Skip to main content

Theory of Circular Dichroism of Proteins

  • Chapter

Abstract

In this chapter, the basic phenomenon of circular dichroism (CD) will be described. The central theoretical parameter of rotational strength will then be defined. The mechanisms by which electronic transitions contribute to CD, i.e., acquire rotational strength, will then be discussed qualitatively, after which the methods by which CD is calculated will be described. The most important group in the electronic spectroscopy of proteins, the peptide group, will then be discussed. Finally, theoretical studies of the principal types of peptide secondary structure will be surveyed. The reader should note that aromatic and disulfide groups are not discussed in this chapter, but are covered in a separate chapter (Woody and Dunker, Chapter 4), along with experimental studies of these important protein chromophores.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   209.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   269.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adzhubei, A. A., and Sternberg, M. J. E., 1993, Left-handed polyproline II helices commonly occur in globular proteins, J. Mol. Biol. 229: 472–493.

    Article  PubMed  CAS  Google Scholar 

  • Adzhubei, A. A., Eisenmenger, F., Tumanyan, V. G., Zinke, M., Brodzinski, S., and Esipova, N. G., 1987, Third type of secondary structure: Non-cooperative mobile conformation, Biochem. Biophys. Res. Commun. 146: 934–938.

    Article  CAS  Google Scholar 

  • Ananthanarayanan, V. S., and Shyamasundar, N., 1981, Circular dichroism of type 13 3-turn in linear tripeptides containing L-proline and D-alanine, Biochem. Biophys. Res. Commun. 102: 295–301.

    Article  PubMed  CAS  Google Scholar 

  • Applequist, J., 1979a, Dipole coupling effects of nonchromophoric groups in molecules on frequencies, dipole strengths, and rotational strengths of chromophoric groups, J. Chem. Phys. 71: 1983–1984.

    Article  CAS  Google Scholar 

  • Applequist, J., 1979b, A full polarizability treatment of the err—rr absorption and circular dichroic spectra of a-helical polypeptides, J. Chem. Phys. 71. 4332–4338.

    Article  CAS  Google Scholar 

  • Applequist, J., 1981, Theoretical.rr—ar absorption and circular dichroic spectra of helical poly(L-proline) forms I and II, Biopolymers 20: 2311–2322.

    Article  CAS  Google Scholar 

  • Applequist, J., 1982, Theoretical 71-rr absorption and circular dichroic spectra of polypeptide (3-structures, Biopolymers 21. 779–795.

    Article  CAS  Google Scholar 

  • Applequist, J., Carl, J. R., and Fung, K.-K.,1972, Atom dipole interaction model for molecular polarizability. Application to polyatomic molecules and determination of atom polarizabilities. J. Am. Chem. Soc. 94: 2952–2960.

    Google Scholar 

  • Applequist, J., Sundberg, K. R., Olson, M. L., and Weiss, L. C., 1979, A normal mode treatment of optical properties of a classical coupled dipole oscillator system with Lorentzian band shapes, J. Chem. Phys. 70: 1240–1246.

    Article  CAS  Google Scholar 

  • Bandekar, J., Evans, D. J., Krimm, S., Leach, S. J., Lee, S., McQuie, J. R., Minasian, E., Nemethy, G., Pottle, M. S., Scheraga, H. A., Stimson, E. R., and Woody, R. W., 1982, Conformations of cyclo(Lalanyl-L-alanyl-e-aminocaproyl) and of cyclo(L-alanyl-n-alanyl-e-aminocaproyl); cyclized dipeptide models for specific types of (3-bends, Int. J. Pept. Protein Res. 19: 187–205.

    Google Scholar 

  • Barlow, D. J., and Thornton, J. M., 1988, Helix geometry in proteins, J. Mol. Biol. 201: 601–619.

    Article  PubMed  CAS  Google Scholar 

  • Barnes, D. G., and Rhodes, W., 1968, Generalized susceptibility theory. II. Optical absorption properties of helical polypeptides, J. Chem. Phys. 48: 817–824.

    Article  PubMed  CAS  Google Scholar 

  • Bartlett, R. J., and Stanton, J. F., 1994, Application of post-Hartree—Fock methods: A tutorial, Rev. Comput. Chem. 5: 65–169.

    Article  CAS  Google Scholar 

  • Basch, H., Robin, M. B., and Kuebler, N. A., 1967, Electronic states of the amide group, J. Chem. Phys. 47: 1201–1210.

    Article  CAS  Google Scholar 

  • Basch, H., Robin, M. B., and Kuebler, N. A., 1968, Electronic spectra of isoelectronic amides, acids, and acyl fluorides, J. Chem. Phys. 49: 5007–5018.

    Article  CAS  Google Scholar 

  • Bayley, P. M.,1973, The analysis of circular dichroism of biomolecules, Prog. Biophys. Mol. BioL 27: 1–76.

    Google Scholar 

  • Bayley, P. M., Nielsen, E. B., and Schellman, J. A., 1969, The rotatory properties of molecules containing two peptide groups: Theory, J. Phys. Chem. 73: 228–243.

    Article  PubMed  CAS  Google Scholar 

  • Bazzi, M. D., and Woody, R. W., 1985, Oriented secondary structure in integral membrane proteins. I. Circular dichroism and infrared spectroscopy of cytochrome oxidase in multilamellar films, Biophys. J. 48: 957–966.

    Article  PubMed  CAS  Google Scholar 

  • Bazzi, M. D., Woody, R. W., and Brack, A., 1987, Interaction of amphipathic polypeptides with phospholipids: Characterization of conformations and the CD of oriented 13-sheets, Biopolymers 26: 1115–1124.

    Article  PubMed  CAS  Google Scholar 

  • Benedetti, E., 1982, Structure and conformation of peptides as determined by x-ray crystallography, Chem. Biochem. Amino Acids Pept. Proteins 6: 105–184.

    CAS  Google Scholar 

  • Blâha, K., and Maloií, P., 1980, Non-planarity of the amide group and its manifestation, Acta Univ. Palacki. Olomuc. Fac. Med. 93: 81–96.

    Google Scholar 

  • Block, H., Hayes, E. F., and North, A. M., 1970, Dielectric behaviour of solutions of poly-y-benzyl-L-glutamate and of copolymers with the D-enantiomorph, Trans. Faraday Soc. 66: 1095–1105.

    Article  CAS  Google Scholar 

  • Born, M., 1915, Über die natürliche optische Aktivität von Flüssigkeiten und Gasen, Phys. Z. 16: 251–258.

    Google Scholar 

  • Bradley, D. F., Tinoco, I., Jr., and Woody, R. W., 1963, Absorption and rotation of light by helical oligomers: The nearest neighbor approximation, Biopolymers 1: 239–267.

    Article  CAS  Google Scholar 

  • Brahms, S., Brahms, J., Spach, G., and Brack, A., 1977, Identification of [3,13-turns and unordered conformations in polypeptide chains by vacuum ultraviolet circular dichroism, Proc. Natl. Acad. Sci. USA 74: 3208–3212.

    Article  PubMed  CAS  Google Scholar 

  • Bush, C. A., Sarkar, S. K., and Kopple, K. D., 1978, Circular dichroism of ß turns in peptides and proteins, Biochemistry 17: 4951–4954.

    Article  PubMed  CAS  Google Scholar 

  • Cassim, J. Y., and Yang, J. T., 1970, Critical comparison of the experimental optical activity of helical polypeptides and the predictions of the molecular exciton model, Biopolymers 9: 1475–1502.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Y.-H., Yang, J. T., and Chau, K. H., 1974, Determination of the helix and 13 form of proteins in aqueous solution by circular dichroism, Biochemistry 13: 3350–3359.

    Article  PubMed  CAS  Google Scholar 

  • Chothia, C., 1973, Conformation of twisted I3-pleated sheets in proteins, J. Mol. Biol. 75: 295–302.

    Article  PubMed  CAS  Google Scholar 

  • Chou, K.-C., Pottle, M., Némethy, G., Ueda, Y., and Scheraga, H. A., 1982, Structure of 3-sheets. Origin of the right-handed twist and of the increased stability of antiparallel over parallel sheets, J. Mol. Biol. 162: 89–112.

    Article  PubMed  CAS  Google Scholar 

  • Chou, K.-C., Némethy, G., and Scheraga, H. A., 1983, Role of interchain interactions in the stabilization of the right-handed twist of 0-sheets, J. Mol. Biol. 168: 389–407.

    Article  PubMed  CAS  Google Scholar 

  • Condon, E. U., 1937, Theories of optical rotatory power, Rev. Mod. Phys. 9: 432–457.

    Article  CAS  Google Scholar 

  • Condon, E. U., Altar, W., and Eyring, H., 1937, One-electron rotatory power, J. Chem. Phys. 5: 753–775.

    Article  CAS  Google Scholar 

  • Davydov, A. S., 1962, Theory of Molecular Excitons (M. Kasha and M. Oppenheimer, Jr., transi.), McGraw—Hill, New York.

    Google Scholar 

  • Dekkers, H. P. J. M., 1994, Circularly polarized luminescence: A probe for chirality in the excited state, in: Circular Dichroism: Principles and Applications ( K. Nakanishi, N. Berova, and R. W. Woody, eds.), pp. 121–152, VCH Publishers, New York.

    Google Scholar 

  • DelBene, J., and Jaffé, H. H., 1968, Use of the CNDO method in spectroscopy. I. Benzene, pyridine, and the diazines, J. Chem. Phys. 48: 1807–1813.

    CAS  Google Scholar 

  • Deslauriers, R., Evans, D. J., Leach, S. J., Meinwald, Y. C., Minasian, E., Némethy, G., Rae, I. D., Scheraga, H. A., Somorjai, R. L., Stimson, E. R., van Nispen, J. W., and Woody, R. W., 1981, Conformation of cyclo(L-alanylglycyl-e-aminocaproyl), a cyclized dipeptide model for a 3-bend. 2. Synthesis, nuclear magnetic resonance, and circular dichroism measurements, Macromolecules 14: 985–996.

    Article  Google Scholar 

  • DeVoe, H., 1964, Optical properties of molecular aggregates. I. Classical model of electronic absorption and refraction, J. Chem. Phys. 41: 393–400.

    Article  CAS  Google Scholar 

  • DeVoe, H., 1965, Optical properties of molecular aggregates. II. Classical theory of the refraction, absorption and optical activity of solutions and crystals, J. Chem. Phys. 43: 3199–3208.

    Article  CAS  Google Scholar 

  • Drake, A. F., Siligardi, G., and Gibbons, W. A., 1988, Reassessment of the electronic circular dichroism criteria for random coil conformations of poly(L-lysine) and the implications for protein folding and denaturation studies, Biophys. Chem. 31: 143–146.

    Article  PubMed  CAS  Google Scholar 

  • Fleichhauer, J., Kramer, B., Löhkamper, R., Zobel, E., Grötzinger, J., Krüger, P., Wollmer, A., and Woody, R. W., 1993, Calculations of the circular dichroism of polypeptide helices with the matrix method and the theory of DeVoe, in: Proceedings of the 5th International Conference on Circular Dichroism, p. 253, Pingree Park, Colorado.

    Google Scholar 

  • Gans, P. J., Lyu, P. C., Manning, M. C., Woody, R. W., and Kallenbach, N. R., 1991, The helix—coil transition in heterogeneous peptides with specific side-chain interactions: Theory and comparison with CD spectral data, Biopolymers 311: 605–1614.

    Google Scholar 

  • Garner, D. R., and Stevens, W. J., 1989, Transferability of molecular distributed polarizabilities from a simple localized orbital-based method, J. Phys. Chem. 93: 8263–8270.

    Article  Google Scholar 

  • Gierasch, L. M., Deber, C. M., Madison, V., Niu, C.-H., and Blout, E. R., 1981, Conformations of (XL-Pro-Y)2 cyclic hexapeptides. Preferred 13 turn conformers and implications for 13 turns in proteins, Biochemistry 20: 4730–4738.

    Article  PubMed  CAS  Google Scholar 

  • Gratzer, W. B., Holzwarth, G. M., and Doty, P., 1961, Polarization of the ultraviolet absorption bands in a-helical polypeptides, Proc. Natl. Acad. Sci. USA 47: 1785–1791.

    Article  PubMed  CAS  Google Scholar 

  • Greenfield, N. J., and Fasman, G. D., 1969, Computed circular dichroism spectra for the evaluation of protein conformation, Biochemistry 8: 4108–4116.

    Article  PubMed  CAS  Google Scholar 

  • Grishina, I. B., and Woody, R. W., 1994, Contributions of tryptophan side chains to the circular dichroism of globular proteins: Exciton couplets and coupled oscillators, Faraday Discuss. 99: 245–262.

    Article  PubMed  CAS  Google Scholar 

  • Hansen, A. E., 1967, Correlation effects in the calculation of ordinary and rotatory intensities, Mol. Phys. 13: 425–431.

    Article  CAS  Google Scholar 

  • Hansen, A. E., and Bouman, T. D., 1980, Natural chiroptical spectroscopy: Theory and computations, Adv. Chem. Phys. 44: 545–644.

    CAS  Google Scholar 

  • Harada, N., 1994, Circular dichroism of twisted ar-electron systems: Theoretical determination of the absolute stereochemistry of natural products and chiral synthetic organic compounds, in: Circular Dichroism: Principles and Applications ( K. Nakanishi, N. Berova, and R. W. Woody, eds.), pp. 335–360, VCH Publishers, New York.

    Google Scholar 

  • Harris, R. A., 1969, Oscillator strengths and rotational strengths in Hartree–Fock theory, J. Chem. Phys. 50: 3947–3951.

    Article  CAS  Google Scholar 

  • Holzwarth, G., and Doty, P., 1965, The ultraviolet circular dichroism of polypeptides, J. Am. Chem. Soc. 87: 218–228.

    CAS  Google Scholar 

  • Imahori, K., and Nicola, N. A., 1973, Optical rotatory dispersion and the main chain conformation of proteins, in: Physical Principles and Techniques of Protein Chemistry ( S. J. Leach, ed.), pp. 357–444, Academic Press, New York.

    Google Scholar 

  • Jackson, D. Y., King, D. S., Chmielewski, J., Singh, S., and Schultz, P. G., 1991, General approach to the synthesis of short a-helical peptides, J. Am. Chem. Soc. 113: 9391–9392.

    Article  CAS  Google Scholar 

  • Jenness, D. D., Sprecher, C., and Johnson, W. C., Jr., 1976, Circular dichroism of collagen, gelatin, and poly(proline)II in the vacuum ultraviolet, Biopolymers 15: 513–521.

    Article  PubMed  CAS  Google Scholar 

  • Jirgensons, B., 1973, Optical Activity of Proteins and Other Macromolecules, 2nd ed., Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Johnson, W. C., Jr., and Tinoco, I., Jr., 1972, Circular dichroism of polypeptide solutions in the vacuum ultraviolet, J. Am. Chem. Soc. 94: 4389–4390.

    Article  PubMed  CAS  Google Scholar 

  • Kaya, K., and Nagakura, S., 1972, The electronic absorption spectra of the 2,5-diketopiperazine single crystal and evaporated film, J. Mol. Spectrosc. 44: 279–285.

    Article  CAS  Google Scholar 

  • Kirkwood, J. G., 1937, On the theory of optical rotatory power, J. Chem. Phys. 5: 479–491.

    Article  CAS  Google Scholar 

  • Kliger, D. S., Lewis, J. W., and Randall, C. E., 1990, Polarized Light in Optics and Spectroscopy, Academic Press, New York.

    Google Scholar 

  • Kuhn, W., 1929, Quantitative Verhältnisse und Beziehungen bei der natürlichen optischen Aktivität, Z. Phys. Chem. (Leipzig) B4: 14–36.

    CAS  Google Scholar 

  • Kuhn, W., 1930, The physical significance of optical rotatory power, Trans. Faraday Soc. 46: 293–308.

    Article  Google Scholar 

  • Laiken, S. L., Printz, M. P., and Craig, L. C., 1969, Circular dichroism of the tyrocidines and gramicidin S-A, J. Biol. Chem. 244: 4454–4457.

    PubMed  CAS  Google Scholar 

  • LeFevre, C. G., and LeFevre, R. J. W., 1955, The Kerr effect—Its measurement and applications in chemistry, Rev. Pure Appl. Chem. 5: 261–318.

    CAS  Google Scholar 

  • Li, L.-K., and Spector, A., 1969, Circular dichroism of 13-poly-L-lysine, J. Am. Chem. Soc. 91: 220–222

    Article  CAS  Google Scholar 

  • Lowry, T. M., 1935, Optical Rotatory Power, Longmans, Green, London, reprinted by Dover Publications, New York, 1964.

    Google Scholar 

  • Loxsom, F. M., Tterlikkis, L., and Rhodes, W., 1971, A non-perturbation method for the optical properties of helical polymers, Biopolymers 10: 2405–2420.

    Article  PubMed  CAS  Google Scholar 

  • Madison, V., and Schellman, J., 1972, Optical activity of polypeptides and proteins, Biopolymers 11: 1041–1076.

    Article  PubMed  CAS  Google Scholar 

  • Mandel, R., and Holzwarth, G., 1972, Circular dichroism of oriented helical polypeptides: The alpha-helix, J. Chem. Phys. 57: 3469–3477.

    Article  CAS  Google Scholar 

  • Mandel, R., and Holzwarth, G., 1973, Ultraviolet circular dichroism of polyproline and oriented collagen, Biopolymers 12: 655–674.

    Article  CAS  Google Scholar 

  • Manning, M. C., and Woody, R. W., 1987, Theoretical determination of the CD of proteins containing closely packed antiparallel 13-sheets, Biopolymers 26: 1731–1752.

    Article  PubMed  CAS  Google Scholar 

  • Manning, M. C., and Woody, R. W., 1991, Theoretical CD studies of polypeptide helices: Examination of important electronic and geometric factors, Biopolymers 31: 569–586.

    Article  PubMed  CAS  Google Scholar 

  • Manning, M. C., Illangasekare, M., and Woody, R. W., 1988, Circular dichroism studies of distorted a-helices, twisted 13-sheets, and [3-turns, Biophys. Chem. 31: 77–86.

    Article  PubMed  CAS  Google Scholar 

  • Michl, J., and Thulstrup, E. W., 1986, Spectroscopy with Polarized Light: Solute Alignment by Photoselec- tion, in Liquid Crystals, Polymers, and Membranes, pp. 6–10, VCH Publishers, New York.

    Google Scholar 

  • Moffitt, W., 1956a, Optical rotatory dispersion of helical polymers, J. Chem. Phys. 25: 467–478.

    Article  CAS  Google Scholar 

  • Moffitt, W., 1956b, The optical rotatory dispersion of simple polypeptides. II, Proc. Natl. Acad. Sci. USA 42: 736–746.

    Article  PubMed  CAS  Google Scholar 

  • Moffitt, W., and Moscowitz, A., 1959, Optical activity in absorbing media, J. Chem. Phys. 30: 648–660.

    Article  CAS  Google Scholar 

  • Moffitt, W., Fitts, D. D., and Kirkwood, J. G., 1957, Critique of the theory of optical activity of helical polymers, Proc. Natl. Acad. Sci. USA 43: 723–730.

    Article  PubMed  CAS  Google Scholar 

  • Moscowitz, A., 1962, Theoretical aspects of optical activity. Part one: Small molecules, Adv. Chem. Phys. 4: 67–112.

    Article  CAS  Google Scholar 

  • Muccio, D. D., and Cassim, J. Y., 1979, Interpretation of the absorption and circular dichroic spectra of oriented purple membrane films, Biophys. J. 26: 427–440.

    Article  PubMed  CAS  Google Scholar 

  • Nielsen, E. B., and Schellman, J. A., 1967, The absorption spectra of simple amides and peptides, J. Phys. Chem. 71: 2297–2304.

    Article  PubMed  CAS  Google Scholar 

  • Olah, G. A., and Huang, H. W., 1988a, Circular dichroism of oriented a-helices. I. Proof of the exciton theory, J. Chem. Phys. 89: 2531–2538.

    Article  CAS  Google Scholar 

  • Olah, G. A., and Huang, H. W., 19886, Circular dichroism of oriented a-helices. II. Electric field oriented polypeptides, J. Chem. Phys. 89: 6956–6962.

    Google Scholar 

  • Paterlini, M. G., Freedman, T. B., and Nafie, L. A., 1986, Vibrational circular dichroism spectra of three conformationally distinct states and an unordered state of poly(L-lysine) in deuterated aqueous solution, Biopolymers 25: 1751–1765.

    Article  PubMed  CAS  Google Scholar 

  • Pauling, L., and Corey, R. B., 1951, Configurations of polypeptide chains with favored orientations around single bonds: Two new pleated sheets, Proc. Natl. Acad. Sci. USA 37: 729–740.

    Article  PubMed  CAS  Google Scholar 

  • Pauling, L., Corey, R. B., and Branson, H. R., 1951, The structure of proteins: Two hydrogen-bonded helical configurations of the polypeptide chain, Proc. Natl. Acad. Sci. USA 37: 205–211.

    Article  PubMed  CAS  Google Scholar 

  • Peterson, D. L., and Simpson, W. T., 1957, Polarized electronic absorption spectrum of amides with assignments of transitions, J. Am. Chem. Soc. 79: 2375–2382.

    Article  CAS  Google Scholar 

  • Pysh, E. S., 1966, The calculated ultraviolet optical properties of polypeptide ß-configurations, Proc. Natl. Acad. Sci. USA 56: 825–832.

    Article  PubMed  CAS  Google Scholar 

  • Pysh, E. S., 1967, The calculated ultraviolet optical properties of poly-L-proline I and II, J. Mol. Biol. 23: 587–589.

    Article  PubMed  CAS  Google Scholar 

  • Quadrifoglio, F., and Urry, D. W., 1968, Ultraviolet rotatory properties of polypeptides in solution. II. Poly-L-serine, J. Am. Chem. Soc. 90: 2760–2765.

    Article  PubMed  CAS  Google Scholar 

  • Ramachandran, G. N., 1974, Aspects of peptide conformation, in: Peptides, Polypeptides, and Proteins ( E. R. Blout, F. A. Bovey, M. Goodman, and N. Lotan, eds.), pp. 14–34, Wiley—Interscience, New York.

    Google Scholar 

  • Ramachandran, G. N., and Sasisekharan, V., 1968, Conformation of polypeptides and proteins, Adv. Protein Chem. 23: 283–437.

    Article  PubMed  CAS  Google Scholar 

  • Robin, M. B., 1975, Higher Excited States of Polyatomic Molecules, Vol. 2, pp. 122–160, Academic Press, New York.

    Google Scholar 

  • Ronish, E. W., and Krimm, S., 1974, The calculated circular dichroism of polyproline II in the polarizability approximation, Biopolymers 13: 1635–1651.

    Article  PubMed  CAS  Google Scholar 

  • Rosenheck, K., and Doty, P., 1961, The far ultraviolet absorption spectra of polypeptide and protein solutions and their dependence on conformation, Proc. Natl. Acad. Sci. USA 47: 1775–1785.

    Article  PubMed  CAS  Google Scholar 

  • Sathyanarayana, B. K., and Applequist, J., 1986. Theoretical Tr—Tr* absorption and circular dichroic spectra of p-turn model peptides, Int. J. Pept. Protein Res. 27: 86–94.

    Article  PubMed  CAS  Google Scholar 

  • Schellman, J. A., 1968, Symmetry rules for optical rotation, Acc. Chem. Res. 1: 144–151.

    Article  CAS  Google Scholar 

  • Schellman, J. A., 1975, Circular dichroism and optical rotation, Chem. Rev. 75: 323–331.

    Article  CAS  Google Scholar 

  • Schellman, J. A., and Becktel, W. J., 1983, The optical activity of polypeptides, Biopolymers 22: 171–187.

    Article  PubMed  CAS  Google Scholar 

  • Schellman, J. A., and Oriel, P., 1962, Origin of the Cotton effect of helical polypeptides, J. Chem. Phys. 37: 2114–2124.

    Article  CAS  Google Scholar 

  • Scholtz, J. M., and Baldwin, R. L., 1992, The mechanism of a-helix formation by peptides, Annu. Rev. Biophys. Biomol. Struct. 21: 95–118.

    Article  PubMed  CAS  Google Scholar 

  • Snatzke, G., 1994, Circular dichroism: An introduction, in: Circular Dichroism: Principles and Applications ( K. Nakanishi, N. Berova, and R. W. Woody, eds.), pp. 59–84, VCH Publishers, New York.

    Google Scholar 

  • Snir, J., Frankel, R. A., and Schellman, J. A., 1975, Optical activity of polypeptides in the infrared. Predicted CD of the amide I and amide II bands, Biopolymers 14: 173–196.

    Article  PubMed  CAS  Google Scholar 

  • Sreerama, N., Woody, R. W., and Callis, P. R., 1994, Theoretical study of the crystal field effects on the transition dipole moments in methylated adenines, J. Phys. Chem. 98: 10397–10407.

    Article  CAS  Google Scholar 

  • Terbojevich, M., Peggion, E., Cosani, A., D’Este, G., and Scoffone, E., 1967, Solution properties of synthetic polypeptides. Light scattering and viscosity of poly(y-ethyl-L-glutamate) in dichloroacetic acid and trifluoroethanol, Eur. Polym. J. 3: 681–689.

    Article  CAS  Google Scholar 

  • Theiste, D., Callis, P. R., and Woody, R. W., 1991, Effects of the crystal field on transition moments in 9-ethylguanine, J. Am. Chem. Soc. 113: 3260–3267.

    Article  CAS  Google Scholar 

  • Tiffany, M. L., and Krimm, S., 1968, New chain conformations of poly(glutamic acid) and polylysine, Biopolymers 6: 1379–1382.

    Article  PubMed  CAS  Google Scholar 

  • Tinoco, I., Jr., 1962, Theoretical aspects of optical activity. Part two: Polymers, Adv. Chem. Phys. 4: 113–160.

    Article  CAS  Google Scholar 

  • Tinoco, I., Jr., 1964, Circular dichroism and rotatory dispersion curves for helices. J. Am. Chem. Soc. 86: 297–298.

    Article  CAS  Google Scholar 

  • Tinoco, I., Jr., Halpern, A., and Simpson, W. T., 1962, The relation between conformation and light absorption in polypeptides and proteins, in: Polyamino Acids, Polypeptides, and Proteins ( M. A. Stahman, ed.), pp. 147–160, University of Wisconsin Press, Madison.

    Google Scholar 

  • Tinoco, I., Jr., Woody, R. W., and Bradley, D. F., 1963, Absorption and rotation of light by helical polymers: The effect of chain length, J. Chem. Phys. 38: 1317–1325.

    Article  CAS  Google Scholar 

  • Tinoco, I., Jr., Mickols, W., Maestre, M. F., and Bustamante, C., 1987, Absorption, scattering, and imaging of biomolecular structures with polarized light, Annu. Rev. Biophys. Biophys. Chem. 16:319–349. Toniolo, C., and Bonora, G. M., 1975, Structural aspects of small peptides. A circular dichroism study of monodisperse protected homo-oligomers derived from L-alanine, Makromol. Chem. 176: 2547–2558.

    Google Scholar 

  • Toniolo, C., Bonora, G. M., and Fontana, A., 1974, Three-dimensional architecture of monodisperse 13-branched linear homo-oligopeptides, Int. J. Pept. Protein Res. 6: 371–380.

    Article  PubMed  CAS  Google Scholar 

  • Ueda, K., 1984, Reversing-pulse electric birefringence of poly(y-methyl-L-glutamate) in hexafluoro-2propanol, Bull, Chem. Soc. Jpn. 5: 2703–2711.

    Article  Google Scholar 

  • Urnes, P., and Doty, P., 1961, Optical rotation and the conformation of polypeptides and proteins, Adv. Protein Chem. 16: 401–544.

    Article  PubMed  CAS  Google Scholar 

  • Volosov, A., and Woody, R. W., 1994, Theoretical approach to natural electronic optical activity, in: Circular Dichroism: Principles and Applications ( K. Nakanishi, N. Berova, and R. W. Woody, eds.), pp. 59–84, VCH Publishers, New York.

    Google Scholar 

  • Woody, R. W., 1968, Improved calculation of the n-rr rotational strength in polypeptides, J. Chem. Phys. 49: 4797–4806.

    Article  PubMed  CAS  Google Scholar 

  • Woody, R. W., 1969, Optical properties of polypeptides in the p-conformation, Biopolymers 8: 669–683.

    Article  CAS  Google Scholar 

  • Woody, R. W., 1974, Studies of theoretical circular dichroism of polypeptides. Contributions of 13 turns, in: Peptides, Polypeptides, and Proteins ( E. R. Blout, F. A. Bovey, M. Goodman, and N. Lotan, eds.), pp. 338–350, Wiley—Interscience, New York.

    Google Scholar 

  • Woody, R. W., 1977, Optical rotatory properties of biopolymers, J. Polym. Sci. Macromol. Rev. 12: 181–321.

    Article  CAS  Google Scholar 

  • Woody, R. W., 1985, Circular dichroism of peptides, in: The Peptides, Vol. 7 ( V. J. Hruby, ed.), pp. 15–114, Academic Press, New York.

    Google Scholar 

  • Woody, R. W., 1992, Circular dichroism and conformation of unordered peptides, Adv. Biophys. Chem. 2: 37–79.

    CAS  Google Scholar 

  • Woody, R. W., 1993, The circular dichroism of oriented (3-sheets: Theoretical predictions, Tetrahed. Asymm. 4: 529–544.

    Article  CAS  Google Scholar 

  • Woody, R. W., and Callis, P. R., 1992, Crystal field effects on transition moment directions in cytosine, Biophys. J. 61: 168a.

    Google Scholar 

  • Woody, R. W., and Tinoco, I., Jr., 1967, Optical rotation of oriented helices. III. Calculation of the rotatory dispersion and circular dichroism of the alpha-and 310-helix, J. Chem. Phys. 46: 4927–4945.

    Article  CAS  Google Scholar 

  • Yamaoka, K., Ueda, K., and Kosako, I., 1986, Far-ultraviolet electric linear dichroism of poly(y-methylL-glutamate) in hexafluoro-2-propanol and the peptide band in the 187–250 nm wavelength region, J. Am. Chem. Soc. 108: 4619–4625.

    Article  CAS  Google Scholar 

  • Yasui, S. C., and Keiderling, T., 1986, Vibrational circular dichroism of polypeptides. 8. Poly(lysine) conformations as a function of pH in aqueous solution, J. Am. Chem. Soc. 108: 5576–5581.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Woody, R.W. (1996). Theory of Circular Dichroism of Proteins. In: Fasman, G.D. (eds) Circular Dichroism and the Conformational Analysis of Biomolecules. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2508-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2508-7_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3249-5

  • Online ISBN: 978-1-4757-2508-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics