Determination of Protein Secondary Structure

  • Sergei Yu. Venyaminov
  • Jen Tsi Yang


Circular dichroism (CD) is one of the most sensitive physical techniques for determining structures and monitoring structural changes of biomolecules. It can directly interpret the changes of protein secondary structure, even though the method is empirical. The far-ultraviolet (far-UV) CD specra (below 250 nm) of proteins are extremely sensitive toward protein structure, and the near-UV spectra reflect the contributions of aromatic side chains, disulfide bonds, and induced CD bands of prosthetic groups. Together these measurements provide information about the overall structure of a protein molecule as well as its local conformation around the aromatic and prosthetic groups and disulfide linkages. The ease of CD measurements is attractive, but CD, unlike two other powerful techniques—x-ray diffraction of protein crystals and NMR for protein solutions—cannot determine the three-dimensional structure of a protein. In this chapter we will discuss several methods of CD analysis of proteins, which can provide estimates of α helix, β sheet, β turn, and unordered form. These empirical methods utilize a set of reference proteins of known structure from x-ray diffraction studies. Thus, proteins are presumed to have the same structure in the crystalline state and in aqueous solution.


Secondary Structure Circular Dichroism Circular Dichroism Spectrum Globular Protein Protein Secondary Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adler, A. J., Greenfield, N. J., and Fasman, G. D., 1973, Circular dichroism and optical rotatory dispersion of proteins and polypeptides, Methods Enzymol. 27: 675–735.PubMedCrossRefGoogle Scholar
  2. Adzhubei, A. A., and Sternberg, M. J. E., 1993, Left-handed polyproline II helices commonly occur in globular proteins, J. Mol. Biol. 229: 472–493.PubMedCrossRefGoogle Scholar
  3. Andrade, M. A., Chacón, P., Merelo, J. J., and Moran, F., 1993, Evaluation of secondary structure of protein from UV circular dichroism spectra using an unsupervised learning neural network, Protein Eng. 6: 383–390.PubMedCrossRefGoogle Scholar
  4. Baikalov, I. A., 1985, Analysis of the methods of determination of proteins secondary structure from CD spectra [in Russian], M.S. thesis, Institute of Protein Research, Pushchino, USSR.Google Scholar
  5. Bairoch, A., and Boeckmann, B., 1994, the SWISS-PROT protein sequence data bank: Current status, Nucleic Acid Res. 22: 3578–3580.Google Scholar
  6. Böhm, G., Muhr, R., and Jaenicke, R., 1992, Quantitative analysis of protein for UV circular dichroism spectra by neural network, Protein Eng. 5: 191–195.PubMedCrossRefGoogle Scholar
  7. Bolotina, I. A., and Lugauskas, V. Y., 1985, Determination of protein secondary structure from circular dichroism spectra. 4. Consideration of the contribution of aromatic amino acid residues to the circular dichroism spectra of proteins in the peptide region, Mol. Biol. (Engl. transl.) 19: 1154–1166.Google Scholar
  8. Bolotina, I. A., Chekhov, V. O., Lugauskas, V. Y., Finkelstein, A. V., and Ptitsyn, O. B., 1980a, Determination of protein secondary structure from circular dichroism spectra. I. Protein reference spectra for a-, ß-and irregular structure, Mol. Biol. (Engl. transl.) 14: 701–709.Google Scholar
  9. Bolotina, I. A., Chekhov, V. O., Lugauskas, V. Y., and Ptitsyn, O. B., 1980b, Determination of protein secondary structure from circular dichroism spectra. II. Calculating the 0-bending contribution, Mol. Biol. (Engl. transi.) 14: 709–715.Google Scholar
  10. Bolotina, I. A., Chekhov, V. O., Lugauskas, V. Y., and Ptitsyn, O. B., 1981, Determination of protein secondary structure from circular dichroism spectra. III. Protein derived reference spectra for antiparallel and parallel [3-structure, Mol. Biol. (Engl. transl.) 15: 130–137.Google Scholar
  11. Brahms, S., and Brahms, J., 1980, Determination of protein secondary structure in solution by vacuum ultraviolet circular dichroism, J. Mol. Biol. 138: 149–178.PubMedCrossRefGoogle Scholar
  12. Chang, C. T., Wu, C.-S. C., and Yang, J. T., 1978, Circular dichroic analysis of protein conformation: Inclusion of 0-turns, Anal. Biochem. 91: 13–31.PubMedCrossRefGoogle Scholar
  13. Chen, G. C., and Yang, J. T., 1977, Two-point calibration of circular dichrometer with d-10-camphorsulfonic acid, Anal. Lett. 10: 1195–1207.CrossRefGoogle Scholar
  14. Chen, Y.-H., and Yang, J. T., 1971, A new approach to the calculation of secondary structures of globular proteins by optical rotatory dispersion and circular dichroism, Biochem. Biophys. Res. Commun. 44: 1285–1291.PubMedCrossRefGoogle Scholar
  15. Chen, Y.-H., Yang, J. T., and Martinez, H. M., 1972, Determinaton of the secondary structures of proteins by circular dichroism and optical rotatory dispersion, Biochemistry 11: 4120–4131.PubMedCrossRefGoogle Scholar
  16. Chen, Y.-H., Yang, J. T., and Chau, K. H., 1974, Determination of the helix and 3-form of proteins in aqueous solution by circular dichroism, Biochemistry 13: 3350–3359.PubMedCrossRefGoogle Scholar
  17. Chirgadze, Y. N., Fedorov, O. V., and Trushina, N. P., 1975, Estimation of amino acid residue side-chain absorption in the infrared spectra of protein solution in heavy water, Biopolymers 14: 679–694.PubMedCrossRefGoogle Scholar
  18. Chou, P. Y., and Fasman, G. D., 1977, I3-Turns in proteins, J. Mol. Biol. 115: 135–175.PubMedCrossRefGoogle Scholar
  19. Compton, L. A., and Johnson, W. C., Jr., 1986, Analysis of protein circular dichroism spectra for secondary structure using a simple matrix multiplication, Anal. Biochem. 155: 155–167.PubMedCrossRefGoogle Scholar
  20. Dalmas, B., Hunter, G. J., and Bannister, W. H., 1994, Prediction of protein secondary structure from circular dichroism spectra using artificial neural network techniques, Biochem. Mol. Biol. Int. 34: 17–26.PubMedGoogle Scholar
  21. Finkelstein, A. V., Ptitsyn, O. B., and Kozitsyn, A. A., 1977, Theory of protein molecule self-organization. II. A comparison of calculated thermodynamic parameters of local secondary structure with experiments, Biopolymers 16: 497–524.PubMedCrossRefGoogle Scholar
  22. Greenfield, N. J., and Fasman, G. D., 1969, Computed circular dichroism spectra for the evaluation of protein conformation, Biochemistry 8: 4108–4116.PubMedCrossRefGoogle Scholar
  23. Hennessey, J. P., Jr., and Johnson, W. C., Jr., 1981, Information content in the circular dichroism of proteins, Biochemistry 20: 1085–1094.PubMedCrossRefGoogle Scholar
  24. Hennessey, J. P., Jr., and Johnson, W. C., Jr., 1982, Experimental errors and their effect on analyzing circular dichroism spectra of proteins, Anal. Biochem. 125: 177–188.PubMedCrossRefGoogle Scholar
  25. James, T. L., Jr., 1994, Assessment of quality of derived macromolecular structure, Methods Enzymol. 239: 416–439.PubMedCrossRefGoogle Scholar
  26. Johnson, W. C., Jr., 1985, Circular dichroism and its empirical applicaton to biopolymers, Methods Biochem. Anal. 31: 61–163.PubMedCrossRefGoogle Scholar
  27. Johnson, W. C., Jr., 1988, Secondary structure of proteins through circular dichroism spectroscopy, Annu. Rev. Biophys. Chem. 17: 145–166.CrossRefGoogle Scholar
  28. Johnson, W. C., Jr., 1990, Protein secondary structure and circular dichroism: A practical guide, Proteins 7: 205–214.PubMedCrossRefGoogle Scholar
  29. Kabsch, W., and Sander, C., 1983, Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features, Biopolymers 22: 2577–2637.PubMedCrossRefGoogle Scholar
  30. Kalnin, N. N., Baikalov, I. A., and Venyaminov, S. Y., 1990, Quantitative IR spectrophotometry of peptide compounds in water (H20) solution. III. Estimation of the protein secondary structure, Biopolymers 30: 1273–1280.PubMedCrossRefGoogle Scholar
  31. Levitt, M., and Chothia, C., 1976, Structural patterns in globular proteins, Nature 261: 552–558.PubMedCrossRefGoogle Scholar
  32. Levitt, M., and Greer, J., 1977, Automatic identification of secondary structures in globular proteins, J. Mol. Biol. 114: 181–239.PubMedCrossRefGoogle Scholar
  33. Magar, M. E., 1968, On the analysis of the optical rotatory dispersion of proteins, Biochemistry 7:617–620. Manavalan, P., and Johnson, W. C., Jr., 1983, Sensitivity of circular dichroism to protein tertiary structure class, Nature 305: 831–832.Google Scholar
  34. Manavalan, P., and Johnson, W. C., Jr., 1987, Variable selection method improves the prediction of protein secondary structure from circular dichroism, Anal. Biochem. 167: 76–85.PubMedCrossRefGoogle Scholar
  35. Manning, M. C., 1989, Underlying assumptions in the estimation of secondary structure content in proteins by circular dichroism spectroscopy—A critical review, J. Pharm. Biomed. Anal. 7: 1103–1119.PubMedCrossRefGoogle Scholar
  36. Pancoska, P., and Keiderling, T. A., 1991, Systematic comparison of statistical analyses of electronic and vibrational circular dichroism for secondary structure prediction of selected proteins, Biochemistry 30: 6885–6895.PubMedCrossRefGoogle Scholar
  37. Pancoska, P., Yasui, S. C., and Keiderling, T. A., 1991, Statistical analysis of the vibrational circular dichroism of selected proteins and relationship to secondary structure, Biochemistry 30: 5089–5103.PubMedCrossRefGoogle Scholar
  38. Pancoska, P., Blazek, M., and Keiderling, T. A., 1992, Relationships between secondary structure fractions for globular proteins. Neural network analyses of crystallographic data sets, Biochemistry 31: 10250–10257.PubMedCrossRefGoogle Scholar
  39. Park, K., Perczel, A., and Fasman, G. D., 1992, Differentiation between transmembrane helices and peripheral helices by the deconvolution of circular dichroism spectra of membrane proteins, Protein Sci. 1: 1032–1049.PubMedCrossRefGoogle Scholar
  40. Pauling, L., and Corey, R. B., 1951, Configurations of polypeptide chains with favored orientations around single bonds: Two new pleated sheets, Proc. Natl. Acad. Sci. USA 37: 729–740.PubMedCrossRefGoogle Scholar
  41. Pauling, L., Corey, R. B., and Branson, H. R., 1951, The structure of proteins: Two hydrogen-bonded helical configurations of the polypeptide chain, Proc. Natl. Acad. Sci. USA 37: 205–211.PubMedCrossRefGoogle Scholar
  42. Perczel, A., and Fasman, G. D., 1993, Effect of spectral window size on circular dichroism spectra deconvolution of protein, Biophys. J. 48: 19–29.Google Scholar
  43. Perczel, A., Hollósi, M., Tusnhdy, G., and Fasman, G. D., 1991, Convex constraint analysis: A natural deconvolution of circular dichroism curves of proteins, Protein Eng. 4: 669–679.PubMedCrossRefGoogle Scholar
  44. Perczel, A., Park, K., and Fasman, G. D., 1992a, Deconvolution of the circular dichroism spectra of proteins: The circular dichroism spectra of the antiparallel 13-sheet in proteins, Proteins Struct. Funct. Genet. 3: 57–69.CrossRefGoogle Scholar
  45. Perczel, A., Park, K., and Fasman, G. D., 1992b, Analysis of the circular dichroism spectrum of proteins using the convex constraint algorithm: A practical guide, Anal. Biochem. 203: 38–93.CrossRefGoogle Scholar
  46. Pribic, R., 1994, Principal component analysis of Fourier transform infrared and/or circular dichroism spectra of proteins applied in a calibration of protein secondary structure, Anal. Biochem. 223: 26–34.PubMedCrossRefGoogle Scholar
  47. Privalov, P. L., Tiktopulo, E. I., Venyaminov, S. Y., Griko, Y. V., Makhatadze, G. I., and Khechinashvili, N. N., 1989, Heat capacity and conformation of proteins in the denatured state, J. Mol. Biol. 205: 737–750.PubMedCrossRefGoogle Scholar
  48. Provencher, S. W., 1982a, A constrained regularization method for inverting data represented by linear algebraic or integral equations, Comput. Phys. Commun. 27: 213–227.CrossRefGoogle Scholar
  49. Provencher, S. W., 1982b, Contin: A general purpose constrained regularization program for inverting noisy linear algebraic and integral equations, Comput. Phys. Commun. 27: 229–242.CrossRefGoogle Scholar
  50. Provencher, S. W., 1982c, Contin user manual, EMBL technical report DA05.Google Scholar
  51. Provencher, S. W., and Glöckner, J., 1981, Estimation of globular protein secondary structure from circular dichroism, Biochemistry 20: 33–37.PubMedCrossRefGoogle Scholar
  52. Rosenkranz, H., and Scholten, W., 1971, An improved method for the evaluation of helical protein conformation by means of circular dichroism, Hoppe-Seyler’s Z. Physiol. Chem. 352: 896–904.PubMedCrossRefGoogle Scholar
  53. Saxena, V. P., and Wetlaufer, D. B., 1971, A new basis for interpreting the circular dichroism spectra of proteins, Proc. Natl. Acad. Sci. USA 68: 969–972.PubMedCrossRefGoogle Scholar
  54. Schulz, G. E., and Schirmer, R. H., 1990, in: Principles of Protein Structure (C. R. Cantor, ed.), pp. 66–107, Springer-Verlag, Berlin.Google Scholar
  55. Shubin, V. V., and Khazin, M. L., 1990, BELOK program data. Google Scholar
  56. Shubin, V. V., Khazin, M. L., and Efimovskaya, T. B., 1990, Prediction of secondary structure of globular proteins using circular dichroism spectra, Mol. Biol. (Engl. transl.) 24: 165–176.Google Scholar
  57. Seigel, J. B., Steinmetz, W. E., and Long, G. L., 1980, A computer-assisted model for estimating protein secondary structure from circular dichroic spectra: Comparison of animal lactate dehydrogenases, Anal. Biochem. 104: 160–167.CrossRefGoogle Scholar
  58. Sreerama, N., and Woody, R. W., 1993, A self-consistent method for the analysis of protein secondary structure from circular dichroism, Anal. Biochem. 209: 32–44.PubMedCrossRefGoogle Scholar
  59. Sreerama, N., and Woody, R. W., 1994a, Protein secondary structure from circular dichroism spectroscopy. Combining variable selection principle and cluster analysis with neural network, ridge regression and self-consistent methods, J. Mol. Biol. 242: 497–507.PubMedGoogle Scholar
  60. Sreerama, N., and Woody, R. W., 1994b, Poly(Pro) II helices in globular proteins: Identification and circular dichroic analysis, Biochemistry 33: 10022–10025.PubMedCrossRefGoogle Scholar
  61. Tikhonov, A. N., and Arsenin, V. Y., 1974, Methods of Solution of Ill-Posed Problems [in Russian], Nauka, Moscow.Google Scholar
  62. Toumadje, A., Alcorn, S. W., and Johnson, W. C., Jr., 1992, Extending CD spectra of proteins to 168 nm improves the analysis of secondary structure, Anal. Biochem. 200: 321–331.PubMedCrossRefGoogle Scholar
  63. van Stokkum, I. H. M., Spoelder, H. J. W., Bloemendal, M., van Grondelle, R., and Goren, F. C. A., 1990, Estimation of protein secondary structure and error analysis from circular dichroism spectra, Anal. Biochem. 191: 110–118.PubMedCrossRefGoogle Scholar
  64. Venkatachalam, C. M., 1968, Stereochemical criteria for polypeptides and proteins. V. Conformation of a system of three peptide units, Biopolymers 6: 1425–1436.PubMedCrossRefGoogle Scholar
  65. Venyaminov, S. Y., and Kalnin, N. N., 1990, Quantitative IR spectrophotometry of peptide compounds in water (H2O) solution. I. Spectral parameters of amino acid residue absorption bands, Biopolymers 30: 1243–1257.PubMedCrossRefGoogle Scholar
  66. Venyaminov, S. Y., and Vassilenko, K. S., 1994, Determination of protein tertiary structure class from circular dichroism spectra, Anal. Biochem. 222: 176–184.PubMedCrossRefGoogle Scholar
  67. Venyaminov, S. Y., Metsis, M. L., Chernousov, M. A., and Koteliansky, V. E., 1983, Distribution of secondary structure along the fibronectin molecule, Eur. J. Biochem. 135: 485–489.PubMedCrossRefGoogle Scholar
  68. Venyaminov, S. Y., Baikalov, I. A., Wu, C.-S. C., and Yang, J. T., 1991, Some problems of CD analysis of protein conformation, Anal. Biochem. 198: 250–255.PubMedCrossRefGoogle Scholar
  69. Venyaminov, S. Y., Baikalov, I. A., Shen, Z. M., Wu, C.-S. C., and Yang, J. T., 1993, Circular dichroic analysis of denatured proteins: Inclusion of denatured protein in the reference set, Anal. Biochem. 214: 17–24.PubMedCrossRefGoogle Scholar
  70. Welfle, H., Misselwitz, R., Fabian, H., Dameran, W., Hoelzer, W., Gerlach, D., Kalnin, N. N., and Venyaminov, S. Y., 1992, Conformational properties of streptokinase-secondary structure and localization of aromatic amino acids, Int. J. Biol. Macromol. 14: 9–18.PubMedCrossRefGoogle Scholar
  71. Woody, R. W., 1985, Circular dichroism of peptides, in: The Peptides, Vol. 7 ( V. J. Hruby, ed.), pp. 15–114, Academic Press, New York.Google Scholar
  72. Woody, R. W., 1992, Circular dichroism and conformation of unordered polypeptides, Adv. Biophys. Chem. 2: 37–79.Google Scholar
  73. Wu, C.-S. C., and Chen, G. C., 1989, Adsorption of proteins onto glass surfaces and its effect on the intensity of circular dichroism spectra, Anal. Biochem. 177: 178–182.PubMedCrossRefGoogle Scholar
  74. Wu, J., Yang, J. T., and Wu, C.-S. C., 1992,13–11 conformation of all-13 proteins can be distinguished from unordered form by circular dichroism, Anal. Biochem. 200: 359–364.Google Scholar
  75. Yang, J. T., 1969, Optical rotatory dispersion and circular dichroism, in: A Laboratory Manual of Analytical Methods in Protein Chemistry ( P. Alexander and H. P. Lundgren, eds.), pp. 23–92, Pergamon Press, Elmsford, NY.Google Scholar
  76. Yang, J. T., Wu, C.-S. C., and Martinez, H. M., 1986, Calculation of protein conformation from circular dichroism, Methods Enzymol. 30: 208–269.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Sergei Yu. Venyaminov
    • 1
    • 2
  • Jen Tsi Yang
    • 3
  1. 1.Department of Biochemistry and Molecular BiologyMayo FoundationRochesterUSA
  2. 2.Institute of Protein ResearchRussian Academy of Sciences, PushchinoMoscow RegionRussia
  3. 3.Cardiovascular Research InstituteUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations