Stopped-Flow Circular Dichroism

  • Kunihiro Kuwajima
Chapter

Abstract

Elucidation of the molecular mechanism of protein folding is a central issue in molecular structural biology both at present and into the next decade as well (Pain, 1994; Fersht and Dill, 1994; Chothia and Taylor, 1994). This chapter will summarize the application of kinetic circular dichroism (CD) measurements to the recent studies on protein folding.

Keywords

Circular Dichroism Folding Intermediate Molten Globule Denaturant Concentration Staphylococcal Nuclease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acharya, K. R., Stuart, D. I., Walker, N. P. C., Lewis, M., and Phillips, D. C., 1989, Refined structure of baboon a-lactalbumin at 1.7 A resolution. Comparison with c-type lysozyme, J. Mol. Biol. 208: 99–127.PubMedCrossRefGoogle Scholar
  2. Anson, M., and Bayley, P. M., 1974, Measurement of circular dichroism at millisecond time resolution: A stopped-flow circular dichroism system, J. Phys. E. 7: 481–486.CrossRefGoogle Scholar
  3. Bächinger, H. P., Eggenberger, H. P., and Hänisch, G., 1979, Conversion of a Cary 60 spectropolarimeter into a fast circular dichroism instrument for use with standard rapid reaction techniques, Rev. Sci. Instrum. 50: 1367–1372.PubMedCrossRefGoogle Scholar
  4. Baldwin, R. L., 1993, Pulsed H/D-exchange studies of folding intermediates, Curr. Opin. Struct. Biol. 3: 84–91.CrossRefGoogle Scholar
  5. Barrick, D., and Baldwin, R. L., 1993a, The molten globule intermediate of apomyoglobin and the process of protein folding, Protein Sci. 2: 869–876.PubMedCrossRefGoogle Scholar
  6. Barrick, D., and Baldwin, R. L., 1993b, Three-state analysis of sperm whale apomyoglobin folding, Biochemistry 32: 3790–3796.PubMedCrossRefGoogle Scholar
  7. Bayley, P. M., 1981, Fast kinetic studies with chiroptical techniques: Stopped-flow circular dichroism and related methods, Prog. Biophys. Mol. Biol. 37: 149–180.CrossRefGoogle Scholar
  8. Bayley, P. M., and Anson, M., 1974, Stopped-flow circular dichroism: A new fast-kinetic system, Biopolymers 13: 401–405.PubMedCrossRefGoogle Scholar
  9. Bolotina, I. A., Chekhov, V. O., Lugauskas, V. Y., and Ptitsyn, O. B., 1980, Determination of the secondary structure of proteins from the circular dichroism spectra. II. Consideration of the contribution of I3-bends, Mol. Biol. (USSR) 14: 902–908.Google Scholar
  10. Chaffotte, A. F., Cadieux, C., Guillou, Y., and Goldberg, M. E., 1992a, A possible initial folding intermediate: The C-terminal proteolytic domain of tryptophan synthase ß chains folds in less than 4 milliseconds into a condensed state with non-native-like secondary structure, Biochemistry 31: 4303–4308.PubMedCrossRefGoogle Scholar
  11. Chaffotte, A. F., Guillou, Y., and Goldberg, M. E., 1992b, Kinetic resolution of peptide bond and side chain far-UV circular dichroism during the folding of hen egg white lysozyme, Biochemistry 31: 9694–9702.PubMedCrossRefGoogle Scholar
  12. Chang, C. T., Wu, C.-S. C., and Yang, J. T., 1978, Circular dichroic analysis of protein conformation: Inclusion of the 3-turns, Anal. Biochem. 91: 13–31.PubMedCrossRefGoogle Scholar
  13. Chen, E., Parker, W., Lewis, J. W., Song, P. S., and Kliger, D. S., 1993, Time-resolved UV circular dichroism of phytochrome A: Folding of the N-terminal region, J. Am. Chem. Soc. 115: 9854–9855.CrossRefGoogle Scholar
  14. Chen, Y. H., Yang, J. T., and Chau, K. H., 1974, Determination of the helix and beta form of proteins in aqueous solution by circular dichroism, Biochemistry 20: 33–37.Google Scholar
  15. Chiba, K., Ikai, A., Kawamura-Konishi, Y., and Kihara, H., 1994, Kinetic study on myoglobin refolding monitored by five optical probe stopped-flow methods, Proteins 19: 110–119.PubMedCrossRefGoogle Scholar
  16. Chothia, C., and Taylor, W. R., 1994, Sequence and topology. Editorial overview, Curr. Opin. Struct. Biot 4: 381–382.CrossRefGoogle Scholar
  17. Christensen, H., and Pain, R. H., 1994, The contribution of the molten globule model, in: Mechanisms of Protein Folding ( R. H. Pain, ed.), pp. 55–79, IRL Press, Oxford.Google Scholar
  18. Denton, M. E., Rothwarf, D. M., and Scheraga, H. A., 1994, Kinetics of folding of guanidine-denatured hen egg white lysozyme and carboxymethyl (Cys6,Cys127)-lysozyme: A stopped-flow absorbance and fluorescence study, Biochemistry 33: 11225–11236.PubMedCrossRefGoogle Scholar
  19. Dobson, C. M., Evans, P. A., and Radford, S. E., 1994, Understanding how proteins fold: The lysozyme story so far, Trands Biochem. Sci. 19: 31–37.CrossRefGoogle Scholar
  20. Elöve, G. A., Chaffotte, A. F., Roder, H., and Goldberg, M. E., 1992, Early steps in cytochrome c folding probed by time-resolved circular dichroism and fluorescence spectroscopy, Biochemistry 31: 6876–6883.PubMedCrossRefGoogle Scholar
  21. Englander, S. W., and Mayne, L., 1992, Protein folding studied using hydrogen-exchange labeling and two-dimensional NMR, Annu. Rev. Biophys. Biomoy. Struct. 21: 243–265.CrossRefGoogle Scholar
  22. Erard, M., Burggraf, E., and Pouyet, J., 1982, Folding and unfolding of the core particle DNA are processes faster than millisecond, FEBS Lett. 149: 55–58.PubMedCrossRefGoogle Scholar
  23. Feng, H. P., and Widom, J., 1994, Kinetics of compaction during lysozyme refolding studied by continuous-flow quasielastic light scattering, Biochemistry 33: 13382–13390.PubMedCrossRefGoogle Scholar
  24. Fersht, A. R., and Dill, K. A., 1994, Folding and binding. Editorial overview, Curr. Opin. Struct. Biol. 4: 67–68.CrossRefGoogle Scholar
  25. Fukushima, K., Sakamoto, T., Tsuji, J., Kondo, K., and Shimozawa, R., 1994, The transition of a-helix to I3-structure of poly(L-lysine) induced by phosphatidic acid vesicles and its kinetics at alkaline pH, Biochim. Biophys. Acta Bio-Membr. 1191: 113–140.CrossRefGoogle Scholar
  26. Garvey, E. P., Swank, J., and Matthews, C. R., 1989, A hydrophobic cluster forms early in the folding of dihydrofolate reductase, Proteins 6: 259–266.PubMedCrossRefGoogle Scholar
  27. Gilmanshin, R. I., and Ptitsyn, O. B., 1987, An early intermediate of refolding a-lactalbumin forms within 20 ms, FEBS Lett. 223: 327–329.PubMedCrossRefGoogle Scholar
  28. Goldberg, M. E., Semisotnov, G. V., Friguet, B., Kuwajima, K., Ptitsyn, O. B., and Sugai, S., 1990, An early immunoreactive folding intermediate of the tryptophan synthase ß2 subunit is a `molten globule,’ FEBS Lett. 263: 51–56.PubMedCrossRefGoogle Scholar
  29. Greenfield, N. J., and Fasman, G. D., 1969, Computed circular dichroism spectra for the evaluation of protein conformation, Biochemistry 8: 4108–4116.PubMedCrossRefGoogle Scholar
  30. Grishina, I. B., and Woody, R. W., 1994, Contributions of tryptophan side chains to the circular dichroism of globular proteins: Exciton couplets and coupled oscillators, Faraday Discuss. 245–262.Google Scholar
  31. Hasumi, H., 1980, Kinetic studies on isomerization of ferricytochrome c in alkaline and acid pH ranges by the circular dichroism stopped-flow method, Biochim. Biophys. Acta 626: 265–276.PubMedCrossRefGoogle Scholar
  32. Hatano, M., Nozawa, T., Murakami, T., Yamamoto, T., Shigehisa, M., Kimura, S., Takakuwa, T., Sakayanagi, N., Yano, T., and Watanabe, A., 1981, New type of rapid scanning circular dichroism spectropolarimeter using an acoustic optical filter, Rev. Sci. Instrum. 52: 1311–1316.CrossRefGoogle Scholar
  33. Hooke, S. D., Radford, S. E., and Dobson, C. M., 1994, The refolding of human lysozyme: A comparison with the structurally homologous hen lysozyme, Biochemistry 33: 5867–5876.PubMedCrossRefGoogle Scholar
  34. Ikeguchi, M., Kuwajima, K., Mitani, M., and Sugai, S., 1986a, Evidence for identity between the equilibrium unfolding intermediate and a transient folding intermediate: A comparative study of the folding reactions of a-lactalbumin and lysozyme, Biochemistry 25: 6965–6972.PubMedCrossRefGoogle Scholar
  35. Ikeguchi, M., Kuwajima, K., and Sugai, S., 1986b, Ca’-induced alteration in the unfolding behavior of a-lactalbumin, J. Biochem. (Tokyo) 99: 1191–1201.Google Scholar
  36. Iwakura, M., Jones, B. E., Falzone, C. J., and Matthews, C. R., 1993, Collapse of parallel folding channels in dihydrofolate reductase from Escherichia coli by site-directed mutagenesis, Biochemistry 32: 13566–13574.PubMedCrossRefGoogle Scholar
  37. Jennings, P. A., and Wright, P. E., 1993, Formation of a molten globule intermediate early in the kinetic folding pathway of apomyoglobin, Science 262: 892–896.PubMedCrossRefGoogle Scholar
  38. Johnson, W. C., Jr., 1990, Protein sescondary structure and circular dichroism: A practical guide, Proteins 7: 205–214.PubMedCrossRefGoogle Scholar
  39. Kato, S., Okamura, M., Shimamoto, N., and Utiyama, H., 1981, Spectral evidence for a rapidly formed structural intermediate in the refolding kinetics of hen egg-white lysozyme, Biochemistry 20: 1080–1085.PubMedCrossRefGoogle Scholar
  40. Kawamura-Konishi, Y., and Suzuki, H., 1988, Interaction between al and ßl subunits of human hemoglobin, Biochem. Biophys. Res. Commun. 156: 348–354.PubMedCrossRefGoogle Scholar
  41. Kawamura-Konishi, Y., Chiba, K., Kihara, H., and Suzuki, H., 1992, Kinetics of the reconstruction of hemoglobin from semihemoglobins a and 13 with heme, Eur. Biophuys. J. 21: 85–92.Google Scholar
  42. Kiefhaber, T., Schmid, F. X., Willaert, K., Engelborghs, Y., and Chaffotte, A., 1992, Structure of a rapidly formed intermediate in ribonuclease TI folding, Protein sci. 1: 1162–1172.PubMedCrossRefGoogle Scholar
  43. Kihara, H., 1994, Stopped-flow apparatus for x-ray scattering and XAFS, J. Synchrotron Radiat. 1: 74–77.PubMedCrossRefGoogle Scholar
  44. Kihara, H., Takahashi, E., Yamamura, K., and Tabushi, I., 1982, A kinetic study of the unfolding of myoglobin at low pH, monitored by absorbance and circular-dichroism stopped-flow, Biochim. Biophys. Acta 702: 249–253.CrossRefGoogle Scholar
  45. Kuwajima, K., 1989, The molten globule state as a clue for understanding the folding and cooperativity of globular-protein structure, Proteins 6: 87–103.PubMedCrossRefGoogle Scholar
  46. Kuwajima, K., 1992, Protein folding in vitro, Curr. Opin. Biotechnol. 3: 462–467.PubMedCrossRefGoogle Scholar
  47. Kuwajima, K., Hiraoka, Y., Ikeguchi, M., and Sugai, S., 1985, Comparison of the transient folding intermediates in lysozyme and a-lactalbumin, Biochemistry 24: 874–881.PubMedCrossRefGoogle Scholar
  48. Kuwajima, K., Yamaya, H., Miwa, S., Sugai, S., and Nagamura, T., 1987, Rapid formation of secondary structure framework in protein folding studied by stopped-flow circular dichroism, FEBS Lett. 221: 115–118.PubMedCrossRefGoogle Scholar
  49. Kuwajima, K., Sakuraoka, A., Fueki, S., Yoneyama, M., and Sugai, S., 1988, Folding of carp paravalbumin studied by equilibrium and kinetic circular dichroism spectra, Biochemistry 27: 7419–7428.CrossRefGoogle Scholar
  50. Kuwajima, K., Garvey, E. P., Finn, B. E., Matthews, C. R., and Sugai, S., 1991a, Transient intermediates in the folding of dihydrofolate reductase as detected by far-ultraviolet circular dichroism spectroscopy, Biochemistry 30: 7693–7703.PubMedCrossRefGoogle Scholar
  51. Kuwajima, K., Okayama, N., Yamamoto, K., Ishihara, T., and Sugai, S., 1991b, The Pro117 to glycine mutation of staphylococcal nuclease simplifies the unfolding—folding kinetics, FEBS Lett. 290: 135–138.PubMedCrossRefGoogle Scholar
  52. Kuwajima, K., Semisotnov, G. V., Finkelstein, A. V., Sugai, S., and Ptitsyn, O. B., 1993, Secondary structure of globular proteins at the early and the final stages in protein folding, FEBS Lett. 334: 265–268.Google Scholar
  53. Labhardt, A. M., 1984, Kinetic circular dichroism shows that the S-peptide a-helix of ribonuclease S unfolds fast and refolds slowly, Proc. Nate Acad. Sci. USA 81: 7674–7678.CrossRefGoogle Scholar
  54. Labhardt, A. M., 1986, Folding intermediates studied by circular dichroism, Methods Enzymol. 131: 126–135.PubMedCrossRefGoogle Scholar
  55. Leutzinger, Y., and Beychok, S., 1981, Kinetics and mechanism of heme-induced refolding of human a-globin, Proc. Natl. Acad. Sci. USA 78: 780–784.PubMedCrossRefGoogle Scholar
  56. Lewis, J. W., Goldbeck, R. A., Kliger, D. S., Xie, X., Dunn, R. C., and Simon, J. D., 1992, Time-resolved circular dichroism spectroscopy: Experiment, theory, and applications to biological systems, J. Phys. Chem. 96: 5243–5254.Google Scholar
  57. Luchins, J., and Beychok, S., 1978, Far-ultraviolet stopped-flow circular dichroism, Science 199: 425–426.Google Scholar
  58. Mann, C. J., and Matthews, C. R., 1993, Structure and stability of an early folding intermediate of Escherichia coli trp aporepressor measured by far-UV stopped-flow circular dichroism and 8-anilino-1-naphthalene sulfonate binding, Biochemistry 32: 5282–5290.Google Scholar
  59. Manning, M. C., and Woody, R. W., 1989, Theoretical study of the contribution of aromatic side chains to the circular dichroism of basic bovine pancreatic trypsin inhibitor, Biochemistry 28: 8609–8613Google Scholar
  60. Matthews, C. R., 1993, Pathways of protein folding, Annu. Rev. Biochem. 62: 653–683.Google Scholar
  61. Mo, J., Holtzer, M. E., and Holtzer, A., 1991, Kinetics of folding and unfolding of aa-tropomyosin and of nonpolymerizable aa-tropomyosin, Biopolymers 31: 1417–1427.Google Scholar
  62. Mo, J., Holtzer, M. E., and Holtzer, A., 1992, Kinetics of folding and unfolding 3 3-tropomyosin, Biopolymers 32: 1581–1587.Google Scholar
  63. Nagamura, T., Kurita, K., Tokikura, E., and Kihara, H., 1985, Stopped-flow X-ray scattering device with a slit-type mixer, J. Biochem. Biophys. Methods 11: 277–286.Google Scholar
  64. Nishikawa, K., and Noguchi, T., 1991, Predicting protein secondary structure based on amino acid sequence, Methods Enzymol. 202: 31–44.PubMedCrossRefGoogle Scholar
  65. Nitta, K., Segawa, T., Kuwajima, K., and Sugai, S., 1977, Application of stopped-flow circular dichroism to the study of the unfolding of proteins, Biopolymers 16: 703–706.PubMedCrossRefGoogle Scholar
  66. Ohgushi, M., and Wada, M., 1984, Liquid-like state of side chains at the intermediate stage of protein denaturation, Adv. Biophys. 18: 75–90.PubMedCrossRefGoogle Scholar
  67. Pain, R. H., ed., 1994, Mechanisms of Protein Folding, Oxford University Press, London.Google Scholar
  68. Papiz, M. Z., Sawyer, L., Eliopoulos, E. E., North, A. C. T., Findlay, J. B. C., Sivaprasadarao, R., Jones, T. A., Newcomer, M. E., and Kraulis, P. J., 1986, The structure of ß-lactoglobulin and its similarity to plasma retinol-binding protein, Nature 324: 383–385.Google Scholar
  69. Paul, C., Kirschner, K., and Haenisch, G., 1980, Calibration of stopped-flow spectrophotometers using a two-step disulfide exchange reaction, Anal. Biochem. 101: 442–448.PubMedCrossRefGoogle Scholar
  70. Pflumm, M., Luchins, J., and Beychok, S., 1986, Stopped-flow circular dichroism, Methods Enzymol. 130: 519–534.PubMedCrossRefGoogle Scholar
  71. Provencher, S. W., and Glöckner, J., 1981, Estimation of globular protein secondary structure from circular dichroism, Biochemistry 20: 33–37.PubMedCrossRefGoogle Scholar
  72. Ptitsyn, O. B., 1987, Protein folding: Hypotheses and experiments, J. Protein Chem. 6: 273–293.CrossRefGoogle Scholar
  73. Ptitsyn, O. B., 1992, The molten globule state, in: Protein folding (T. E. Creighton, ed.), pp. 243–300, Freeman, San Francisco.Google Scholar
  74. Radford, S. E., Dobson, C. M., and Evans, P. A., 1992, The folding of hen lysozyme involves partially structured intermediates and multiple pathways, Nature 358: 302–307.PubMedCrossRefGoogle Scholar
  75. Roder, H., Elöve, G. A., and Englander, S. W., 1988, Structural characterization of folding intermediates in cytochrome c by H-exchange labelling and protein NMR, Nature 335: 700–704.Google Scholar
  76. Salerno, C., Crifo, C., and Strom, R., 1984, Kinetics of conformational changes in melittin. A circular-dichroic stopped-flow study, Eur. J. Biochem. 139: 275–278.PubMedCrossRefGoogle Scholar
  77. Sano, Y., and Inoue, H., 1979, Kinetic study on denaturation of tobacco mosaic virus coat protein by the rapid circular dichroic spectcra measurement, Chem. Lett. 1979: 1087–1090.CrossRefGoogle Scholar
  78. Shiraki, K., Nishikawa, K., and Goto, Y., 1995, Trifluoroethanol-induced stabilization of the a-helical structure of ß-lactoglobulin: Implication for non-hierarchical protein folding, J. Mol. Biol. 245: 180–194.PubMedCrossRefGoogle Scholar
  79. Sugawara, T., Kuwajima, K., and Sugai, S., 1991, Folding of staphylococcal nuclease A studied by equilibrium and kinetic circular dichroism spectra, Biochemistry 30: 2698–2706.PubMedCrossRefGoogle Scholar
  80. Tabushi, I., Yamamura, K., and Nishiya, T., 1978, Stopped-flow circular dichroism as a direct probe of rapid conformational change of a protein. Reduction of ferricytochrome c from horse heart, Tetrahedron Lett. 1978: 4921–4924.CrossRefGoogle Scholar
  81. Takeda, K., 1982, Conformational change of 8-chymotrypsin caused by sodium dodecyl sulfate as studied by stopped-flow circular dichroic method, Bull. Chem. Soc. Jpn. 55: 1335–1339.CrossRefGoogle Scholar
  82. Takeda, K., 1985, Kinetics of coil to a-helix to 13-structure transitions of poly(L-ornithine) in low concentrations of sodium dodecyl sulfate, Biopolymers 24: 683–694.CrossRefGoogle Scholar
  83. Tanford, C., 1970, Protein denaturation. Part C. Theoretical models for the mechanism of denaturation, Adv. Protein Chem. 24: 1–95.PubMedCrossRefGoogle Scholar
  84. Udgaonkar, J. B., and Baldwin, R. L., 1988, NMR evidence for an early framework intermediate on the folding pathway of ribonuclease A, Nature 335: 694–699.PubMedCrossRefGoogle Scholar
  85. Venyaminov, S. Y., Baikalov, I. A., Wu, C. S. C., and Yang, J. T., 1991, Some problems of CD analyses of protein conformation, Anal. Biochem. 198: 250–255.PubMedCrossRefGoogle Scholar
  86. Woody, R. W., 1994, Contributions of tryptophan side chains to the far-ultraviolet circular dichroism of proteins, Eur. Biophys. J. 23: 253–262.PubMedCrossRefGoogle Scholar
  87. Zhang, C. F., Lewis, J. W., Cerpa, R., Kuntz, I. D., and Kliger, D. S., 1993, Nanosecond circular dichroism spectral measurements: Extension to the far-ultraviolet region, J. Phys. Chem. 97: 5499–5505.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Kunihiro Kuwajima
    • 1
  1. 1.Department of Physics, School of ScienceUniversity of TokyoTokyo 113Japan

Personalised recommendations