., Ragnarsson, U., and Zetterquist, O., 1985, The role of the phosphate group for the structure of phosphopeptide products of adenosine 3’,5’-cyclic monophosphate dependent protein kinase, Biochem. J. 229: 485–489.

    Google Scholar 

  • Hennessey, J. P., Jr., and Johnson, W. C., Jr., 1981, Information content in the circular dichroism of proteins, Biochemistry 20: 1085–1094.

    Article  PubMed  CAS  Google Scholar 

  • Higashijima, T., Masui, Y., Chino, N., Sakakikbara, S., Kita, H., and Miyazawa, T., 1984, Nuclearmagnetic-resonance studies on the conformations of tridecapeptide alpha-mating factor from yeast Saccharomyces cerevisiae and analog peptides in aqueous solution. Conformation-activity relationship, Eur. J. Biochem. 140: 163–171.

    Article  PubMed  CAS  Google Scholar 

  • Hilbich, C., Kisters-Woike, B., Reed, J., Masters, C. L., and Beyreuther, K., 1991, Aggregation and secondary structure of synthetic amyloid beta A4 peptides of Alzeheimer’s disease, J. Mol. Biol. 218: 149–163.

    Article  PubMed  CAS  Google Scholar 

  • Hollósi, M., 1994, Conformation of B- and T-cell epitopic peptides, in: Synthetic Peptides in the Search for B- and T-Cell Epitopes ( É. Rajnavölgyi, ed.), pp. 67–96, R. G. Landes Co., Austin.

    Google Scholar 

  • Hollósi, M., and Wieland, T., 1977, Ion binding properties in acetonitrile of cyclopeptides built up from proline and glycine residues, Int. J. Peptide Protein Res. 10: 329–341.

    Article  Google Scholar 

  • Hollósi, M., Kawai, M., and Fasman, C. D., 1985, Studies on proline containing tetrapeptide models of n-turns, Biopolymers 24: 211–242.

    Article  PubMed  Google Scholar 

  • Hollósi, M., Kövér, K. E., Holly, S., and Fasman, G. D., 1987a, β-Turns in serine-containing linear and cyclic models, Biopolymers 26: 1527–1553.

    Google Scholar 

  • Hollósi, M., Kövér, K. E., Holly, S. Radies, L., and Fasman, G. D., 1987b, β-Turns in bridged prolinecontaining cyclic peptide models, Biopolymers 26: 1555–1572.

    Google Scholar 

  • Hollósi, M., Ötvös, L., Jr., Kajtâr, J., Perczel, A., and Lee, V. M., 1989, Is amyloid deposition in Alzheimer’s disease preceded by an environment-induced double conformational transition? Peptide Res. 2: 109–113.

    Google Scholar 

  • Hollósi, M., Perczel, A., and Fasman, G. D., 1990, Cooperativity of carbohydrate moiety orientation and beta-turn stability is determined by intramolecular hydrogen bonds in protected glycopeptide models, Biopolymers 29: 1549–1564.

    Article  PubMed  Google Scholar 

  • Hollósi, M., Ismail, A. A., Mantsch, H. H., Penke, B., Vâradi, I. G., Tóth, G. K., Laczkó, I., Kurucz, I., Nagy, Z., Fasman, G. D., and Rajnavölgyi, E., 1992a, Conformational and functional properties of peptides covering the intersubunit region of influenza virus hemagglutinin, Eur. J. Biochem. 206: 421–425.

    Article  PubMed  Google Scholar 

  • Hollósi, M., Urge, L., Perczel, A., Kajtâr, J., Teplân, L., Ötvös, L., Jr., and Fasman, G. D., 1992b, Metal-ion induced conformational changes of phosphorylated fragments of human neurofilament (NF-M) protein, J. Mol. Biol. 223: 673–682.

    Article  PubMed  Google Scholar 

  • Hollósi, M., Ötvös, L., Jr., Urge, L., Kajtâr, J., Perczel, A., Laczkó, I., Vadâsz, Z., and Fasman, G. D., 1993, Ca2+-induced conformational transitions of phosphorylated peptides, Biopolymers 33: 497–510.

    Article  PubMed  Google Scholar 

  • Hollósi, M., Shen, Z. M., Perczel, A., and Fasman, G. D., 1994a, Stable intrachain and interchain complexes of neurofilament peptides: A putative link between Al3+ and Alzheimer disease, Proc. Ntal. Acad. Sci. USA 91: 4902–4906.

    Article  Google Scholar 

  • Hollósi, M., Majer, Z., Rónai, A. Z., Magyar, A., Medzihradszky, K., Holly, S., Perczel, A., and Fasman, G. D., 1994b, CD and Fourier transform infrared spectroscopic studies of peptides. II. Detection of beta-turns in linear peptides, Biopolymers 34: 177–185.

    Article  PubMed  Google Scholar 

  • Holly, S., Majer, Z., Tóth, G. K., Vâradi, G., Rajnavölgyi, E, Laczkó, I., and Hollósi, M., 1993a, Circular dichroism and Fourier-transform infrared spectroscopic studies on T-cell epitopic peptide fragments of influenza virus hemagglutinin, Biochem. Biophys. Res. Commun. 193: 1247–1254.

    Article  PubMed  CAS  Google Scholar 

  • Holly, S., Laczkó, I., Fasman, G. D., and Hollósi, M., 1993b, FT-IR spectroscopy indicates that Ca2+- binding to phosphorylated C-terminal fragments of the midsized neurofilament protein subunit results in β-sheet formation and β-aggregation, Biochem. Biophys. Res. Commun. 197: 755–762.

    Article  PubMed  CAS  Google Scholar 

  • Imperiali, B., Fisher, S. L., Moats, R. A., and Prins, T. J., 1992, A conformational study of peptides with the general structure Ac-L-Xaa-Pro-D-Xaa-L-Xaa-NH2: Spectroscopic evidence for a peptide with significant β-turn character in water and in dimethyl sulfoxide, J. Am. Chem. Soc. 114: 3182–3188.

    Article  CAS  Google Scholar 

  • Inooka, H., Endo, S., Kitada, C., Mizuta, E., and Fujino, M., 1992, Pituitary adenylate cyclase activating polypeptide (PACAP) with 27 residues. Conformation determined by 1H NMR and CD spectroscopies and distance geometry in 25% methanol solution, Int. J. Peptide Protein Res. 40: 456–464.

    Article  CAS  Google Scholar 

  • Ishii, H., Fukunishi, Y., Inoue, Y., and Chûjô, R., 1985, β-Turn structure and intramolecular interaction of tetrapeptides containing Asp and Lys, Biopolymers 24: 2045–2056.

    Google Scholar 

  • Jackson, M., and Mantsch, H. H., 1991, Beware of proteins in DMSO, Biochim. Biophys. Acta 1078: 231–235.

    Google Scholar 

  • Jackson, M., and Mantsch, H. H., 1992, Halogenated alcohols as solvents for proteins: FTIR spectroscopic studies, Biochim. Biophys. Acta 1118: 139–143.

    Article  PubMed  CAS  Google Scholar 

  • Jaenicke, R., 1991, Protein folding: Local structures, domains, subunits and assemblies, Biochemistry 30: 3147–3161.

    Article  PubMed  CAS  Google Scholar 

  • Jardetzky, O., 1980, On the nature of molecular conformations inferred from high resolution NMR, Biochim. Biophys. Acta 621: 227–232.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, P., and Ananthanarayanan, V. S., 1991, Conformational requirement for lysine hydroxylation in collagen. Structural studies on synthetic peptide substrates of lysyl hydroxylase, J. Biol. Chem. 266: 22960–22967.

    PubMed  CAS  Google Scholar 

  • Johnson, W. C., Jr., 1990, Protein secondary structure and circular dichroism: A practical guide, Proteins Struct. Funct. Genet. 7: 250–214.

    Article  Google Scholar 

  • Jurka, J., and Smith, T. F., 1987, β-Turn-driven early evolution: The genetic code and biosynthetic pathways, J. Mol. Evol. 25: 15–19.

    Google Scholar 

  • Kabsch, W., and Sander, C., 1983, Dictionary of protein secondary structure. Pattern recognition of hydrogen bonded and geometrical features, Biopolymers 22: 2577–2637.

    Article  PubMed  CAS  Google Scholar 

  • Kaiser, E. T., and Kezdy, F. J., 1984, Amphiphilic secondary structure: Design of peptide hormones, Science 223: 249.

    Article  PubMed  CAS  Google Scholar 

  • Kajtâr, M., Hollósi, M., Kajtâr, J., Majer, Z., and Kövér, K. E., 1986, Chiroptical properties and solution conformations of protected endothiodipeptide esters, Tetrahedron 42: 3931–3942.

    Article  Google Scholar 

  • Kamegai, J., Kimura, S., and Imanishi, Y., 1986, Conformation of sequential polypeptide poly(Leu-Leu-D-Phe-Pro) and formation of ion channel across bilayer lipid membrane, Biophys. J., 49: 1101–1108.

    Article  PubMed  CAS  Google Scholar 

  • Karle, I. L., 1978, Crystal structure and conformation of cyclo-(glycylprolylglycyl-D-alanyl-prolyl) containing 4→1 and 3→1 intermolecular hydrogen bonds, J. Am. Chem. Soc. 100: 1286–1289.

    Article  CAS  Google Scholar 

  • Karle, I. L., 1981, X-ray analysis: Conformation of peptides in the crystalline state, in: Peptides ( E. Gross and J. Meienhofer, eds.), pp. 1–54, Academic Press, New York.

    Google Scholar 

  • Karle, I. L., Karle, J., Mastropaolo, D., Camerman, A., and Camerman, N., 1983, Multiple conformations of enkephalin in the crystalline state, in: Peptides, Structure and Function, Proc. Am. Pept. Symp. ( V. J. Hruby and D. H. Rich, eds.), pp. 291–294, Pierce Chemical Co., Rockford, IL.

    Google Scholar 

  • Kataev, B. S., Balodis, J. J., and Nikiforovich, G. V., 1985, CD spectrum and conformational distribution of cyclotuftsin in solution, FEBS Let. 190: 214–216.

    Article  CAS  Google Scholar 

  • Kawai, M., and Fasman, G. D., 1978, A model β turn. Circular dichroism and infrared spectra of a tetrapeptide, J. Am. Chem. Soc. 100: 3630–3632.

    Article  CAS  Google Scholar 

  • Kennedy, D. F., Crisma, M., Toniolo, C., and Chapman, D., 1991, Studies of peptides forming 310- and α-helices and β-bend ribbon structures in organic solution and in model biomembranes by Fourier transform infrared spectroscopy, Biochemistry 30: 6541–6548.

    Article  PubMed  CAS  Google Scholar 

  • Kessler, M., Gehrke, M., and Griesinger, C., 1988, Zweidimensionale NMR-Spektroskopie, Grundlagen and Übersicht über die Experimente, Angew. Chem. 100: 507–554.

    Article  CAS  Google Scholar 

  • Kharrat, A., Derancourt, J., Doree, M., Amalric, F., and Erard, M., 1991, Synergistic effect of histone H1 and nucleolin on chromatin condensation in mitosis: Role of a phosphorylated heteromer, Biochemistry 30: 10329–10336.

    Article  PubMed  CAS  Google Scholar 

  • Kishore, R., Raghothama, S., and Balaram, P., 1988, Synthetic peptide models for the redoxactive disulfide loop of glutaredoxin, conformational studies, Biochemistry 27: 2462–2471.

    Article  PubMed  CAS  Google Scholar 

  • Krimm, S., and Bandekar, J., 1986, Vibrational spectroscopy and conformation of peptides, polypeptides and proteins, in: Advances in Protein Chemistry, Vol. 38 ( C. B. Anfinsen, J. T. Edsall, and F. M. Richards, eds.), pp. 181–364, Academic Press, New York.

    Google Scholar 

  • Kuntz, I. D., 1972, Protein folding, J. Am. Chem. Soc. 94: 4009–4012.

    Article  PubMed  CAS  Google Scholar 

  • Laczkó-Hollósi, I., Hollósi, M., Lee, V. M.-Y., and Mantsch, H. H., 1992, Conformational change of a synthetic amyloid analogue des[Ala21,30]A42 upon binding to octyl glucoside micelles, Eur. Biophys. J. 21: 345–348.

    Article  PubMed  Google Scholar 

  • Lambert, M. H., and Scheraga, H. A., 1989, Pattern recognition in the prediction of protein structure. Ill. An importance sampling minimization procedure, J. Comp. Chem. 10: 817.

    Article  CAS  Google Scholar 

  • Lamthanh, H., Léonetti, M., Nabedryk, E., and Ménez, A., 1993, CD and FTIR studies of an immunogenic disulphide cyclized octadecapeptide, a fragment of a snake curaremimetic toxin, Biochim. Biophys. Acta 1203: 191–198.

    Article  PubMed  CAS  Google Scholar 

  • Lang, E., and Ötvös, L., Jr., 1992, A serine — proline change in the Alzheimer’s disease-associated epitope Tau 2 results in altered secondary structure, but phosphorylation overcomes the conformational gap, Biochem. Biophys. Res. Commun. 188: 162.

    Article  PubMed  CAS  Google Scholar 

  • Lang, E., Szendrei, G. I., Lee, V. M.-Y., and Ötvös, L., Jr., 1992a, Immunological and conformational characterization of a phosphorylated immunodominant epitope on the paired helical filaments found in Alzheimer’s disease, Biochem. Biophys. Res. Commun. 187: 783–790.

    Article  PubMed  CAS  Google Scholar 

  • Lang, E., Szendrei, G. I., Elekes, I., Lee, V. M.-Y., and Ötvös, L., Jr., 1992b, Reversible β-pleated sheet formation of a phosphorylated synthetic T peptides, Biochem. Biophys. Res. Commun. 182: 63–69.

    Article  PubMed  CAS  Google Scholar 

  • Lang, E., Szendrei, G. I., Lee, V. M.-Y., and Ötvös, L., Jr., 1994, Spectroscopic evidence that monoclonal antibodies recognize the dominant conformation of medium-sized synthetic peptides, J. Immunol. Methods 170: 103–115.

    Article  PubMed  CAS  Google Scholar 

  • Leszczynski, J. F., and Rose, G. D., 1986, Loops in globular proteins: A novel category of secondary structure, Science 234: 849–855.

    Article  PubMed  CAS  Google Scholar 

  • Levitt, M., 1976, A simplified representation of protein conformations for rapid simulation of protein folding, J. Mol. Biol. 104: 59–107.

    Article  PubMed  CAS  Google Scholar 

  • Levitt, M., 1978, Conformational preferences of amino acids in globular proteins, Biochemistry 17: 4277–4285.

    Article  PubMed  CAS  Google Scholar 

  • Levitt, M., and Chothia, C., 1976, Structural patterns in globular proteins, Nature 261: 552–558.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, P. N., Momany, F. A., and Scheraga, H. A., 1973, Chain reversals in proteins, Biochim. Biophys. Acta 303: 211–229.

    Article  PubMed  CAS  Google Scholar 

  • Lisowski, M., Siemion, I. Z., and Sobczyk, K., 1983, Conformation of model alanine and proline containing tetrapeptides in water. Comparison of carbon-β NMR and CD results, Int. J. Peptide Protein Res. 21: 301–306.

    Article  CAS  Google Scholar 

  • Lisowski, M., Pietrzynski, G., and Rzeszotarska, B., 1993, Conformational investigation of a,β-dehydropeptides. V. Stability of reverse turns in saturated and a,β-unsaturated peptides Ac-Pro-Xaa-NHCH3: CD studies in various solvents, Int. J. Peptide Protein Res. 42: 466–474.

    Article  CAS  Google Scholar 

  • Liu, X., Otter, A., Scott, P. G., Cann, J. R., and Kotovych, G., 1994, Conformational analysis of the type II and type III collagen alpha-1 chain C-telopeptides by 1H NMR and circular dichroism spectroscopy, J. Biomol. Struct. Dyn. 11: 541–555.

    Article  Google Scholar 

  • Loomis, R. E., Gonzalez, M., and Loomis, P. M., 1991, Investigation of cis/trans proline isomerism in a multiply occurring peptide fragment from human salivary proline-rich glycoprotein, Int. J. Peptide Protein Res. 38: 428–439.

    Article  CAS  Google Scholar 

  • Lu, Z. X., Fok, K. F., Erickson, B. W., and Hugli, T. E., 1984, Conformational analysis of COOH-terminal segments of human C3a. Evidence of ordered conformation in an active 21-residue peptide, J. Biol. Chem. 259: 7367–7370.

    PubMed  CAS  Google Scholar 

  • Mcharfi, M., Aubry, A., Boussard, G., and Marraud, M., 1986, Backbone side-chain interactions in peptides. IV. β-Turn conformations of Asp and Asn-containing dipeptides in solute and solid states, Eur. Biophys. J. 14: 43–51.

    Article  CAS  Google Scholar 

  • Madison, V., and Kopple, K. D., 1980, Solvent-dependent conformational distributions of some dipeptides, J. Am. Chem. Soc. 120: 4855–4863.

    Article  Google Scholar 

  • Madison, V., and Schellman, J., 1970, Location of proline derivatives in conformational space. II. Theoretical optical activity, Biopolymers 9: 569–588.

    Article  PubMed  CAS  Google Scholar 

  • Mammi, S., Foffani, M. T., Improta, S., Tessari, M., Schievano, E., and Peggion, E., 1992, Conformation of uteroglobin fragments, Biopolymers 32: 341–346.

    Article  PubMed  CAS  Google Scholar 

  • Manavalan, P., and Johnson, W. C., Jr., 1987, Variable selection method improves the prediction of protein secondary structures from circular dichroism spectra, Anal. Biochem. 167: 76–85.

    Article  PubMed  CAS  Google Scholar 

  • Manning, M. C., and Woody, R. W., 1987, Theoretical determination of the CD of proteins containing closely packed antiparallel G3-sheets, Biopolymers 26: 1731–1752.

    Article  PubMed  CAS  Google Scholar 

  • Manning, M. C., and Woody, R. W., 1989, Theoretical study of the contribution of aromatic side chains to the circular dichroism of basic bovine pancreatic trypsin inhibitor, Biochemistry 28: 8609–8613.

    Article  PubMed  CAS  Google Scholar 

  • Manning, M. C., Illangasekare, M., and Woody, R. W., 1988, Circular dichroism studies of distorted a-helixes, twisted β-sheets, and β-turns, Biophys. Chem. 31: 77–86.

    Article  PubMed  CAS  Google Scholar 

  • Mantsch, H. H., Moffatt, D. J., and Casal, H. L., 1988, Fourier transform methods for spectral resolution enhancement, J. Mol. Struct. 173: 285–298.

    Article  CAS  Google Scholar 

  • Mantsch, H. H., Perczel, A., Hollósi, M., and Fasman, G. D., 1993, Characterization of β-turns in cyclic hexapeptides in solution by Fourier transform IR spectroscopy, Biopolymers 33: 201–207.

    Article  PubMed  CAS  Google Scholar 

  • Mao, D., and Wallace, B. A., 1984, Differential light scattering and absorption flattening optical effects are minimal in the circular dichroism spectra of small unilamellar residues, Biochemistry 23: 2667–2673.

    Article  PubMed  CAS  Google Scholar 

  • Marraud, M., and Aubry, A., 1984, Backbone side chain interactions in peptides. II. Solution study of serine-containing model dipeptides, Int. J. Peptide Protein Res. 23: 123–133.

    Article  CAS  Google Scholar 

  • Matthews, B. W., 1972, The γ turn. Evidence for a new folded conformation in proteins, Macromolecules 5: 818–819.

    Article  CAS  Google Scholar 

  • Mayo, K. H., Parra-Diaz, D., McCarthy, J. B., and Chelberg, M., 1991, Cell adhesion promoting peptide GVKGDKGNPGWPGAP form the collagen type IV triple helix: cis/trans proline-induced multiple 1H NMR conformations and evidence for a KG/PG multiple turn repeat motif in the all-trans proline state, Biochemistry 30: 825–867.

    Google Scholar 

  • Krick, S. M., Martinez, G. V., and Fiori, W. R., 1992, Short alanine-based peptides may form 310-helices in globular proteins, Int. J. Peptide Protein Res. 37: 508–512.

    Google Scholar 

  • Milner-White, E. J., 1990, Situations of gamma-turns in proteins, their relation to alpha-helices, beta-sheets and ligand binding sites, J. Mol. Biol. 216: 385–397.

    Article  CAS  Google Scholar 

  • Milner-White, E. J., Ross, B. M., Ismail, R., Belhadj-Mostefa, K., and Poet, R., 1988, One type of gamma-turn, rather than the other gives rise to chain-reversal in proteins, J. Mol. Biol. 204: 777–782.

    Article  PubMed  CAS  Google Scholar 

  • Miyazawa, T., Shimanouchi, T., and Mizushima, J., 1958, Normal vibrations of N-methylacetamide, J. Chem. Phys. 29: 611–616.

    Article  CAS  Google Scholar 

  • Momany, F. A., McGuire, R. F., Burgess, A. W., and Scheraga, H. A., 1975, Energy parameters in polypeptides VII. Geometric parameters, partial atomic charges, nonbonded interactions and intrinsic torsional potentials for the naturally occurring amino acids, J. Phys. Chem. 79: 2361.

    Article  CAS  Google Scholar 

  • Mori, N., Ishizaki, H., and Tu, A. T., 1989, Isolation and characterization of Pelamis platurus (yellow-bellied sea snake) postsynaptic isoneurotoxin, J. Pharm. PharmacoL 41: 331–334.

    Article  PubMed  CAS  Google Scholar 

  • Müller, G., Gurrath, M., Kurz, M., and Kessler, H., 1993, 3VI turns in peptides and proteins: A model peptide mimicry, Proteins Struct. Funct. Genet. 15: 235–251.

    Google Scholar 

  • Nachman, R. J., Roberts, V. A., Dyson, R. H., Holman, G. M., and Tainer, J. A., 1991, Active conformation of an insect neuropeptide family, Proc. Natl. Acad. Sci. USA 88: 4518–4522.

    Article  PubMed  CAS  Google Scholar 

  • Nachman, R. J., Kuniyoshi, H., Roberts, V. A., Holman, G. M., and Suzuki, A., 1993, Active conformation of the pyrokinin/PBAN neuropeptide family for pheromone biosynthesis in the silkworm, Biochem. Biophys. Res. Commun. 193: 661–666.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, J. W., and Kaltenbach, N. R., 1986, Stabilization of ribonuclease S-peptide a-helix by trifluoroethanol, Proteins 2: 211–217.

    Article  Google Scholar 

  • Némethy, G., and Printz, M. P., 1972, The y-turn, a possible folded conformation of the polypeptide chain. Comparison with the β-turn, Macromolecules 5: 755–758.

    Article  Google Scholar 

  • Némethy, G., and Scheraga, H. A., 1965, Theoretical determination of sterically allowed conformations of a polypeptide chain by a computer method, Biopolymers 3: 155.

    Article  Google Scholar 

  • Neuhaus, D., and Williamson, M., 1989, The Nuclear Overhauser Effect in Structural and Conformational Analysis,Verlagsgesellschaft (VCH) Publications.

    Google Scholar 

  • Noggle, J. H., and Schirmer, R. E., 1971, The Nuclear Overhauser Effect, Chemical Applications, Academic Press, New York.

    Google Scholar 

  • Olson, G. L., Voss, M. E., Hill, D. E., Kahn, M., Madison, V. S., and Cook, C. M., 1990, Design and synthesis of a protein β-turn mimetic, J. Am. Chem. Soc. 112: 323–333.

    Article  CAS  Google Scholar 

  • Oschkinat, H., Müller, T., and Dieckmann, T., 1994, Protein structure determination with three-and four-dimensional NMR spectroscopy, Angew. Chem. Int. Ed. Engl. 33: 277–293.

    Article  Google Scholar 

  • Otter, A., Scott, P. G., Liu, X. H., and Kotovych, G., 1989a, A 1H and 13C NMR study on the role of salt bridges in the formation of a type I beta-turn in N-acetyl-L-Asp-L-Glu-L-Lys-L-Ser-NH2, J. Biomol. Struct. Dyn. 7: 455–476.

    Article  CAS  Google Scholar 

  • Otter, A., Kotovych, G., and Scott, P. G., 1989b, Solution conformation of the type I collagen alpha-1 chain N-telopeptide studied by ‘H NMR spectroscopy, Biochemistry 28: 8003–8010.

    Article  PubMed  CAS  Google Scholar 

  • Ötvös, L., Jr., Hollósi, M., Perczel, A., Dietzschold, B., and Fasman, G. D., 1988, Phosphorylation loops in synthetic peptides of the human neurofilament protein middle-sized subunit, J. Protein Chem. 7: 365–376.

    Article  PubMed  Google Scholar 

  • Ötvös, L., Jr., Thurin, J., Kollât, E., Urge, L., Mantsch, H. H., and Hollósi, M., 1991, Glycosylation of synthetic peptides breaks helices: phosphorylation results in distorted structure, Int. J. Peptide Protein Res. 38: 476–482.

    Article  Google Scholar 

  • Ötvös, L., Jr., Szendrei, G. I., Lee, V. M.-Y., and Mantsch, H. H., 1993, Human and rodent Alzheimer β-amyloid peptides acquire distinct conformations in membrane-mimicking solvents, Eur. J. Biochem. 211: 249–257.

    Article  PubMed  Google Scholar 

  • Pancoska, P., and Keiderling, T. A., 1991, Systematic comparison of statistical analyses of electronic and vibrational circular dichroism for secondary structure prediction of selected proteins, Biochemistry 30: 6885–6895.

    Article  PubMed  CAS  Google Scholar 

  • Pancoska, P., Yasui, S. C., and Keiderling, T. A., 1989, Enhanced sensitivity to conformation in various proteins. Vibrational circular dichroism results, Biochemistry 28: 5917–5923.

    Article  PubMed  CAS  Google Scholar 

  • Pancoska, P., Yasui, S. C., and Keiderling, T. A., 1991, Statistical analyses of the vibrational circular dichroism of selected proteins and relationship to secondary structures, Biochemistry 30: 5089–5103.

    Article  PubMed  CAS  Google Scholar 

  • Pande, J., Pande, C., Gilg, D., Vasâk, M., Callender, R., and Kägi, J. H. R., 1986, Raman, infrared, and circular dichroism spectroscopic studies on metallothionein: A predominantly “turn”-containing protein, Biochemistry 25: 5526–5532.

    Article  PubMed  CAS  Google Scholar 

  • Paolillo, L., Simonetti, M., Brakch, N., D’Auria, G., Saviano, M., and Dettin, M., 1992, Evidence for the presence of a secondary structure at the dibasic processing site of prohormone: The pro-oxytocin model, EMBO J. 11: 2399–2405.

    PubMed  CAS  Google Scholar 

  • Park, K., Perczel, A., and Fasman, G. D., 1992, Differentiation between transmembrane helices and peripheral helices by the deconvolution of circular dichroism spectra of membrane proteins, Protein Sci. 1: 1032–1049.

    Article  PubMed  CAS  Google Scholar 

  • Pauling, L., and Corey, R., 1951, Atomic coordinates and structure factors for two helical configurations of polypeptide chains, Proc. Natl. Acad. Sci. USA 37: 235–240.

    Article  PubMed  CAS  Google Scholar 

  • Pauling, L., Corey, R., and Branson, H., 1951, The structure of proteins: Two H-bonded helical configurations of the polypeptide chain, Proc. Natl. Acad. Sci. USA 37: 205–211.

    Article  PubMed  CAS  Google Scholar 

  • Pease, L. G., and Watson, C., 1978, Conformational and ion binding studies of a cyclic pentapeptide. Evidence for β and γ turns in solution, J. Am. Chem. Soc. 100: 1279–1286.

    Article  CAS  Google Scholar 

  • Perczel, A., Tusnâdy, G., Hollósi, M., and Fasman, G. D., 1989, Convex constraint decomposition of circular dichroism curves of proteins, Croat. Chim. Acta 62: 189–200.

    CAS  Google Scholar 

  • Perczel, A., and Fasman, C. D., 1992, Quantitative analysis of cyclic β-turn models, Protein Sci. 1: 378–395.

    Article  PubMed  CAS  Google Scholar 

  • Perczel, A., Hollósi, M., Fülöp, V., Kalman, A., Sándor, P., and Fasman, G. D., 1990, Environment-dependent conformation of Boc-Pro-Ser-NHCH3, Biopolymers 30: 763–771.

    Article  CAS  Google Scholar 

  • Perczel, A., Hollósi, M., Foxman, B. M., and Fasman, G. D., 1991a, Conformational analysis of pseudocyclic hexapeptides based on quantitative circular dichroism (CD), NOE and X-ray data. The pure CD spectra of type I and type II [3-turn, J. Am. Chem. Soc. 113: 9772–9784.

    Article  CAS  Google Scholar 

  • Perczel, A., Hollósi, M., Tusnâdy, G., and Fasman, G. D., 1991b, Convex constraint analysis: A natural deconvolution of circular dichroism curves of proteins, Protein Eng. 4: 669–679.

    Article  PubMed  CAS  Google Scholar 

  • Perczel, A., Angyán, J. G., Kajtár, M., Viviani, W., Rivail, J. L., Marcoccia, J. F., and Csizmadia, I. G., 1991c, Peptide models 1. Topology of selected peptide conformational potential energy surfaces (glycine and alanine derivatives), J. Am. Chem. Soc. 113: 6256–6265.

    Article  CAS  Google Scholar 

  • Perczel, A., Park, K., and Fasman, G. D., 1992a, Deconvolution of the circular dichroism spectra of proteins: The circular dichroism spectra of the antiparallel β-sheet in proteins, Proteins Struct. Funct. Genet. 13: 57–69.

    Article  PubMed  CAS  Google Scholar 

  • Perczel, A., Park, K., and Fasman, G. D., 1992b, Analysis of the circular dichroism spectra of proteins using the convex constraint algorithm: A practical guide, Anal. Biochem. 203: 83–93.

    Article  PubMed  CAS  Google Scholar 

  • Perczel, A., Foxman, B. M., and Fasman, G. D., 1992c, How reverse turns may mediate the formation of helical segments in proteins: An X-ray model, Proc. Natl. Acad. Sci. USA, 89: 8210–8214.

    Article  PubMed  CAS  Google Scholar 

  • Perczel, A., Kollát, E., Hollósi, M., and Fasman, G. D., 1993a, Synthesis and conformational analysis of N-glycopeptides II: Circular dichroism, molecular dynamics and NMR spectroscopic studies on linear N-glycopeptides, Biopolymers 33: 665–685.

    Article  PubMed  CAS  Google Scholar 

  • Perczel, A., Hollósi, M., Sândor, P., and Fasman, G. D., 1993b, The evaluation of type I and type II beta-turn mixtures. Circular dichroism, NMR and molecular dynamics studies, Int. J. Peptide Protein Res. 41: 223–236.

    Article  CAS  Google Scholar 

  • Perczel, A., McAllister, M. A., Császár, P., and Csizmadia, I. G., 1993c, Peptide models VI. New β- turn conformations from ab initio calculations confirmed by X-ray data of proteins, J. Am. Chem. Soc. 115: 4849–4858.

    Article  CAS  Google Scholar 

  • Perczel, A., Lengyel, I., Mantsch, H. H., and Fasman, G. D., 1993d, Analysis of hydrogen bonds in peptides, based on the hydration affinity of amides, J. Mol. Struct. 297: 115–126.

    Article  CAS  Google Scholar 

  • Perczel, A., McAllister, M. A., Császár, P., and Csizmadia, I. G., 1994, Peptide models VII. A complete conformational set of For-Ala-Ala-NH2 by ab initio computations, Can. J. Chem. 72: 2050–2070.

    Article  CAS  Google Scholar 

  • Perczel, A., Endrédi, G., McAllister, M. A., Farkas, O., Császár, P., Ladik, J., and Csizmadia, I. G., 1995, Peptide models VII. The ending of the right-hand helices in oligopeptides and in proteins, J. Mol. Structure 331: 5–10.

    Article  CAS  Google Scholar 

  • Peterson, M. R., and Csizmadia, I. G., 1982, Analytic equations for conformational energy surfaces, in: Progress of Theoretical Organic Chemistry, Vol. 3 ( I. G. Csizmadia, ed.), pp. 190–266, Elsevier, Amsterdam.

    Google Scholar 

  • Prestrelski, S. J., Byler, D. M., and Thompson, M. P., 1991, Infrared spectroscopic discrimination between a-and 310-helices in globular proteins, Int. J. Peptide Protein Res. 37: 508–512.

    Article  CAS  Google Scholar 

  • Pribic, R., van Stokkum, I. H. M., Chapman, D., Haris, P. I., and Bloemendal, M., 1993, Protein secondary structure from Fourier transform infrared and/or circular dichroism spectra, Anal. Biochem. 214: 366–378.

    Article  PubMed  CAS  Google Scholar 

  • Provencher, S. W., and Glöckner, J., 1981, Estimation of globular protein secondary structure from circular dichroism, Biochemistry 20: 33–37.

    Article  PubMed  CAS  Google Scholar 

  • Radics, L., and Hollósi, M., 1980, Conformations of proline-containing cyclic peptides II. Asymmetric solution conformations of cyclo-(L-Pro2-Gly)2 and its alkaline-earth metal complexes as studied by NMR spectroscopy, Tetrahedron Lett. 21: 4531–4534.

    Article  CAS  Google Scholar 

  • Rao, B. N. N., Kumar, A., Balaram, H., Ravi, A., and Balaram, P., 1983, Nuclear Overhauser effects and circular dichroism as probes of β-turn conformations in acyclic and cyclic peptides with Pro-X sequences, J. Am. Chem. Soc. 105: 7423–7428.

    Article  CAS  Google Scholar 

  • Ravi, A., Venkataram Prasad, B. V., and Balaram, P., 1983, Cyclic peptide disulfides. Solution and solid-state conformation of Boc-Cys-Pro-Aib-Cys-NHMe, a disulfide-bridged peptide helix, J. Am. Chem. Soc. 105: 105–108.

    Article  CAS  Google Scholar 

  • Reddy, G. L., and Nagaraj, R., 1987, Circular dichroism studies on synthetic peptides corresponding to the cleavage site region of precursor proteins, Int. J. Peptide Protein Res. 29: 497–503.

    Article  CAS  Google Scholar 

  • Reed, J., Kinzel, V., Chang, H. C., and Walsh, D. A., 1987, Circular dichroic investigations of secondary structures in synthetic peptide inhibitors of cAMP-dependent protein kinase: A model for inhibitory potential, Biochemistry 26: 7611–7617.

    Google Scholar 

  • Rholam, M., Cohen, P., Brakch, N., Paolillo, L., Scatturin, A., and Di-Bello, C., 1990, Evidence for beta-turn structure in model peptides reproducing pro-ocytocin/neurophysin proteolytic processing site, Biochem. Biophys. Res. Commun. 168: 1066–1073.

    Article  PubMed  CAS  Google Scholar 

  • Rich, D. H., Kawai, M., and Jasensky, R. D., 1983, Conformational studies of cyclic tetrapeptides, Int. J. Peptide Protein Res. 21: 35–42.

    Article  CAS  Google Scholar 

  • Richardson, J. S., 1981, The anatomy and taxonomy of protein structure, Adv. Protein Chem. 34: 167–339.

    Article  PubMed  CAS  Google Scholar 

  • Roos, H. M., Van Rooyen, P. H., and Wessels, P. L., 1994, Experimental studies and potential energy calculations of the blocked tetrapeptide Ac-Lys-Pro-Gly-Ile-NMA from the third loop of short-chain snake venom neurotoxins, Int. J. Peptide Protein Res. 42: 305–311.

    Article  Google Scholar 

  • Rose, G. D., Gierasch, L. M., and Smith, J. A., 1985, Turns in peptides and proteins, Adv. Protein Chem. 37: 1–109.

    Article  PubMed  CAS  Google Scholar 

  • Rosenkranz, H., and Scholtan, W., 1971, Improved method for the evaluation of helical protein conformation by means of circular dichroism, Hoppe-Seyler’s Z. Physiol. Chem. 352: 896–904.

    Article  PubMed  CAS  Google Scholar 

  • Rossi, F., Saviano, M., Di-Blasio, B., Zanotti, G., Maione, A. M., Tancredi, T., and Pedone, C., 1994, Bioactive peptides: Solid state, solution and molecular dynamics studies of a cyclolinopeptide A-related cystinyl cyclopentapeptide, Biopolymers 34: 273–284.

    Article  PubMed  CAS  Google Scholar 

  • Sarkar, P. K., and Doty, P., 1966, Optical rotatory properties of the β configuration in polypeptides and proteins, Proc. Natl. Acad. Sci. USA 55: 981–989.

    Article  PubMed  CAS  Google Scholar 

  • Sarver, R. W., Jr., and Krueger, C., 1991, An infrared and circular dichroism combined approach to the analysis of protein secondary structure, Anal. Biochm. 199: 61–67.

    Article  CAS  Google Scholar 

  • Sathyanarayana, B. K., and Applequist, J., 1986, Theoretical π-π* absorption and circular dichroic spectra of (3-turn model peptides, Int. J. Peptide Protein Res. 27: 86–94.

    Article  CAS  Google Scholar 

  • Sato, K., Sugawara, R., and Nagai, U., 1984, Studies on beta-turn of peptides. IX. Effect of 1st and 4th amino acids of tetrapeptide sequences on their beta-turn preferences studied by CD spectra of their chromophoric derivatives, Int. J. Peptide Protein Res. 24: 600–606.

    Article  CAS  Google Scholar 

  • Sato, K., Kato, R., and Nagai, U., 1986, Studies on β.-turn of peptides. XII. Synthetic confirmation of weak activity of [D-Pro55 -gramicidin S predicted from β-turn preference of its partial sequence, Bull. Chem. Soc. Jpn. 59: 535–538.

    Article  CAS  Google Scholar 

  • Saudek, V., Atkinson, R. A., Lepage, P., and Pelton, J. T., 1991, The secondary structure of echistatin from ‘H-NMR, circular-dichroism and Raman spectroscopy, Eur. J. Biochem. 202: 329–338.

    Article  PubMed  CAS  Google Scholar 

  • Saxena, V. P., and Wetlaufer, B. D., 1971, New basis for interpreting the circular dichroic spectra of proteins, Proc. Natl. Acad. Sci. USA 68: 969.

    Article  PubMed  CAS  Google Scholar 

  • Scarsdale, J. N., and Harris, R. B., 1990, Solution phase conformation studies of the prekallikrein binding domain of high molecular weight kininogen, J. Protein Chem. 9: 647–659.

    Article  PubMed  CAS  Google Scholar 

  • Scatturin, A., Salvadori, S., Vertuani, G., and Tomatis, R., 1985, Opioid peptides. Conformational studies of dermorphin and its constitutive fragments by circular dichroism. IX, Farmaco Sci. 10: 709–716.

    Google Scholar 

  • Schäfer, L., Newton, S. Q., Cao, M., Peeters, A., van Alsenoy, C., Wolinski, K., and Momany, F. A., 1993, Evaluation of the dipeptide approximation in peptide modeling by ab-initio geometry optimizations of oligopeptides, J. Am. Chem. Soc. 115: 272–280.

    Article  Google Scholar 

  • Schwyzer, R., Sieber, P., and Gorup, B., 1958, Synthesis of cyclic peptides by the “activated ester” method, Chimia 12: 90–91.

    CAS  Google Scholar 

  • Seetharama Jois, D. S., Easwaran, K. R. K., Bednarek, M., and Blout, E. R., 1992, Conformational and ion binding properties of a cyclic octapeptide, cyclo(Ala-Leu-Pro-Gly)2, Biopolymers 32: 993–1001.

    Article  Google Scholar 

  • Selkoe, D. J., 1991, The molecular pathology of Alzheimer’s disease, Neuron 6: 487–496.

    Article  PubMed  CAS  Google Scholar 

  • Shaw, R. A., Perczel, A., Mantsch, H. H., and Fasman, G. D., 1994, Turns in small cyclic peptides-Can infrared spectroscopy detect and discriminate amongst them? J. Mol. Struct. 324: 143–150.

    Article  CAS  Google Scholar 

  • Shen, Z. M., Perczel, A., Hollósi, M., Nagypâl, I., and Fasman, G. D., 1994, Study of Ala+ binding and conformational properties of the alanine-substituted C-terminal domain of the NF-M protein and its relevance to Alzheimer’s disease, Biochemistry 33: 9627–9636.

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki, K., Anzai, K., Kirino, Y., Lee, S., and Aoyagi, H., 1994, Ion channel activity of a synthetic peptide with a primary structure corresponding to the presumed pore-forming region of the voltage dependent potassium channel, Biochem. Biophys. Res. Commun. 198: 445–450.

    Article  PubMed  CAS  Google Scholar 

  • Sibanda, B. L., and Thornton, J. M., 1985,13-Hairpin families in globular proteins, Nature 316:170–174. Siemion, I. Z., Sobczyk, K., and Lisowski, M., 1986, Comparison of conformational properties of proline and threonine residues, Int. J. Peptide Protein Res. 27: 127–137.

    Google Scholar 

  • Siemion, I. Z., Pedyczak, A., Burton, J., 1988, Conformational preferences of the sequential fragments of the hinge region of the human IgA 1 immunoglobulin molecule, Biophys. Chem. 31: 35–44.

    Article  PubMed  CAS  Google Scholar 

  • Siemion, I. Z., Kubik, A., Lisowski, M., Szewczuk, Z., Zimecki, M., and Wieczorek, Z.,1991, Immunosuppressive analogues of hexapeptide Tyr-Val-Pro-Leu-Phe-Pro, an immune system stimulant, Int. J. Peptide Protein Res. 38: 54–61.

    Google Scholar 

  • Siligardi, G., Drake, A. F., Mascagni, P., Rowlands, D., Brown, F., and Gibbons, W. A., 1991, Correlations between the conformations elucidated by CD spectroscopy and the antigenic properties of four peptides of the foot-and-mouth disease virus, Eur. J. Biochem. 199: 545–551.

    Article  PubMed  CAS  Google Scholar 

  • Siligardi, G., Campbell, M. M., Gibbons, W. A., and Drake, A. F., 1992, Conformational analysis of the melanine-concentrating hormone core by circular dichroic spectroscopy. Disulphide bridge and tyrosine contributions, Eur. J. Biochem. 206: 23–29.

    Article  PubMed  CAS  Google Scholar 

  • Smith, J. A., and Pease, L. G., 1980, Reverse turns in peptides and proteins, CRC Crit. Rev. Biochem. 8: 315–399.

    Article  PubMed  CAS  Google Scholar 

  • Sonnichsen, F. D., Van-Eyk, J. E., Hodges, R. S., and Sykes, B. D., 1992, Effect of trifluoroethanol on protein secondary structure: An NMR and CD study using a synthetic actin peptide, Biochemistry 31: 8790–8798.

    Article  PubMed  CAS  Google Scholar 

  • Sreerama, N., and Woody, R. W.. 1993, A self-consistent method for the analysis of protein secondary structure from circular dichroism, Anal. Biochem. 209: 32–44.

    Article  PubMed  CAS  Google Scholar 

  • Sreerama, N., and Woody, R. W., 1994, Poly(Pro)II helices in globular proteins: Identification and circular dichroic analysis, Biochemistry 33: 10022–10025.

    Article  PubMed  CAS  Google Scholar 

  • Stradley, S. J., Rizo, J., Bruch, M. D., Stroup, A. N., and Gierasch, L. M., 1990, Cyclic pentapeptides as models for reverse turns: Determination of the equilibrium distribution between type I and type II conformations of Pro-Asn and Pro-Ala β-turns, Biopolymers 29: 263–287.

    Article  PubMed  CAS  Google Scholar 

  • Strel’tsova, Z. A., 1984, Analysis of enkephalin conformation using circular dichroism and fluorescence spectroscopy, Bioorg. Khim. 10: 817–823.

    PubMed  Google Scholar 

  • Surewicz, W. K., and Mantsch, H. H., 1988, New insight into protein secondary structure from resolution-enhanced infrared spectra, Biochim. Biophys. Acta 952: 115–130.

    Article  PubMed  CAS  Google Scholar 

  • Surewicz, W. K., Mantsch, H. H., and Chapman, D., 1993, Determination of protein secondary structure by Fourier transform infrared spectroscopy: A critical assessment, Biochemistry 32: 389–394.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, M., 1989, SPKK, a new nucleic acid-binding unit of protein found in histone, EMBO J. 8: 797–804.

    PubMed  CAS  Google Scholar 

  • Szendrei, G. I., Lee, V. M.-Y., and Ötvös, L., Jr., 1993, Recognition of the minimal epitope of monoclonal antibody Tau-1 depends upon the presence of a phosphate group but not its location, J. Neurosci. Res. 34: 243–249.

    Article  PubMed  CAS  Google Scholar 

  • Tamburro, A. M., and Guantieri, V., 1984, Folded β-turns and collagen like conformations of -Gly-Proand -Pro-Gly-sequences in synthetic polytripeptides, Biopolymers 23: 617–621.

    Article  CAS  Google Scholar 

  • Tancredi, T., Benedetti, E., Grimaldi, M., Pedone, C., Rossi, F., and Saviano, M., 1991, Ion binding of cyclolinopeptide A: An NMR and CD conformational study, Biopolymers 31: 761–767.

    Article  PubMed  CAS  Google Scholar 

  • Tinker, D. A., Krebs, E. A., Feltham, I. C., Attah-Poku, S. K., and Ananthanarayanan, V. S., 1988, Synthetic beta-turn peptides as substrates for a tyrosine protein kinase, J. Biol. Chem. 263: 5024–5026.

    PubMed  CAS  Google Scholar 

  • Tinoco, I., Jr., Woody, R. W., and Bradley, D. F., 1963, Absorption and rotation of light helical polymers. Effect of chain length, J. Chem. Phys. 38: 1317–1325.

    Article  CAS  Google Scholar 

  • Toniolo, C., 1980, Intramolecularly hydrogen-bonded peptide conformations, CRC Crit. Rev. Biochem. 9: 1–44.

    Article  PubMed  CAS  Google Scholar 

  • Toumadje, A., Alcorn, S. W., and Johnson, W. C., Jr., 1992, Extending CD spectra of proteins to 168 nm improves the analysis for secondary structures, Anal. Biochem. 200: 321–331.

    Article  PubMed  CAS  Google Scholar 

  • Urge, L., Görbics, L., and Otvös, L., Jr., 1992, Chemical glycosylation of peptide T at natural and artificial glycosylation sites stabilizes or rearranges the dominant reverse turn structures, Biochem. Biophys. Res. commun. 184: 1125–1132.

    Article  PubMed  CAS  Google Scholar 

  • Urry, D. W., Masotti, L., and Krivacic, J. R., 1971, Circular dichroism of biological membranes, I. Mitochondria and red blood cell ghosts, Biochem. Biophys. Acta 241: 600–612.

    Article  PubMed  CAS  Google Scholar 

  • Urry, D. W., Shaw, R. G., and Prasad, K. U., 1985, Polypentapeptide of elastin: Temperature dependence of ellipticity and correlation with elastomeric force, Biochem. Biophys. Res. Commun. 130: 50–57.

    Article  PubMed  CAS  Google Scholar 

  • van Holst, G.-J., Martin, S. R., Allen, A. K., Ashford, D., Desai, N. N., and Neuberger, A., 1986, Protein conformation of potato (Solanum tuberosum) lectin determined by circular dichroism, Biochem. J. 233: 731–736.

    PubMed  Google Scholar 

  • van Stokkum, I. H. M., Spoelder, H. J. W., Bloemendal, M., van Grondelle, R., and Groen, F. C. A., 1990, Estimation of protein secondary structure and error analysis from circular dichroism spectra, Anal. Biochem. 191: 110–118.

    Article  PubMed  Google Scholar 

  • Vasquez, M., and Scheraga, H. A., 1988, Calculation of protein conformation by the build up procedure. Application of bovine pancreatic trypsin inhibitor using limited simulated NMR data, J. Biomol. Struct. Dyn. 5: 705–755.

    Article  PubMed  CAS  Google Scholar 

  • Venkatachalam, M., 1968, Sterochemical criteria for polypeptides and proteins: Conformation of a system of three linked peptide units, Biopolymers 6: 1425–1436.

    Article  PubMed  CAS  Google Scholar 

  • Venyaminov, S. Y., and Kalnin, N. N., 1990, Quantitative IR spectrophotometry of peptide compounds in water (H2O) solutions. I. Spectral parameters of amino acid residue absorption bands, Biopolymers 30: 1243–1257.

    Article  PubMed  CAS  Google Scholar 

  • Venyaminov, S. Y., Baikov, I. A., Shen, Z. M., Wu, C.-S. C., and Yang, J. T., 1993, Circular dichroic analysis of denaturated proteins: Inclusion of denaturated proteins in the reference set, Anal. Biochem. 214: 17–24.

    Article  PubMed  CAS  Google Scholar 

  • Vicar, J., Malon, P., Trka, A., Smolikovâ, J., Fric, I., and Blâha, K., 1977, Synthesis and spectral properties of cyclotripeptides containing 2-azetidinecarboxylic acid or proline, Coll. Czech. Chem. Commun. 42: 2701–2717.

    Article  CAS  Google Scholar 

  • Volosov, A., and Woody, R. W., 1994, Theoretical approach to natural electronic optical activity, in: Circular Dichroism: Principles and Applications ( K. Nakanishi, N. Berova, and R. W. Woody, eds., pp. 59–84, VCH Publishers, New York.

    Google Scholar 

  • Walsh, M. T., Watzlawick, H., Putnam, F. W., Schmid, K., and Brossmer, R., 1990, Effect of the carbohydrate moiety on the secondary structure of O2-glycoprotein I. Implications for the biosynthesis and folding of glycoproteins, Biochemistry 29: 6250–6257.

    Article  PubMed  CAS  Google Scholar 

  • Williamson, M. P., 1992, Peptide structure determination by NMR, in: Methods in Molecular Biology, Vol. 7 (C. Jones, B. Mulloy, and A. H. Thomas, eds.), Humana Press, Clifton, NJ.

    Google Scholar 

  • Wilmot, C. M., and Thornton, J. M., 1988, Analysis and prediction of the different types of β turns in proteins, J. Mol. Biol. 203: 221–232.

    Article  PubMed  CAS  Google Scholar 

  • Wilmot, C. M., and Thornton, J. M., 1990, 3 turns and their distortions: A proposed new nomenclature, Protein Eng. 3: 479–493.

    Google Scholar 

  • Wishart, D. S., Sykes, B. D., and Richards, M., 1991a, Simple technics for the quantification of protein secondary structures by protein NMR spectroscopy, FEBS Lett. 293: 72.

    Article  PubMed  CAS  Google Scholar 

  • Wishart, D. S., Sykes, B. D., and Richards, M., 1991b, Relationship between nuclear magnetic resonance chemical shift and protein secondary structure, J. Mol. Biol. 222: 311.

    Article  PubMed  CAS  Google Scholar 

  • Wishart, D. S., Sykes, B. D., and Richards M., 1992, The chemical shift index: A fast and simple method for the assignment of protein secondary structure through NMR spectroscopy, Biochemistry 31: 1647.

    Article  PubMed  CAS  Google Scholar 

  • Woody, R. W., 1974, Studies of theoretical circular dichroism of polypeptides: Contributions of O-turns, in: Peptides, Polypeptides and Proteins ( E. R. Blout, F. A. Bovey, N. Lotan, and M. Goodman, eds.), pp. 338–350, Wiley, New York.

    Google Scholar 

  • Woody, R. W., 1977, Optical rotatory properties of biopolymers, J. Polym. Sci. Macromol. Rev. 12:181–199

    Article  CAS  Google Scholar 

  • Woody, R. W., 1978, Aromatic side chain contributions to the far ultraviolet circular dichroism of peptides and proteins, Biopolymers 17: 1451–1467.

    Article  CAS  Google Scholar 

  • Woody, R. W., 1985, Circular dichroism of peptides, in: The Peptides, Vol. 7 ( V. J. Hruby, ed.), pp. 15–114, Academic Press, New York.

    Google Scholar 

  • Wright, P. E., Dyson, H. J., and Lerner, R. A., 1988, Conformation of peptide fragments of proteins in aqueous solutions. Implications for initiation of protein folding, Biochemistry 27: 7167.

    Article  PubMed  CAS  Google Scholar 

  • Wütrich, K., 1990, Protein structure determination by nuclear magnetic resonance in proteins, J. Biol. Chem. 265: 2 2059.

    Google Scholar 

  • Wyssbrod, H. R., and Diem, M., 1992, IR (vibrational) CD of peptide beta-turns—A theoretical and experimental study of cyclo(Gly-Pro-Gly-D-Ala-Pro), Biopolymers 32: 1237–1242.

    Article  PubMed  CAS  Google Scholar 

  • Yang, J. T., Wu, C.-S. C., and Martinez, H. M., 1986, Calculation of protein conformation from circular dichroism, Methods Enzymol. 130: 208–269.

    Article  PubMed  CAS  Google Scholar 

  • Zargarova, T. A., Zargarov, A. A., Bolotina, I. A., Beresten’, S. F., and Favorova, I. O., 1990, A peptide, containing the universal antigenic determinant of tryptophanyl-tRNA-synthetase, Bioorg. Khim. 16: 1259–1267.

    PubMed  CAS  Google Scholar 

  • Zimmerman, S. S., Pottle, M. S., Némethy, G., and Scheraga, H. A., 1977, Conformational analyses of the 20 naturally occurring amino acid residues using ECEPP, Macromolecules 10: 1.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Perczel, A., Hollósi, M. (1996). Turns. In: Fasman, G.D. (eds) Circular Dichroism and the Conformational Analysis of Biomolecules. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2508-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2508-7_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3249-5

  • Online ISBN: 978-1-4757-2508-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics