CD Spectroscopy and the Helix-Coil Transition in Peptides and Polypeptides

  • Neville R. Kallenbach
  • Pingchiang Lyu
  • Hongxing Zhou
Chapter

Abstract

The proposal by Pauling and his coworkers (1951) of an atomic model for the structure of the alpha helix stimulated research in several areas of protein chemistry. It excited chemists as few discoveries have before or since, giving impetus to structural modeling efforts that resulted in the structure of DNA 2 years later, and in a whole new field of structural biology within two decades. Pauling’s feat pointed out the importance of understanding the conformation of the peptide group itself, rather than building models based on idealized helical structures. Working on the same problem, Bragg et al. (1950) failed to produce a structure of comparable elegance because they were unaware the peptide bond was planar (Crick, 1988). The alpha helix could be identified in the diffraction patterns from crystals of the globular proteins myoglobin and hemoglobin, as well as in the classical “α” patterns from fibrous proteins like keratin and synthetic polypeptides, poly(γ-l-glutamate) being the first to show the α pattern (Elliott, 1967).

Keywords

Circular Dichroism Helical Structure Coiled Coil Alpha Helix Coil State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamson, J. G., Zhou, N. E., and Hodges, R. S., 1993, Structure, function and application of the coiled-coil protein folding motif, Curr. Opin. Biotechnol. 4: 428–437.PubMedCrossRefGoogle Scholar
  2. Adler, A. J., Greenfield, N., and Fasman, G. D., 1973, Circular dichroism and optical rotatory dispersion of proteins and polypeptides, Methods Enzymol. 27: 675–735.PubMedCrossRefGoogle Scholar
  3. Allegra, G., 1967, The calculation of average functions of local conformations for a noninteracting copolymer system with neighbor interactions, J. Polymer Sci. C 16: 2815–2824.Google Scholar
  4. Amati, B., Brooks, M., Levy, N., Littlewood, T., Evan, G., and Land, H., 1993, Oncogenic activity of the c-Myc protein requires dimerization with Max, Cell, 72: 233–245.PubMedCrossRefGoogle Scholar
  5. Ananthanarayanan, V. S., Andreatta, R. H., Poland, D., and Scheraga, H. A., 1971, Helix–coil stability constants for the naturally occurring amino acids in water. III. Glycine parameters from random poly(hydroxybutyl glutamine-co-glycine), Macromolecules 4: 417–424.CrossRefGoogle Scholar
  6. Armstrong, K. M., and Baldwin, R. L., 1993, Charged histidine affects a-helix stability at all positions in the helix by interacting with the backbone charges, Proc. Natl. Acad. Sci. USA 90: 11337–11340.PubMedCrossRefGoogle Scholar
  7. Aurora, R., Srinivasan, R., and Rose, G. D., 1994, Rules for helix termination by glycine, Science 264: 1126–1130.PubMedCrossRefGoogle Scholar
  8. Barskaya, T. V., and Ptitsyn, O. B., 1971, Thermodynamic parameters of helix–coil transition in polypeptide chains. II. Poly-t,-lysine, Biopolymers 10: 2181–2197.PubMedCrossRefGoogle Scholar
  9. Basu, G., and Kuki, A., 1993, Evidence for a 310 helical conformation of an eight residue peptide from ‘H–’H rotating frame Overhauser studies, Biopolymers 33: 995–1000.PubMedCrossRefGoogle Scholar
  10. Bell, J. A., Becktel, W. J., Sauer, U., Baase, W. A., and Matthews, B. M., 1992, Dissection of helix capping in T4 lysozyme by structural and thermodynamic analysis of six amino acid substitutions at Thr59, Biochemistry 31: 3590–3596.PubMedCrossRefGoogle Scholar
  11. Beychok, S., 1967, Circular dichroism of poly-a-amino acids and proteins, in: Poly-a-amino Acids—Protein Models for Conformational Studies ( G. D. Fasman, ed.), pp. 293–338, Dekker, New York.Google Scholar
  12. Bierzynski, A., Kim, P. S., and Baldwin, R. L., 1982, A salt bridge stabilizes the helix formed by isolated C-peptide of RNase A, Proc. Nad. Acad. Sci. USA 79: 2470–2474.CrossRefGoogle Scholar
  13. Blaber, M., Zhang, X.-J., and Matthews, B. W., 1993a, Structural basis of amino acid a-helical propensity, Science 260: 1637–1640.PubMedCrossRefGoogle Scholar
  14. Blaber, M., Zhang, X.-J., Lindstrom, J. D., Pepiot, S. D., Baase, W. A., and Matthews, B. W., 1993b, Determination of a helical propensity within the context of a folded protein, J. Mol. Biol. 235: 600–624.CrossRefGoogle Scholar
  15. Bodanszky, M., 1993, Peptide Chemistry: A Practical Textbook, pp. 58–60, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  16. Bragg, W. L., Kendrew, J. C., and Perutz, M. F., 1950, Polypeptide chain configuration in crystalline proteins, Proc. R. Soc. London Ser. A 203: 321–357.CrossRefGoogle Scholar
  17. Brahms, J., and Brahms, 1980, Determination of protein secondary structure in solution by vacuum ultraviolet circular dichroism, J. Mol. Biol. 138: 149–178.PubMedCrossRefGoogle Scholar
  18. Brahms, J., and Spach, G., 1963, Circular dichroic studies of synthetic polypeptides, Nature 200: 72–73.CrossRefGoogle Scholar
  19. Brown, J. E., and Klee, W. A., 1971, Helix–coil transition of the isolated amino terminus of ribonuclease, Biochemistry 10: 470–476.PubMedCrossRefGoogle Scholar
  20. Bruch, M. D., Dhingra, M. M., and Gierasch, L. M., 1991, Side chain–backbone hydrogen bonding contributes to helix stability in peptides derived from an a-helical region of carboxypeptidase A, Proteins Struct. Funct. Genet. 10: 130–139.PubMedCrossRefGoogle Scholar
  21. Burley, S. K., and Pesko, G. A., 1986, Amino–aromatic interactions in proteins, FEBS Lett. 203: 139–143.PubMedCrossRefGoogle Scholar
  22. Bychkova, V. E., Ptitsyn, O. B., and Barskaya, T. V., 1971, Thermodynamic parameters of helix–coil transition in polypeptide chains. I. Poly-L-glutamic acid, Biopolymers 10: 2161–2179.PubMedCrossRefGoogle Scholar
  23. Chakrabartty, A., Schellman, J. A., and Baldwin, R. L., 1991, Large differences in the helix propensities of alanine and glycine, Nature 351: 586–588.PubMedCrossRefGoogle Scholar
  24. Chakrabartty, A., Kortemme, T., Padmanabhan, S., and Baldwin, R. L., 1993, Aromatic side chain contribution to far ultraviolet circular dichroism of helical peptides and its effect on measurement of helical propensities, Biochemistry 32: 5560–5565.PubMedCrossRefGoogle Scholar
  25. Chakrabartty, A., Kortemme, T., and Baldwin, R. L., 1994a, Helix propensities of the amino acids measured in alanine-based peptides without helix-stabilizing side chain interactions, Protein Sci. 3: 843–852.PubMedCrossRefGoogle Scholar
  26. Chakrabartty, A., Doig, A., and Baldwin, R. L., 1994b, Helix N-cap propensities in peptides parallel those found in proteins, Proc. Natl. Acad. Sci. USA 90: 11332–11336.CrossRefGoogle Scholar
  27. Chang, C. T., Wu, C. C., and Yang, J. T., 1978, Circular dichroic analysis of protein conformation of the 13-turns, Anal. Biochem. 91: 13–31.PubMedCrossRefGoogle Scholar
  28. Chen, Y. H., Yang, J. T., and Chau, K. H., 1974, Determination of the a helix and 13 form of proteins in aqueous solution by circular dichroism, Biochemistry 13: 3350–3359.PubMedCrossRefGoogle Scholar
  29. Chen, Y. W., Fersht, A. R., and Henrick, K., 1994, Contribution of buried hydrogen bonds to protein stability, J. Mol. Biol. 234: 1158–1170.CrossRefGoogle Scholar
  30. Chou, P. Y., and Fasman, G. D., 1974, Prediction of protein conformation, Biochemistry 13: 211–222.PubMedCrossRefGoogle Scholar
  31. Chou, P. Y., and Fasman, G. D., 1978, Prediction of the secondary structure of proteins from their amino acid sequence, Adv. Enzymol. 47: 45–148.PubMedGoogle Scholar
  32. Chou, P. Y., Wells, M., and Fasman, G. D., 1972, Conformational studies on copolymers of hydroxypropyl-L-glutamine and L-leucine. Circular dichroism studies, Biochemistry 11: 3028–3043.PubMedCrossRefGoogle Scholar
  33. Creamer, T. P., and Rose, G. D., 1992, Side chain entropy opposes a helix formation but rationalizes experimentally determined helix-forming propensities, Proc. Natl. Acad. Sci. USA 89: 5937–5941.PubMedCrossRefGoogle Scholar
  34. Creamer, T. P., and Rose, G. D., 1994, a-Helix forming propensities in peptides and proteins, Proteins Struct. Funct. Genet. 19: 85–97.Google Scholar
  35. Crick, F. H. C., 1953, The packing of a-helices: Simple coiled coils, Acta Crystallogr. 6: 689–697.CrossRefGoogle Scholar
  36. Crick, F. H. C., 1988, What Mad Pursuit, pp. 53–61, Basic Books, New York.Google Scholar
  37. Davidson, A. R., and Sauer, R. T., 1994, Folded proteins occur frequently in libraries of random amino acid sequences, Proc. Natl. Acad. Sci. USA 91: 2146–2150.PubMedCrossRefGoogle Scholar
  38. DeGrado, W. F., 1993, Catalytic molten globules, Nature 365: 488–490.PubMedCrossRefGoogle Scholar
  39. Dill, K., 1990, Dominant forces in protein folding, Biochemistry 29: 7133–7135.PubMedCrossRefGoogle Scholar
  40. Doig, A. J., Chakrabartty, A., Klingler, T. M., and Baldwin, R. L., 1994, Determination of free energies of N capping in alpha helices by modification of the Lifson–Roig helix–coil theory to include N and C capping, Biochemistry 33: 3396–3403.PubMedCrossRefGoogle Scholar
  41. Doty, P., and Yang, J. T., 1956, Polypeptides: VII. Poly-y-benzyl-L-glutamate: The helix–coil transition in solution, J. Am. Chem. Soc. 78: 498–500.CrossRefGoogle Scholar
  42. Doty, P., Holtzer, A. M., Bradbury, J. H., and Blout, E. R., 1954, Polypeptides. II. The configuration of polymers of y-benzyl-L-glutamate in solution, J. Am. Chem. Soc. 76: 4493–4494.CrossRefGoogle Scholar
  43. Edelhoch, H., 1967, Spectroscopic determination of tryptophan and tyrosine in proteins, Biochemistry 6: 1948–1954.PubMedCrossRefGoogle Scholar
  44. Elliott, A., 1967, X-ray diffraction by synthetic polypeptides, in: Poly-a-amino Acids-Protein Models for Conformational Studies ( G. D. Fasman, ed.), pp. 1–68, Dekker, New York.Google Scholar
  45. Epand, R. M., and Scheraga, H. A., 1968, The influence of long-range interactions on the structure of myoglobin, Biochemistry 7: 2864–2872.PubMedCrossRefGoogle Scholar
  46. Fairman, R., Shoemaker, K. R., Stewart, J. M., and Baldwin, R. L., 1990, The Glu2… Arg10 side chain interaction in the C-peptide helix of ribonuclease A, Biophys. Chem. 37: 107–119.PubMedCrossRefGoogle Scholar
  47. Fairman, R., Armstrong, K. M., Shoemaker, K. R., York, E. J., Stewart, J. M., and Baldwin, R. L., 1991, Position effect on apparent helical propensities in the C-peptide helix, J. Mol. Biol. 221: 1395–1401.PubMedGoogle Scholar
  48. Fasman, G. D., ed., 1967, Poly-a-amino Acids, Dekker, New York.Google Scholar
  49. Fasman, G. D., 1989, The development of the prediction of protein structure, in: Prediction of Protein Structure and the Principles of Protein Conformation ( G. D. Fasman, ed.), pp. 193–316, Plenum Press, New York.CrossRefGoogle Scholar
  50. Finkelstein, A. V., and Ptitsyn, O. B., 1976, A theory of protein molecule self-organization. IV. Helix and irregular local structures of unfolded protein chains, J. Mol. Biol. 103: 15–24.PubMedCrossRefGoogle Scholar
  51. Finkelstein, A. V., Badretinov, A. Y., and Ptitsyn, O. B., 1990, Short a helix stability, Nature 345: 300.CrossRefGoogle Scholar
  52. Finkelstein, A. V., Badretinov, A. Y., and Ptitsyn, O. B., 1991, Physical reasons for secondary structure stability: a helices in short peptides, Proteins Struct. Funct. Genet. 10: 287–299.PubMedCrossRefGoogle Scholar
  53. Forood, B., Felliciano, E. J., and Nambiar, K. P., 1993, Stabilization of a-helical structures in short peptides via capping, Proc. Natl. Acad. Sci. USA 90: 838–842.PubMedCrossRefGoogle Scholar
  54. Gans, P. J., Lyu, P. C., Manning, M. C., Woody, R. W., and Kallenbach, N. R., 1991, The helix—coil transition in heterogeneous peptides with specific side chain interaction: Theory and comparison with circular dichroism, Biopolymers 31: 1605–1614.PubMedCrossRefGoogle Scholar
  55. Gentz, R., Rauscher, F. J., III, Abate, C., and Curran, T., 1989, Parallel association of Fos and Jun leucine zippers juxtaposes DNA binding domains, Science 243: 1695–1699.PubMedCrossRefGoogle Scholar
  56. Gibbs, J. H., and DiMarzio, E. A., 1959, Statistical mechanics of helix-coil transitions in biological macromolecules, J. Chem. Phys. 30: 271–282.CrossRefGoogle Scholar
  57. Harbury, P., Zhang, T., Kim, P., and Alber, T., 1993, A switch between two-, three-, and four-stranded coil coils in GCN4 leucine zipper mutants, Science 262: 1401–1407.PubMedCrossRefGoogle Scholar
  58. Harper, E., and Rose, G. D., 1993, Helix stop signal in proteins and peptides: The capping box, Biochemistry 32: 7605–7609.PubMedCrossRefGoogle Scholar
  59. Hermans, J., Jr., 1996a, The effect of protein denaturants on the stability of the a helix, J. Am. Chem. Soc. 88: 2418–2422.CrossRefGoogle Scholar
  60. Hermans, J., Jr., 1966b, Experimental free energy and enthalpy of formation of the a helix, J. Phys. Chem. 70: 510–515.PubMedCrossRefGoogle Scholar
  61. Hermans, J., Anderson, A. G., and Yun, R. H., 1992, Differential helix propensity of small apolar side chains studied by molecular dynamics simulations, Biochemistry 31: 5646–5653.PubMedCrossRefGoogle Scholar
  62. Hill, T. L., 1959, Generalization of the one-dimensional Ising model applicable to helix transitions in nucleic acids and proteins, J. Chem. Phys. 30: 383–387.CrossRefGoogle Scholar
  63. Hol, W. G. J., 1985, The role of the alpha helix dipole in protein function and structure, Prog. Biophys. Mol. Biol. 45: 149–195.PubMedCrossRefGoogle Scholar
  64. Holtzer, M. E., and Holtzer, A., 1990, Alpha helix to random coil transitions of two chain coiled coils: Experiments on the thermal denaturation of isolated segments of as tropomyosin, Biopolymers 30: 985–993.PubMedCrossRefGoogle Scholar
  65. Holtzer, M. E., and Holtzer, A., 1992, Alpha helix to random coil transitions: Determination of peptide concentration from the CD at the isodichroic point, Biopolymers 32: 1675–1677.PubMedCrossRefGoogle Scholar
  66. Holzwarth, G., and Doty, P., 1965, The ultraviolet circular dichroism of polypeptides, J. Am. Chem. Soc. 87: 218–228.PubMedCrossRefGoogle Scholar
  67. Horovitz, A., Matthews, J. M., and Fersht, A. R., 1992, a-Helix stability in proteins. II. Factors that influence stability at an internal position, J. Mol. Biol. 227: 560–568.Google Scholar
  68. Hu, J. C., O’Shea, E. K., Kim, P. S., and Sauer, R. T., 1990, Sequence requirements for coiled-coils: Analysis with 1 repressor-GCN4 leucine zipper fusions, Science 250: 1400–1403.PubMedCrossRefGoogle Scholar
  69. Huyghues-Despointes, B. M. P., Scholtz, J. M., and Baldwin, R. L., 1993a, Helical peptides with three pairs of Asp-Arg and Glu-Arg residues in different orientations and spacings, Protein Sci. 2: 80–85.PubMedCrossRefGoogle Scholar
  70. Huyghues-Despointes, B. M. P., Scholtz, J. M., and Baldwin, R. L., 1993b, Effect of a single aspartate on helix stability at different positions in a neutral alanine-based peptide, Protein Sci. 2: 1604–1611.PubMedCrossRefGoogle Scholar
  71. Ihara, S., Ooi, T., and Takahashi, S., 1982, Effects of salts on the nonequivalent stability of the a-helices of isomeric block copolypeptide, Biopolymers 21: 131–145.CrossRefGoogle Scholar
  72. Ishii, Y., 1994, The local and global unfolding of coiled-coil tropomyosin, Eur. J. Biochem. 221: 705–712.PubMedCrossRefGoogle Scholar
  73. Jacchieri, S. G., and Jernigan, R. L., 1992, Variable ranges of interactions in polypeptide conformations with a method to complement molecular modelling, Biopolymers 32: 1327–1338.PubMedCrossRefGoogle Scholar
  74. Jacchieri, S. G., and Richards, N. G. J., 1993, Probing the influence of sequence dependent interactions upon alpha helix stability in alanine based linear peptides, Biopolymers 33: 971–984.PubMedCrossRefGoogle Scholar
  75. Jasanoff, A., and Fersht, A. R., 1994, Quantitative determination of helical propensities from trifluoroethanol titration curves, Biochemistry 33: 2129–2135.PubMedCrossRefGoogle Scholar
  76. Johnson, W. C., Jr., and Tinoco, I., Jr., 1972, Circular dichroism of polypeptide solutions in the vacuum ultraviolet, J. Am. Chem. Soc. 94: 4389–4390.PubMedCrossRefGoogle Scholar
  77. Kamtekar, S., Schiffer, J. M., Xiong, H., Babik, J. M., and Hecht, M. H., 1993, Protein design by binary patterning of polar and nonpolar amino acids, Science 262: 1680–1685.PubMedCrossRefGoogle Scholar
  78. Kauzmann, W., 1959, Some factors in the interaction of protein denaturation, Adv. Protein Chem. 14: 1–63.PubMedCrossRefGoogle Scholar
  79. Kemp, D. S., Boyd, J. G., and Muendel, C. C., 1991, The helical s constant for alanine in water derived from template nucleated helices, Nature 352: 451–454.PubMedCrossRefGoogle Scholar
  80. Kendrew, J. C., Bodo, G., Dintzis, H. M., Parrish, R. G., Wyckoff, H., and Phillips, D. C., 1958, A three-dimensional model of the myoglobin molecule obtained by X-ray analysis, Nature 181: 662–666.PubMedCrossRefGoogle Scholar
  81. Kim, P. S., and Baldwin, R. L., 1990, Intermediates in the folding reactions of small proteins, Annu. Rev. Biochem. 59: 631–660.CrossRefGoogle Scholar
  82. Kitakuni, E., Horiuchi, T., Oda, Y., Oobatake, M., Nakamura, H., and Tanka, T., 1992, Design and synthesis of an a-helical peptide containing periodic proline residues, FEBS Lett. 298: 233–236.PubMedCrossRefGoogle Scholar
  83. Klee, W. A., 1968, Studies on the conformation of ribonuclease S-peptide, Biochemistry 7: 2731–2736.PubMedCrossRefGoogle Scholar
  84. Koehl, P., and Delarue, M., 1994, Application of a self-consistent mean field theory to predict protein side-chains conformation and estimate their conformational entropy, J. Mol. Biot. 239: 249–275.CrossRefGoogle Scholar
  85. Kouzarides, T., and Ziff, E., 1989, Leucine zippers of fos, jun and GCN4 dictate dimerization specificity and thereby control DNA binding, Nature 340: 568–571.PubMedCrossRefGoogle Scholar
  86. Krylov, D., Mikhailenko, I., and Vinson, C., 1994, A thermodynamic scale for leucine zipper stability and dimerization specificity: e and g interhelical interactions, EMBO J. 13: 2849–2861.PubMedGoogle Scholar
  87. Landschulz, W. H., Johnson, P. F., and McKnight, S. L., 1988, The leucine zipper: A hypothetical structure common to a new class of DNA binding proteins, Science 240: 1759–1764.PubMedCrossRefGoogle Scholar
  88. Lecomte, J. T. J., and Moore, C. D., 1991, Helix formation in apocytochrome b5: The role of a neutral histidine at the N-cap position, J. Am. Chem. Soc. 113: 9663–9665.CrossRefGoogle Scholar
  89. Lee, K. H., Xie, D., Freire, E., and Amzel, L. M., 1994, Estimation of changes in side chain configurational entropy in binding and folding: General methods and application to helix formation, Proteins Struct. Funct. Genet. 20: 68–84.PubMedCrossRefGoogle Scholar
  90. Lehman, G. W., and McTague, J. P., 1968, Melting of DNA, J. Chem. Phys. 49: 3170–3179.PubMedCrossRefGoogle Scholar
  91. Levitt, M., and Perutz, M. F., 1988, Aromatic rings act as hydrogen bond acceptors, J. Mol. Biol. 201: 751–754.PubMedCrossRefGoogle Scholar
  92. Li, S.-C., and Deber, C. M., 1994, A measure of helical propensity for amino acids in membrane environments, Nature Struct. Biol. 1: 368–373.PubMedCrossRefGoogle Scholar
  93. Lifson, S., and Roig, A., 1961, On the theory of helix-coil transitions in polypeptides, J. Chem. Phys. 34: 1963–1974.CrossRefGoogle Scholar
  94. Lockhart, D. J., and Kim, P. S., 1992, Internal Stark effect measurement of the electric field at the amino terminus of an a helix, Science 257: 947–951.PubMedCrossRefGoogle Scholar
  95. Lockhart, D. J., and Kim, P. S., 1993, Electrostatic screening of charge and dipole interactions with the helix backbone, Science 260: 198–202.PubMedCrossRefGoogle Scholar
  96. Lotan, N., Yaron, A., and Berger, A., 1965, Conformational changes in the nonionizable water-soluble synthetic polypeptide poly-N5-(3-hydroxypropyl)-L-glutamine, Biopolymers 3: 625–655.CrossRefGoogle Scholar
  97. Lotan, N., Yaron, A., and Berger, A., 1966, The stabilization of the a-helix in aqueous solution by hydrophobic side chain interaction, Biopolymers 4: 365–368.CrossRefGoogle Scholar
  98. Lovejoy, B., Choe, S., Cascio, D., McRorie, D. K., DeGrado, W. F., and Eisenberg, D., 1993, Crystal structure of a synthetic triple stranded a helical bundle, Science 259: 1288–1293.PubMedCrossRefGoogle Scholar
  99. Lyu, P. C., Liff, M. I., Marky, L. A., and Kallenbach, N. R., 1990, Side chain contributions to the stability of alpha helical structure in peptides, Science 250: 669–673.PubMedCrossRefGoogle Scholar
  100. Lyu, P. C., Sherman, J. C., Chen, A., and Kallenbach, N. R., 1991, Alpha helix stabilization by natural and unnatural amino acids with alkyl side chains, Proc. Natl. Acad. Sci. USA 88: 5317–5320.PubMedCrossRefGoogle Scholar
  101. Lyu, P. C., Gans, P. J., and Kallenbach, N. R., 1992a, Energetic contribution of solvent exposed ion pairs to alpha helix structure, J. Mol. Biol. 223: 343–350.PubMedCrossRefGoogle Scholar
  102. Lyu, P. C., Zhou, H. X., Jelveh, N., Wemmer, D. E., and Kallenbach, N. R., 1992b, Position dependent stabilizing effects in a-helices: N-terminal capping in synthetic model peptides, J. Am. Chem. Soc. 114: 6560–6562.CrossRefGoogle Scholar
  103. Lyu, P. C., Wemmer, D. E., Zhou, H. X., Pinker, R. J., and Kallenbach, N. R., 1993, Capping interactions in isolated a helices: Position dependent substitution effects and structure of a serine capped peptide helix, Biochemistry 32: 421–425.PubMedCrossRefGoogle Scholar
  104. Manavalan, P., and Johnson, W. C., Jr., 1987, Variable selection method improves the prediction of protein secondary structure from circular dichroism spectra, Anal. Biochem. 167: 76–85.PubMedCrossRefGoogle Scholar
  105. Manning, M. C., and Woody, R. W., 1991, Theoretical CD studies of polypeptide helices: Examination of important electronic and geometric factors, Biopolymers 31: 569–586.PubMedCrossRefGoogle Scholar
  106. Marky, L. A., and Breslauer, K. J., 1987, Calculating thermodynamic data for transitions of any molecularity from equilibrium melting curves, Biopolymers 26: 1601–1620.PubMedCrossRefGoogle Scholar
  107. Marqusee, S., and Baldwin, R. L., 1987, Helix stabilization by Glu-… Lys ` salt bridges in short peptides of de novo design, Proc. Natl. Acad. Sci. USA 84: 8898–8902.PubMedCrossRefGoogle Scholar
  108. Marqusee, S., and Baldwin, R. L., 1990, a helix formation by short peptides in water, in: Protein Folding, pp. 85–94, American Association for the Advancement of Science, Washington, DC.Google Scholar
  109. Marqusee, S., Robbins, V. H., and Baldwin, R. L., 1989, Unusually stable helix formation in short alanine based peptides, Proc. Natl. Acad. Sci. USA 86: 5286–5290.PubMedCrossRefGoogle Scholar
  110. Merutka, G., and Stellwagen, E., 1990, Positional independence and additivity of amino acid replacements on helix stability in monomeric peptides, Biochemistry 29: 894–898.PubMedCrossRefGoogle Scholar
  111. Merutka, G., Lipton, W., Shalongo, W., Park, S.-H., and Stellwagen, E., 1990, Effect of central residue replacements on the helical stability of a monomeric peptide, Biochemistry 29: 7511–7515.PubMedCrossRefGoogle Scholar
  112. Muck, S. M., Martinez, G. V., Fiori, W. R., Todd, A. P., and Millhauser, G. L., 1992, Short alanine-based peptides may form 310-helix and not a-helices in aqueous solution, Nature 359: 653–655.CrossRefGoogle Scholar
  113. Miller, W. G., and Nyland, R. E., 1965, The stability of the helical conformation of random L-leucine-L-glutamic acid copolymers in aqueous solution, J. Am. Chem. Soc. 87: 3542–3547.PubMedCrossRefGoogle Scholar
  114. Moffitt, W., 1956a, The optical rotatory dispersion of simple polypeptides. II, Proc. Natl. Acad. Sci. USA 42: 736–746.PubMedCrossRefGoogle Scholar
  115. Moffitt, W., 1956b, Optical rotatory dispersion of helical polymers, J. Chem. Phys. 25: 467–478.CrossRefGoogle Scholar
  116. Moffitt, W., Fitts, D., and Kirkwood, J., 1957, Critique of the theory of optical activity of helical polymers, Proc. Natl. Acad. Sci. USA 43: 723–730.PubMedCrossRefGoogle Scholar
  117. Munoz, V., and Serrano, L., 1994, Elucidating the folding problem of helical peptides using empirical parameters, Nature Struct. Biol. 1: 399–409.PubMedCrossRefGoogle Scholar
  118. Nagai, K., 1961, Dimensional change of polypeptide molecules in the helix-coil transition region II, J. Chem. Physics 34: 887–904.CrossRefGoogle Scholar
  119. Nelson, J. W., and Kallenbach, N. R., 1986, Stabilization of ribonuclease S-peptide a-helix by trifluoroethanol, Proteins Struct. Funct. Genet. 1: 211–217.PubMedCrossRefGoogle Scholar
  120. O’Neil, K. T., and DeGrado, W. F., 1990, A thermodynamic scale for the helix-forming tendencies of the commonly occurring amino acids, Science 250: 646–651.PubMedCrossRefGoogle Scholar
  121. Osapay, G., and Taylor, J. W., 1992, Multicyclic polypeptide model compounds. 2. Synthesis and conformational properties of a highly a helical uncosapeptide constrained by three side chain to side chain lactam bridges, J. Am. Chem. Soc. 114: 6966–6973.CrossRefGoogle Scholar
  122. O’Shea, E. K., Rutkowski, R., Stafford, W. F., III, and Kim, P. S., 1989, Preferential heterodimer formation by isolated leucine zippers from fos and jun, Science 245: 646–648.PubMedCrossRefGoogle Scholar
  123. O’Shea, E. K., Klemm, J. D., Kim, P. S., and Alber, T., 1991, X-ray structure of the GCN4 leucine zipper, a two-stranded, parallel coiled coil, Science 254: 539.PubMedCrossRefGoogle Scholar
  124. O’Shea, E. K., Rutkowski, R., and Kim, P. S., 1992, Mechanism of specificity in the Fos-Jun oncoprotein heterodimer, Cell 68: 699–708.PubMedCrossRefGoogle Scholar
  125. O’Shea, E. K., Lumb, K., and Kim, P. S., 1993, Peptide “Velcro”: Design of a heterodimeric coiled coil, Curr. Biol. 3: 658–667.PubMedCrossRefGoogle Scholar
  126. Padmanabhan, S., and Baldwin, R. L., 1991, Straight chain non-polar amino acids are good helix formers in water, J. Mol. Biol. 219: 135–137.PubMedCrossRefGoogle Scholar
  127. Padmanabhan, S., Marqusee, S., Ridgeway, T., Lau, T. M., and Baldwin, R. L., 1990, Relative helix forming tendencies of non-polar amino acids, Nature 344: 268–270.PubMedCrossRefGoogle Scholar
  128. Padmanabhan, S., York, E. J., Gera, L., Stewart, J. M., and Baldwin, R. L., 1994, Helix-forming tendencies of amino acids in short (hydroxybutyl)-L-glutamine peptides: An evaluation of the contradictory results from host-guest studies and short alanine based peptides, Biochemistry 33: 8604–8609.PubMedCrossRefGoogle Scholar
  129. Park, K., Perczel, A., and Fasman, G. D., 1992, Differentiation between transmembrane helices and peripheral helices by the deconvolution of circular dichroism spectra of membrane proteins, Protein Sci. 1: 1032–1049.PubMedCrossRefGoogle Scholar
  130. Park, S.-H., Shalongo, W., and Stellwagen, E., 1993, Residue helix parameters obtained from dichroic analysis of peptides of defined sequence, Biochemistry 32: 7048–7053.PubMedCrossRefGoogle Scholar
  131. Pauling, L., 1960, The Nature of the Chemical Bond, 3rd ed., Cornell University Press, Ithaca, NY.Google Scholar
  132. Pauling, L., 1988, General Chemistry, 3rd ed., pp. 432–433, Dover, New York.Google Scholar
  133. Pauling, L., and Corey, R. B., 1951, Atomic coordinates and structure factors for two helical configurations of polypeptide chains, Proc. Natl. Acad. Sci. USA 37: 235–240.PubMedCrossRefGoogle Scholar
  134. Pauling, L., Corey, R. B., and Branson, H. R., 1951, The structure of proteins: Two hydrogen-bonded helical configurations of the polypeptide chain, Proc. Natl. Acad. Sci. USA 37: 205–210.PubMedCrossRefGoogle Scholar
  135. Pauling, L., and Corey, R. B., 1953, Compound helical configurations of polypeptide chains: Structure of proteins of the a-keratin type, Nature 171: 59–61.PubMedCrossRefGoogle Scholar
  136. Peller, L., 1959a, On a model for the helix-random coil transition in polypeptides. I. The model and its thermal behavior, J. Phys. Chem. 63: 1194–1199.CrossRefGoogle Scholar
  137. Peller, L., 1959b, On a model for the helix-random coil transition in polypeptides. II. The influence of solvent composition and charge interactions on the transition, J. Phys. Chem. 63: 1199–1206.CrossRefGoogle Scholar
  138. Poland, D. C., and Scheraga, H. A., 1965, Comparison of theories of the helix-coil transition in polypeptides, J. Chem. Phys. 43: 2071–2074.PubMedCrossRefGoogle Scholar
  139. Poland, D. C., and Scheraga, H. A., 1970, Theory of Helix-Coil Transitions in Biopolymers, Academic Press, New York.Google Scholar
  140. Presta, L. G., and Rose, G. D., 1988, Helix signals in proteins, Science 240: 1632–1641.PubMedCrossRefGoogle Scholar
  141. Ptitsyn, O. B., 1992, Secondary structure formation and stability, Curr. Opin. Struct. Biol. 2: 13–20.CrossRefGoogle Scholar
  142. Pu, W., and Struhl, K., 1993, Dimerization of leucine zippers analyzed by random selection, Nucleic Acid. Res. 21: 4348–4355.PubMedCrossRefGoogle Scholar
  143. Qian, H., 1994, A thermodynamic model for the helix—coil transition coupled to dimerization of short coiled-coil peptides, Biophys. J. 67: 349–355.PubMedCrossRefGoogle Scholar
  144. Qian, H., and Schellman, J. A., 1992, Helix-coil theories: A comparative study for finite length polypeptides, J. Phys. Chem. 96: 3987–3994.CrossRefGoogle Scholar
  145. Reiss, H., McQuarrie, D. A., McTaque, J. P., and Cohen, E. R., 1966, On the melting of copolymeric DNA, J. Chem. Phys. 44: 4567–4581.CrossRefGoogle Scholar
  146. Rialdi, G., and Hermans, J., Jr., 1966, Calorimetric heat of the helix—coil transition of poly-L-glutamic acid, J. Am. Chem. Soc. 88: 5719–5720.PubMedCrossRefGoogle Scholar
  147. Richardson, J. S., and Richardson, D. C., 1988, Amino acid preferences for specific locations at the ends of a helices, Science 240: 1648–1652.PubMedCrossRefGoogle Scholar
  148. Roberts, C. H., 1990, A hierarchical nesting approach to describe the stability of alpha helices with side chain interactions, Biopolymers 30: 335–347.CrossRefGoogle Scholar
  149. Rohl, C. A., and Baldwin, R. L., 1994, Exchange kinetics of individual amide protons in 15N-labeled helical peptides measured by isotope-edited NMR, Biochemistry 33: 7760–7764.PubMedCrossRefGoogle Scholar
  150. Rohl, C. A., Scholtz, J. M., York, E. J., Stewart, J. M., and Baldwin, R. L., 1992, Kinetics of amide proton exchange in helical peptides of varying chain lengths: Interpretation by the Lifson—Roig equation, Biochemistry 31: 1263–1269.PubMedCrossRefGoogle Scholar
  151. Sasaki, S., Yasumoto, Y., and Uematsu, I., 1981, Tr-Helical conformation of poly(ß-phenethyl-L-aspartate), Macromolecules 14: 1797–1801.CrossRefGoogle Scholar
  152. Schellman, C., 1980, The aL conformation at the ends of helices, in: Protein Folding ( R. Jaenicke, ed.), pp. 53–61, Elsevier/North-Holland, Amsterdam.Google Scholar
  153. Schellman, J. A., 1955a, The thermodynamics of urea solutions and the heat of formation of the peptide hydrogen bonds, C.R. Lab Carlsberg Ser. Chim. 29: 223–229.Google Scholar
  154. Schellman, J. A., 1955b, The stability of hydrogen bonded peptide structures in aqueous solution, C.R. Lab. Carlsberg Ser. Chim. 29: 230–259.Google Scholar
  155. Schellman, J. A., 1958, The factors affecting the stability of hydrogen bonded polypeptide structures in solution, J. Phys. Chem. 62: 1485–1494.CrossRefGoogle Scholar
  156. Schellman, J. A., 1978, Solvent denaturation, Biopolymers 17: 1305–1322.CrossRefGoogle Scholar
  157. Schellman, J. A., 1987, Selective binding and solvent denaturation, Biopolymers 26: 549–559.PubMedCrossRefGoogle Scholar
  158. Schellman, J. A., 1990, A simple model for solvation in mixed solvents. Application to the stabilization and destabilization of macromolecular structures, Biophys. Chem. 37: 121–140.PubMedCrossRefGoogle Scholar
  159. Schellman, J. A., and Oriel, P., 1962, Origin of the Cotton effect of helical polypeptides, J. Chem. Phys. 37: 2114–2124.CrossRefGoogle Scholar
  160. Scheraga, H. A., 1978, Use of random copolymers to determine the helix—coil stability constants of the naturally occurring amino acids, Pure Appl. Chem. 50: 315–324.CrossRefGoogle Scholar
  161. Scholtz, J. M., and Baldwin, R. L., 1992, The mechanism of a-helix formation by peptides, Annu. Rev. Biophys. Biomol. Struct. 21: 95–118.PubMedCrossRefGoogle Scholar
  162. Scholtz, J. M., Qian, H., York, E. J., Stewart, J. M., and Baldwin, R. L., 1991a, Parameters of helix coil transition theory for alanine based peptides of varying chain lengths in water, Biopolymers 31: 1463–1470.PubMedCrossRefGoogle Scholar
  163. Scholtz, J. M., Marqusee, S., Baldwin, R. L., York, E. J., Stewart, J. M., Santoro, M., and Bolen, D. W., 1991b, Calorimetric determination of the enthalpy change for the a helix to coil transition of an alanine peptide in water, Proc. Natl. Acad. Sci. USA 88: 2854–2858.PubMedCrossRefGoogle Scholar
  164. Scholtz, J. M., York, E. J., Stewart, J. M., Santoro, M., and Baldwin, R. L., 1991c, A neutral, water soluble a helical peptide: The effect of ionic strength on the helix—coil equilibrium, J. Am. Chem. Soc. 113: 5102–5104.CrossRefGoogle Scholar
  165. Scholtz, J. M., Qian, H., Robbins, V. H., and Baldwin, R. L., 1993, The energetics of ion-pair and hydrogen-bonding interactions in a helical peptide, Biochemistry 32: 9668–9676.PubMedCrossRefGoogle Scholar
  166. Serrano, L., and Fersht, A. R., 1989, Capping and a-helix stability, Nature 342: 296–299.PubMedCrossRefGoogle Scholar
  167. Serrano, L., Neira, J.-L., Sancho, J., and Fersht, A. R., 1992, Effect of alanine versus glycine in a-helices on protein stability, Nature 356: 453–455.PubMedCrossRefGoogle Scholar
  168. Sheridan, R. P., and Allen, L. C., 1980, The electrostatic potential of the alpha helix, Biophys. Chem. 11: 133–136.PubMedCrossRefGoogle Scholar
  169. Shoemaker, K. R., Kim, P. S., Brems, D. N., Marqusee, S., York, E. J., Chaiken, I. M., Stewart, J. M., and Baldwin, R. L., 1985, Nature of the charged group effect on the stability of the C-peptide helix, Proc. Natl. Acad. Sci. USA 82: 2349–2353.PubMedCrossRefGoogle Scholar
  170. Shoemaker, K. R., Kim, P. S., York, E. J., Stewart, J. M., and Baldwin, R. L., 1987, Tests of the helix dipole model for stabilization of a-helices, Nature 326: 563–567.PubMedCrossRefGoogle Scholar
  171. Shoemaker, K. R., Fairman, R., Schultz, D. A., Robertson, A. D., York, E. J., Stewart, J. M., and Baldwin, R. L., 1990, Side chain interactions in the C-peptide helix: Phe8.His12, Biopolymers 29: 1–11.PubMedCrossRefGoogle Scholar
  172. Shortle, D., and Clarke, N., 1993, Alpha helix propensity of amino acids, Science 262: 917–918.PubMedCrossRefGoogle Scholar
  173. Skolnick, J., and Holtzer, A., 1982, Theory of helix—coil transition of a helical, two-chain, coiled coils, Macromolecules 15: 303–314.CrossRefGoogle Scholar
  174. Skolnick, J., and Holtzer, A., 1985, Theory of a-helix to random-coil transition of two-chain, coiled coils. Application of the augmented theory to thermal denaturation of a-tropomyosin, Macromolecules 18: 1549–1559.CrossRefGoogle Scholar
  175. Snell, C. R., and Fasman, G. D., 1972, Conformational studies on copolymers of L-lysine and leucine: Circular dichroism and potentiometric titration studies, Biopolymers 11: 1723–1744.PubMedCrossRefGoogle Scholar
  176. Socci, N. D., Bialek, W. S., and Onuchic, J. N., 1994, Properties and origins of protein secondary structure, Phys. Rev. E 49: 3440–3443.CrossRefGoogle Scholar
  177. Sosnick, T. P., Mayne, L., Hiller, R., and Englander, S. W., 1994, The barriers in protein folding, Nature Struct. Biol. 1: 149–156.PubMedCrossRefGoogle Scholar
  178. Stellwagen, E., Park, S.-H., and Jain, A., 1992, The contribution of residue ion pairs to the helical stability of a model peptide, Biopolymers 32: 1193–1200.PubMedCrossRefGoogle Scholar
  179. Sundaralingam, M., Sekharudu, Y. C., Yathindra, N., and Ravichandran, V., 1987, Stabilization of alpha helices by ion pairs, Int. J. Quantum Chem. Quantum Chem. Symp. 14: 289–296.CrossRefGoogle Scholar
  180. Tanford, C., 1968, Protein denaturation, Adv. Protein Chem. 24: 1–95.CrossRefGoogle Scholar
  181. Tinoco, I., Jr., Woody, R. W., and Bradley, D. F., 1963, Absorption and rotation of light by helical polymers: The effect of chain length, J. Chem. Phys. 38: 1317–1325.CrossRefGoogle Scholar
  182. Tirado-Rives, J., and Jorgensen, W. L., 1991, Molecular dynamics simulations of the unfolding of an S-peptide in water, Biochemistry 30: 3864–3871.PubMedCrossRefGoogle Scholar
  183. Tirado-Rives, J., Maxwell, D. S., and Jorgensen, W. L., 1993, Molecular dynamics and Monte-Carlo simulations favor the a helical for alanine based peptides in water, J. Am. Chem. Soc. 115: 11590–11593.CrossRefGoogle Scholar
  184. Toumadje, A., and Johnson, W. C., Jr., 1994, A CD study of the a-helix nucleation hypothesis, Biopolymers 34: 969–973.PubMedCrossRefGoogle Scholar
  185. Urnes, P. J., and Doty, P., 1961, Optical rotation and the conformation of polypeptides and proteins, Adv. Protein Chem. 16: 401–544.PubMedCrossRefGoogle Scholar
  186. Vasquez, M., and Scheraga, H. A., 1988, Effect of sequence specific interactions on the stability of helical conformations in polypeptides, Biopolymers 32: 41–58.CrossRefGoogle Scholar
  187. Vinson, C., Hai, T., and Boyd, S., 1993, Dimerization specificity of the leucine zipper-containing bZIP motif on DNA binding: Prediction and rational design, Genes Dev. 7: 1047–1058.PubMedCrossRefGoogle Scholar
  188. von Dreele, P. H., Poland, D., and Scheraga, H. A., 1971a, Helix-coil stability constants for the naturally occurring amino acids in water. I. Properties of copolymers and approximate theories, Macromolecules 4: 396–407.CrossRefGoogle Scholar
  189. von Dreele, P. H., Lotan, N., Ananthanarayanan, V. S., Andreatta, R. H., Poland, D., and Scheraga, H. A., 1971b, Helix-coil stability constants for the naturally occurring amino acids in water. II. Characterization of the host-guest technique to random poly(hydroxypropyl glutamine-co-hydroxybutyl glutamine), Macromolecules 4: 408–417.CrossRefGoogle Scholar
  190. Wada, A., 1976, The a-helix as an electric macro-dipole, Adv. Bipohys. 9: 1–63.Google Scholar
  191. Waterhous, D. V., and Johnson, W. C., Jr., 1994, Importance of environment in determining secondary structure in protein, Biochemistry 33: 2121–2128.PubMedCrossRefGoogle Scholar
  192. Wojcik, J., Altmann, K.-H., and Scheraga, H. A., 1990, Helix-coil stability constants for the naturally occurring amino acids in water. XXIV. Half-cystine parameters from random poly(hydroxybutylglutamine-co-S-methylthio-L-cysteine), Biopolymers 30: 121–134.CrossRefGoogle Scholar
  193. Woody, R. W., 1977, Optical rotatory properties of biopolymers, J. Polym. Sci. Macromol. Rev. 12: 181–321.CrossRefGoogle Scholar
  194. Woody, R. W., 1985, Circular dichroism of peptides, in: The Peptides ( V. J. Hruby, ed.), Vol. 7, pp. 15–114, Academic Press, New York.Google Scholar
  195. Yang, J. T., Wu, C.-S. C., and Martinez, H. M., 1986, Calculation of protein conformation from circular dichroism, Methods Enzymol. 130: 208–257.PubMedCrossRefGoogle Scholar
  196. Yee, D. P., Chan, H. S., Havel, T. F., and Dill, K. A., 1994, Does compactness induce secondary structure in proteins? J. Mol. Biol. 241: 557–573.PubMedCrossRefGoogle Scholar
  197. Young, M. A., and Pysh, E. S., 1973, Vacuum ultraviolet circular dichroism of poly (L-alanine) films, Macromolecules 6: 790–791.CrossRefGoogle Scholar
  198. Zhang, L., and Hermans, J., 1994, 310 helix versus a-helix: A molecular dynamics study of conformational preferences of Aib and alanine, J. Am. Chem. Soc. 116: 11915–11921.Google Scholar
  199. Zhou, H. X., Hull, L. A., Kallenbach, N. R., Mayne, L., Bai, Y., and Englander, S. W., 1994a, Quantitative evaluation of stabilizing interactions in a prenucleated alpha helix by hydrogen exchange, J. Am. Chem. Soc. 116: 6482–6483.CrossRefGoogle Scholar
  200. Zhou, H. X., Lyu, P. C., Wemmer, D. E., and Kallenbach, N. R., 1994b, Alpha helix capping in synthetic model peptides by reciprocal side-chain-main chain interactions: Evidence for an N-terminal “capping box,” Proteins Struct. Funct. Genet. 18: 1–7.PubMedCrossRefGoogle Scholar
  201. Zhou, N. E., Kay, C. M., and Hodges, R. S., 1992a, Synthetic model proteins: The relative contribution of leucine residues at the nonequivalent positions of the 3–4 hydrophobic repeat to the stability of the two stranded a helical coiled-coil, Biochemistry 31: 5739–5746.PubMedCrossRefGoogle Scholar
  202. Zhou, N. E., Monera, O. D., Kay, C. M., and Hodges, R. S., 1992b, The two stranded a helical coiled-coil is an ideal model for studying protein stability and subunit interactions, Biopolymers 32: 419–426.PubMedCrossRefGoogle Scholar
  203. Zhou, N. E., Kay, C. M., and Hodges, R. S., 1993a, Disulfide bond contribution to protein stability: Positional effects of substitution in the hydrophobic core of the two stranded a helical coiled-coil, Biochemistry 32: 3178–3187.PubMedCrossRefGoogle Scholar
  204. Zhou, N. E., Kay, C. M., Sykes, B. D., and Hodges, R. S., 1993b, A single-stranded amphipathic a helix in aqueous solution: Design, structural characterization, and its application for determining a helical propensities of amino acids, Biochemistry 32: 6190–6197.PubMedCrossRefGoogle Scholar
  205. Zhou, N. E., Zhu, B.-Y., Kay, C. M., and Hodges, R. S., 1994, a-Helical propensity of amino acids in the hydrophobic face of an amphipathic a-helix, Protein Peptide Lett. 1: 114–119.Google Scholar
  206. Zimm, B. H., and Bragg, J. K., 1958, Theory of one-dimensional phase transition in polypeptide chains, J. Chem. Phys. 28: 1246–1247.CrossRefGoogle Scholar
  207. Zimm, B. H., and Bragg, J. K., 1959, Theory of the phase transition between helix and random coil in polypeptide chains, J. Chem. Phys. 31: 526–535.CrossRefGoogle Scholar
  208. Zimm, B. H., and Rice, S. A., 1960, The helix-coil transition in charged macromolecules, Mol. Phys. 3: 391–407.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Neville R. Kallenbach
    • 1
  • Pingchiang Lyu
    • 1
  • Hongxing Zhou
    • 2
  1. 1.Department of ChemistryNew York UniversityNew YorkUSA
  2. 2.Institute of Life ScienceNational Tsing Hua UniversityHsing-chuTaiwan

Personalised recommendations