Theory of Circular Dichroism of Proteins

  • Robert W. Woody


In this chapter, the basic phenomenon of circular dichroism (CD) will be described. The central theoretical parameter of rotational strength will then be defined. The mechanisms by which electronic transitions contribute to CD, i.e., acquire rotational strength, will then be discussed qualitatively, after which the methods by which CD is calculated will be described. The most important group in the electronic spectroscopy of proteins, the peptide group, will then be discussed. Finally, theoretical studies of the principal types of peptide secondary structure will be surveyed. The reader should note that aromatic and disulfide groups are not discussed in this chapter, but are covered in a separate chapter (Woody and Dunker, Chapter 4), along with experimental studies of these important protein chromophores.


Circular Dichroism Transition Moment Electric Vector Peptide Group Exciton Band 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adzhubei, A. A., and Sternberg, M. J. E., 1993, Left-handed polyproline II helices commonly occur in globular proteins, J. Mol. Biol. 229: 472–493.PubMedCrossRefGoogle Scholar
  2. Adzhubei, A. A., Eisenmenger, F., Tumanyan, V. G., Zinke, M., Brodzinski, S., and Esipova, N. G., 1987, Third type of secondary structure: Non-cooperative mobile conformation, Biochem. Biophys. Res. Commun. 146: 934–938.CrossRefGoogle Scholar
  3. Ananthanarayanan, V. S., and Shyamasundar, N., 1981, Circular dichroism of type 13 3-turn in linear tripeptides containing L-proline and D-alanine, Biochem. Biophys. Res. Commun. 102: 295–301.PubMedCrossRefGoogle Scholar
  4. Applequist, J., 1979a, Dipole coupling effects of nonchromophoric groups in molecules on frequencies, dipole strengths, and rotational strengths of chromophoric groups, J. Chem. Phys. 71: 1983–1984.CrossRefGoogle Scholar
  5. Applequist, J., 1979b, A full polarizability treatment of the err—rr absorption and circular dichroic spectra of a-helical polypeptides, J. Chem. Phys. 71. 4332–4338.CrossRefGoogle Scholar
  6. Applequist, J., 1981, Theoretical.rr—ar absorption and circular dichroic spectra of helical poly(L-proline) forms I and II, Biopolymers 20: 2311–2322.CrossRefGoogle Scholar
  7. Applequist, J., 1982, Theoretical 71-rr absorption and circular dichroic spectra of polypeptide (3-structures, Biopolymers 21. 779–795.CrossRefGoogle Scholar
  8. Applequist, J., Carl, J. R., and Fung, K.-K.,1972, Atom dipole interaction model for molecular polarizability. Application to polyatomic molecules and determination of atom polarizabilities. J. Am. Chem. Soc. 94: 2952–2960.Google Scholar
  9. Applequist, J., Sundberg, K. R., Olson, M. L., and Weiss, L. C., 1979, A normal mode treatment of optical properties of a classical coupled dipole oscillator system with Lorentzian band shapes, J. Chem. Phys. 70: 1240–1246.CrossRefGoogle Scholar
  10. Bandekar, J., Evans, D. J., Krimm, S., Leach, S. J., Lee, S., McQuie, J. R., Minasian, E., Nemethy, G., Pottle, M. S., Scheraga, H. A., Stimson, E. R., and Woody, R. W., 1982, Conformations of cyclo(Lalanyl-L-alanyl-e-aminocaproyl) and of cyclo(L-alanyl-n-alanyl-e-aminocaproyl); cyclized dipeptide models for specific types of (3-bends, Int. J. Pept. Protein Res. 19: 187–205.Google Scholar
  11. Barlow, D. J., and Thornton, J. M., 1988, Helix geometry in proteins, J. Mol. Biol. 201: 601–619.PubMedCrossRefGoogle Scholar
  12. Barnes, D. G., and Rhodes, W., 1968, Generalized susceptibility theory. II. Optical absorption properties of helical polypeptides, J. Chem. Phys. 48: 817–824.PubMedCrossRefGoogle Scholar
  13. Bartlett, R. J., and Stanton, J. F., 1994, Application of post-Hartree—Fock methods: A tutorial, Rev. Comput. Chem. 5: 65–169.CrossRefGoogle Scholar
  14. Basch, H., Robin, M. B., and Kuebler, N. A., 1967, Electronic states of the amide group, J. Chem. Phys. 47: 1201–1210.CrossRefGoogle Scholar
  15. Basch, H., Robin, M. B., and Kuebler, N. A., 1968, Electronic spectra of isoelectronic amides, acids, and acyl fluorides, J. Chem. Phys. 49: 5007–5018.CrossRefGoogle Scholar
  16. Bayley, P. M.,1973, The analysis of circular dichroism of biomolecules, Prog. Biophys. Mol. BioL 27: 1–76.Google Scholar
  17. Bayley, P. M., Nielsen, E. B., and Schellman, J. A., 1969, The rotatory properties of molecules containing two peptide groups: Theory, J. Phys. Chem. 73: 228–243.PubMedCrossRefGoogle Scholar
  18. Bazzi, M. D., and Woody, R. W., 1985, Oriented secondary structure in integral membrane proteins. I. Circular dichroism and infrared spectroscopy of cytochrome oxidase in multilamellar films, Biophys. J. 48: 957–966.PubMedCrossRefGoogle Scholar
  19. Bazzi, M. D., Woody, R. W., and Brack, A., 1987, Interaction of amphipathic polypeptides with phospholipids: Characterization of conformations and the CD of oriented 13-sheets, Biopolymers 26: 1115–1124.PubMedCrossRefGoogle Scholar
  20. Benedetti, E., 1982, Structure and conformation of peptides as determined by x-ray crystallography, Chem. Biochem. Amino Acids Pept. Proteins 6: 105–184.Google Scholar
  21. Blâha, K., and Maloií, P., 1980, Non-planarity of the amide group and its manifestation, Acta Univ. Palacki. Olomuc. Fac. Med. 93: 81–96.Google Scholar
  22. Block, H., Hayes, E. F., and North, A. M., 1970, Dielectric behaviour of solutions of poly-y-benzyl-L-glutamate and of copolymers with the D-enantiomorph, Trans. Faraday Soc. 66: 1095–1105.CrossRefGoogle Scholar
  23. Born, M., 1915, Über die natürliche optische Aktivität von Flüssigkeiten und Gasen, Phys. Z. 16: 251–258.Google Scholar
  24. Bradley, D. F., Tinoco, I., Jr., and Woody, R. W., 1963, Absorption and rotation of light by helical oligomers: The nearest neighbor approximation, Biopolymers 1: 239–267.CrossRefGoogle Scholar
  25. Brahms, S., Brahms, J., Spach, G., and Brack, A., 1977, Identification of [3,13-turns and unordered conformations in polypeptide chains by vacuum ultraviolet circular dichroism, Proc. Natl. Acad. Sci. USA 74: 3208–3212.PubMedCrossRefGoogle Scholar
  26. Bush, C. A., Sarkar, S. K., and Kopple, K. D., 1978, Circular dichroism of ß turns in peptides and proteins, Biochemistry 17: 4951–4954.PubMedCrossRefGoogle Scholar
  27. Cassim, J. Y., and Yang, J. T., 1970, Critical comparison of the experimental optical activity of helical polypeptides and the predictions of the molecular exciton model, Biopolymers 9: 1475–1502.PubMedCrossRefGoogle Scholar
  28. Chen, Y.-H., Yang, J. T., and Chau, K. H., 1974, Determination of the helix and 13 form of proteins in aqueous solution by circular dichroism, Biochemistry 13: 3350–3359.PubMedCrossRefGoogle Scholar
  29. Chothia, C., 1973, Conformation of twisted I3-pleated sheets in proteins, J. Mol. Biol. 75: 295–302.PubMedCrossRefGoogle Scholar
  30. Chou, K.-C., Pottle, M., Némethy, G., Ueda, Y., and Scheraga, H. A., 1982, Structure of 3-sheets. Origin of the right-handed twist and of the increased stability of antiparallel over parallel sheets, J. Mol. Biol. 162: 89–112.PubMedCrossRefGoogle Scholar
  31. Chou, K.-C., Némethy, G., and Scheraga, H. A., 1983, Role of interchain interactions in the stabilization of the right-handed twist of 0-sheets, J. Mol. Biol. 168: 389–407.PubMedCrossRefGoogle Scholar
  32. Condon, E. U., 1937, Theories of optical rotatory power, Rev. Mod. Phys. 9: 432–457.CrossRefGoogle Scholar
  33. Condon, E. U., Altar, W., and Eyring, H., 1937, One-electron rotatory power, J. Chem. Phys. 5: 753–775.CrossRefGoogle Scholar
  34. Davydov, A. S., 1962, Theory of Molecular Excitons (M. Kasha and M. Oppenheimer, Jr., transi.), McGraw—Hill, New York.Google Scholar
  35. Dekkers, H. P. J. M., 1994, Circularly polarized luminescence: A probe for chirality in the excited state, in: Circular Dichroism: Principles and Applications ( K. Nakanishi, N. Berova, and R. W. Woody, eds.), pp. 121–152, VCH Publishers, New York.Google Scholar
  36. DelBene, J., and Jaffé, H. H., 1968, Use of the CNDO method in spectroscopy. I. Benzene, pyridine, and the diazines, J. Chem. Phys. 48: 1807–1813.Google Scholar
  37. Deslauriers, R., Evans, D. J., Leach, S. J., Meinwald, Y. C., Minasian, E., Némethy, G., Rae, I. D., Scheraga, H. A., Somorjai, R. L., Stimson, E. R., van Nispen, J. W., and Woody, R. W., 1981, Conformation of cyclo(L-alanylglycyl-e-aminocaproyl), a cyclized dipeptide model for a 3-bend. 2. Synthesis, nuclear magnetic resonance, and circular dichroism measurements, Macromolecules 14: 985–996.CrossRefGoogle Scholar
  38. DeVoe, H., 1964, Optical properties of molecular aggregates. I. Classical model of electronic absorption and refraction, J. Chem. Phys. 41: 393–400.CrossRefGoogle Scholar
  39. DeVoe, H., 1965, Optical properties of molecular aggregates. II. Classical theory of the refraction, absorption and optical activity of solutions and crystals, J. Chem. Phys. 43: 3199–3208.CrossRefGoogle Scholar
  40. Drake, A. F., Siligardi, G., and Gibbons, W. A., 1988, Reassessment of the electronic circular dichroism criteria for random coil conformations of poly(L-lysine) and the implications for protein folding and denaturation studies, Biophys. Chem. 31: 143–146.PubMedCrossRefGoogle Scholar
  41. Fleichhauer, J., Kramer, B., Löhkamper, R., Zobel, E., Grötzinger, J., Krüger, P., Wollmer, A., and Woody, R. W., 1993, Calculations of the circular dichroism of polypeptide helices with the matrix method and the theory of DeVoe, in: Proceedings of the 5th International Conference on Circular Dichroism, p. 253, Pingree Park, Colorado.Google Scholar
  42. Gans, P. J., Lyu, P. C., Manning, M. C., Woody, R. W., and Kallenbach, N. R., 1991, The helix—coil transition in heterogeneous peptides with specific side-chain interactions: Theory and comparison with CD spectral data, Biopolymers 311: 605–1614.Google Scholar
  43. Garner, D. R., and Stevens, W. J., 1989, Transferability of molecular distributed polarizabilities from a simple localized orbital-based method, J. Phys. Chem. 93: 8263–8270.CrossRefGoogle Scholar
  44. Gierasch, L. M., Deber, C. M., Madison, V., Niu, C.-H., and Blout, E. R., 1981, Conformations of (XL-Pro-Y)2 cyclic hexapeptides. Preferred 13 turn conformers and implications for 13 turns in proteins, Biochemistry 20: 4730–4738.PubMedCrossRefGoogle Scholar
  45. Gratzer, W. B., Holzwarth, G. M., and Doty, P., 1961, Polarization of the ultraviolet absorption bands in a-helical polypeptides, Proc. Natl. Acad. Sci. USA 47: 1785–1791.PubMedCrossRefGoogle Scholar
  46. Greenfield, N. J., and Fasman, G. D., 1969, Computed circular dichroism spectra for the evaluation of protein conformation, Biochemistry 8: 4108–4116.PubMedCrossRefGoogle Scholar
  47. Grishina, I. B., and Woody, R. W., 1994, Contributions of tryptophan side chains to the circular dichroism of globular proteins: Exciton couplets and coupled oscillators, Faraday Discuss. 99: 245–262.PubMedCrossRefGoogle Scholar
  48. Hansen, A. E., 1967, Correlation effects in the calculation of ordinary and rotatory intensities, Mol. Phys. 13: 425–431.CrossRefGoogle Scholar
  49. Hansen, A. E., and Bouman, T. D., 1980, Natural chiroptical spectroscopy: Theory and computations, Adv. Chem. Phys. 44: 545–644.Google Scholar
  50. Harada, N., 1994, Circular dichroism of twisted ar-electron systems: Theoretical determination of the absolute stereochemistry of natural products and chiral synthetic organic compounds, in: Circular Dichroism: Principles and Applications ( K. Nakanishi, N. Berova, and R. W. Woody, eds.), pp. 335–360, VCH Publishers, New York.Google Scholar
  51. Harris, R. A., 1969, Oscillator strengths and rotational strengths in Hartree–Fock theory, J. Chem. Phys. 50: 3947–3951.CrossRefGoogle Scholar
  52. Holzwarth, G., and Doty, P., 1965, The ultraviolet circular dichroism of polypeptides, J. Am. Chem. Soc. 87: 218–228.Google Scholar
  53. Imahori, K., and Nicola, N. A., 1973, Optical rotatory dispersion and the main chain conformation of proteins, in: Physical Principles and Techniques of Protein Chemistry ( S. J. Leach, ed.), pp. 357–444, Academic Press, New York.Google Scholar
  54. Jackson, D. Y., King, D. S., Chmielewski, J., Singh, S., and Schultz, P. G., 1991, General approach to the synthesis of short a-helical peptides, J. Am. Chem. Soc. 113: 9391–9392.CrossRefGoogle Scholar
  55. Jenness, D. D., Sprecher, C., and Johnson, W. C., Jr., 1976, Circular dichroism of collagen, gelatin, and poly(proline)II in the vacuum ultraviolet, Biopolymers 15: 513–521.PubMedCrossRefGoogle Scholar
  56. Jirgensons, B., 1973, Optical Activity of Proteins and Other Macromolecules, 2nd ed., Springer-Verlag, Berlin.CrossRefGoogle Scholar
  57. Johnson, W. C., Jr., and Tinoco, I., Jr., 1972, Circular dichroism of polypeptide solutions in the vacuum ultraviolet, J. Am. Chem. Soc. 94: 4389–4390.PubMedCrossRefGoogle Scholar
  58. Kaya, K., and Nagakura, S., 1972, The electronic absorption spectra of the 2,5-diketopiperazine single crystal and evaporated film, J. Mol. Spectrosc. 44: 279–285.CrossRefGoogle Scholar
  59. Kirkwood, J. G., 1937, On the theory of optical rotatory power, J. Chem. Phys. 5: 479–491.CrossRefGoogle Scholar
  60. Kliger, D. S., Lewis, J. W., and Randall, C. E., 1990, Polarized Light in Optics and Spectroscopy, Academic Press, New York.Google Scholar
  61. Kuhn, W., 1929, Quantitative Verhältnisse und Beziehungen bei der natürlichen optischen Aktivität, Z. Phys. Chem. (Leipzig) B4: 14–36.Google Scholar
  62. Kuhn, W., 1930, The physical significance of optical rotatory power, Trans. Faraday Soc. 46: 293–308.CrossRefGoogle Scholar
  63. Laiken, S. L., Printz, M. P., and Craig, L. C., 1969, Circular dichroism of the tyrocidines and gramicidin S-A, J. Biol. Chem. 244: 4454–4457.PubMedGoogle Scholar
  64. LeFevre, C. G., and LeFevre, R. J. W., 1955, The Kerr effect—Its measurement and applications in chemistry, Rev. Pure Appl. Chem. 5: 261–318.Google Scholar
  65. Li, L.-K., and Spector, A., 1969, Circular dichroism of 13-poly-L-lysine, J. Am. Chem. Soc. 91: 220–222CrossRefGoogle Scholar
  66. Lowry, T. M., 1935, Optical Rotatory Power, Longmans, Green, London, reprinted by Dover Publications, New York, 1964.Google Scholar
  67. Loxsom, F. M., Tterlikkis, L., and Rhodes, W., 1971, A non-perturbation method for the optical properties of helical polymers, Biopolymers 10: 2405–2420.PubMedCrossRefGoogle Scholar
  68. Madison, V., and Schellman, J., 1972, Optical activity of polypeptides and proteins, Biopolymers 11: 1041–1076.PubMedCrossRefGoogle Scholar
  69. Mandel, R., and Holzwarth, G., 1972, Circular dichroism of oriented helical polypeptides: The alpha-helix, J. Chem. Phys. 57: 3469–3477.CrossRefGoogle Scholar
  70. Mandel, R., and Holzwarth, G., 1973, Ultraviolet circular dichroism of polyproline and oriented collagen, Biopolymers 12: 655–674.CrossRefGoogle Scholar
  71. Manning, M. C., and Woody, R. W., 1987, Theoretical determination of the CD of proteins containing closely packed antiparallel 13-sheets, Biopolymers 26: 1731–1752.PubMedCrossRefGoogle Scholar
  72. Manning, M. C., and Woody, R. W., 1991, Theoretical CD studies of polypeptide helices: Examination of important electronic and geometric factors, Biopolymers 31: 569–586.PubMedCrossRefGoogle Scholar
  73. Manning, M. C., Illangasekare, M., and Woody, R. W., 1988, Circular dichroism studies of distorted a-helices, twisted 13-sheets, and [3-turns, Biophys. Chem. 31: 77–86.PubMedCrossRefGoogle Scholar
  74. Michl, J., and Thulstrup, E. W., 1986, Spectroscopy with Polarized Light: Solute Alignment by Photoselec- tion, in Liquid Crystals, Polymers, and Membranes, pp. 6–10, VCH Publishers, New York.Google Scholar
  75. Moffitt, W., 1956a, Optical rotatory dispersion of helical polymers, J. Chem. Phys. 25: 467–478.CrossRefGoogle Scholar
  76. Moffitt, W., 1956b, The optical rotatory dispersion of simple polypeptides. II, Proc. Natl. Acad. Sci. USA 42: 736–746.PubMedCrossRefGoogle Scholar
  77. Moffitt, W., and Moscowitz, A., 1959, Optical activity in absorbing media, J. Chem. Phys. 30: 648–660.CrossRefGoogle Scholar
  78. Moffitt, W., Fitts, D. D., and Kirkwood, J. G., 1957, Critique of the theory of optical activity of helical polymers, Proc. Natl. Acad. Sci. USA 43: 723–730.PubMedCrossRefGoogle Scholar
  79. Moscowitz, A., 1962, Theoretical aspects of optical activity. Part one: Small molecules, Adv. Chem. Phys. 4: 67–112.CrossRefGoogle Scholar
  80. Muccio, D. D., and Cassim, J. Y., 1979, Interpretation of the absorption and circular dichroic spectra of oriented purple membrane films, Biophys. J. 26: 427–440.PubMedCrossRefGoogle Scholar
  81. Nielsen, E. B., and Schellman, J. A., 1967, The absorption spectra of simple amides and peptides, J. Phys. Chem. 71: 2297–2304.PubMedCrossRefGoogle Scholar
  82. Olah, G. A., and Huang, H. W., 1988a, Circular dichroism of oriented a-helices. I. Proof of the exciton theory, J. Chem. Phys. 89: 2531–2538.CrossRefGoogle Scholar
  83. Olah, G. A., and Huang, H. W., 19886, Circular dichroism of oriented a-helices. II. Electric field oriented polypeptides, J. Chem. Phys. 89: 6956–6962.Google Scholar
  84. Paterlini, M. G., Freedman, T. B., and Nafie, L. A., 1986, Vibrational circular dichroism spectra of three conformationally distinct states and an unordered state of poly(L-lysine) in deuterated aqueous solution, Biopolymers 25: 1751–1765.PubMedCrossRefGoogle Scholar
  85. Pauling, L., and Corey, R. B., 1951, Configurations of polypeptide chains with favored orientations around single bonds: Two new pleated sheets, Proc. Natl. Acad. Sci. USA 37: 729–740.PubMedCrossRefGoogle Scholar
  86. Pauling, L., Corey, R. B., and Branson, H. R., 1951, The structure of proteins: Two hydrogen-bonded helical configurations of the polypeptide chain, Proc. Natl. Acad. Sci. USA 37: 205–211.PubMedCrossRefGoogle Scholar
  87. Peterson, D. L., and Simpson, W. T., 1957, Polarized electronic absorption spectrum of amides with assignments of transitions, J. Am. Chem. Soc. 79: 2375–2382.CrossRefGoogle Scholar
  88. Pysh, E. S., 1966, The calculated ultraviolet optical properties of polypeptide ß-configurations, Proc. Natl. Acad. Sci. USA 56: 825–832.PubMedCrossRefGoogle Scholar
  89. Pysh, E. S., 1967, The calculated ultraviolet optical properties of poly-L-proline I and II, J. Mol. Biol. 23: 587–589.PubMedCrossRefGoogle Scholar
  90. Quadrifoglio, F., and Urry, D. W., 1968, Ultraviolet rotatory properties of polypeptides in solution. II. Poly-L-serine, J. Am. Chem. Soc. 90: 2760–2765.PubMedCrossRefGoogle Scholar
  91. Ramachandran, G. N., 1974, Aspects of peptide conformation, in: Peptides, Polypeptides, and Proteins ( E. R. Blout, F. A. Bovey, M. Goodman, and N. Lotan, eds.), pp. 14–34, Wiley—Interscience, New York.Google Scholar
  92. Ramachandran, G. N., and Sasisekharan, V., 1968, Conformation of polypeptides and proteins, Adv. Protein Chem. 23: 283–437.PubMedCrossRefGoogle Scholar
  93. Robin, M. B., 1975, Higher Excited States of Polyatomic Molecules, Vol. 2, pp. 122–160, Academic Press, New York.Google Scholar
  94. Ronish, E. W., and Krimm, S., 1974, The calculated circular dichroism of polyproline II in the polarizability approximation, Biopolymers 13: 1635–1651.PubMedCrossRefGoogle Scholar
  95. Rosenheck, K., and Doty, P., 1961, The far ultraviolet absorption spectra of polypeptide and protein solutions and their dependence on conformation, Proc. Natl. Acad. Sci. USA 47: 1775–1785.PubMedCrossRefGoogle Scholar
  96. Sathyanarayana, B. K., and Applequist, J., 1986. Theoretical Tr—Tr* absorption and circular dichroic spectra of p-turn model peptides, Int. J. Pept. Protein Res. 27: 86–94.PubMedCrossRefGoogle Scholar
  97. Schellman, J. A., 1968, Symmetry rules for optical rotation, Acc. Chem. Res. 1: 144–151.CrossRefGoogle Scholar
  98. Schellman, J. A., 1975, Circular dichroism and optical rotation, Chem. Rev. 75: 323–331.CrossRefGoogle Scholar
  99. Schellman, J. A., and Becktel, W. J., 1983, The optical activity of polypeptides, Biopolymers 22: 171–187.PubMedCrossRefGoogle Scholar
  100. Schellman, J. A., and Oriel, P., 1962, Origin of the Cotton effect of helical polypeptides, J. Chem. Phys. 37: 2114–2124.CrossRefGoogle Scholar
  101. Scholtz, J. M., and Baldwin, R. L., 1992, The mechanism of a-helix formation by peptides, Annu. Rev. Biophys. Biomol. Struct. 21: 95–118.PubMedCrossRefGoogle Scholar
  102. Snatzke, G., 1994, Circular dichroism: An introduction, in: Circular Dichroism: Principles and Applications ( K. Nakanishi, N. Berova, and R. W. Woody, eds.), pp. 59–84, VCH Publishers, New York.Google Scholar
  103. Snir, J., Frankel, R. A., and Schellman, J. A., 1975, Optical activity of polypeptides in the infrared. Predicted CD of the amide I and amide II bands, Biopolymers 14: 173–196.PubMedCrossRefGoogle Scholar
  104. Sreerama, N., Woody, R. W., and Callis, P. R., 1994, Theoretical study of the crystal field effects on the transition dipole moments in methylated adenines, J. Phys. Chem. 98: 10397–10407.CrossRefGoogle Scholar
  105. Terbojevich, M., Peggion, E., Cosani, A., D’Este, G., and Scoffone, E., 1967, Solution properties of synthetic polypeptides. Light scattering and viscosity of poly(y-ethyl-L-glutamate) in dichloroacetic acid and trifluoroethanol, Eur. Polym. J. 3: 681–689.CrossRefGoogle Scholar
  106. Theiste, D., Callis, P. R., and Woody, R. W., 1991, Effects of the crystal field on transition moments in 9-ethylguanine, J. Am. Chem. Soc. 113: 3260–3267.CrossRefGoogle Scholar
  107. Tiffany, M. L., and Krimm, S., 1968, New chain conformations of poly(glutamic acid) and polylysine, Biopolymers 6: 1379–1382.PubMedCrossRefGoogle Scholar
  108. Tinoco, I., Jr., 1962, Theoretical aspects of optical activity. Part two: Polymers, Adv. Chem. Phys. 4: 113–160.CrossRefGoogle Scholar
  109. Tinoco, I., Jr., 1964, Circular dichroism and rotatory dispersion curves for helices. J. Am. Chem. Soc. 86: 297–298.CrossRefGoogle Scholar
  110. Tinoco, I., Jr., Halpern, A., and Simpson, W. T., 1962, The relation between conformation and light absorption in polypeptides and proteins, in: Polyamino Acids, Polypeptides, and Proteins ( M. A. Stahman, ed.), pp. 147–160, University of Wisconsin Press, Madison.Google Scholar
  111. Tinoco, I., Jr., Woody, R. W., and Bradley, D. F., 1963, Absorption and rotation of light by helical polymers: The effect of chain length, J. Chem. Phys. 38: 1317–1325.CrossRefGoogle Scholar
  112. Tinoco, I., Jr., Mickols, W., Maestre, M. F., and Bustamante, C., 1987, Absorption, scattering, and imaging of biomolecular structures with polarized light, Annu. Rev. Biophys. Biophys. Chem. 16:319–349. Toniolo, C., and Bonora, G. M., 1975, Structural aspects of small peptides. A circular dichroism study of monodisperse protected homo-oligomers derived from L-alanine, Makromol. Chem. 176: 2547–2558.Google Scholar
  113. Toniolo, C., Bonora, G. M., and Fontana, A., 1974, Three-dimensional architecture of monodisperse 13-branched linear homo-oligopeptides, Int. J. Pept. Protein Res. 6: 371–380.PubMedCrossRefGoogle Scholar
  114. Ueda, K., 1984, Reversing-pulse electric birefringence of poly(y-methyl-L-glutamate) in hexafluoro-2propanol, Bull, Chem. Soc. Jpn. 5: 2703–2711.CrossRefGoogle Scholar
  115. Urnes, P., and Doty, P., 1961, Optical rotation and the conformation of polypeptides and proteins, Adv. Protein Chem. 16: 401–544.PubMedCrossRefGoogle Scholar
  116. Volosov, A., and Woody, R. W., 1994, Theoretical approach to natural electronic optical activity, in: Circular Dichroism: Principles and Applications ( K. Nakanishi, N. Berova, and R. W. Woody, eds.), pp. 59–84, VCH Publishers, New York.Google Scholar
  117. Woody, R. W., 1968, Improved calculation of the n-rr rotational strength in polypeptides, J. Chem. Phys. 49: 4797–4806.PubMedCrossRefGoogle Scholar
  118. Woody, R. W., 1969, Optical properties of polypeptides in the p-conformation, Biopolymers 8: 669–683.CrossRefGoogle Scholar
  119. Woody, R. W., 1974, Studies of theoretical circular dichroism of polypeptides. Contributions of 13 turns, in: Peptides, Polypeptides, and Proteins ( E. R. Blout, F. A. Bovey, M. Goodman, and N. Lotan, eds.), pp. 338–350, Wiley—Interscience, New York.Google Scholar
  120. Woody, R. W., 1977, Optical rotatory properties of biopolymers, J. Polym. Sci. Macromol. Rev. 12: 181–321.CrossRefGoogle Scholar
  121. Woody, R. W., 1985, Circular dichroism of peptides, in: The Peptides, Vol. 7 ( V. J. Hruby, ed.), pp. 15–114, Academic Press, New York.Google Scholar
  122. Woody, R. W., 1992, Circular dichroism and conformation of unordered peptides, Adv. Biophys. Chem. 2: 37–79.Google Scholar
  123. Woody, R. W., 1993, The circular dichroism of oriented (3-sheets: Theoretical predictions, Tetrahed. Asymm. 4: 529–544.CrossRefGoogle Scholar
  124. Woody, R. W., and Callis, P. R., 1992, Crystal field effects on transition moment directions in cytosine, Biophys. J. 61: 168a.Google Scholar
  125. Woody, R. W., and Tinoco, I., Jr., 1967, Optical rotation of oriented helices. III. Calculation of the rotatory dispersion and circular dichroism of the alpha-and 310-helix, J. Chem. Phys. 46: 4927–4945.CrossRefGoogle Scholar
  126. Yamaoka, K., Ueda, K., and Kosako, I., 1986, Far-ultraviolet electric linear dichroism of poly(y-methylL-glutamate) in hexafluoro-2-propanol and the peptide band in the 187–250 nm wavelength region, J. Am. Chem. Soc. 108: 4619–4625.CrossRefGoogle Scholar
  127. Yasui, S. C., and Keiderling, T., 1986, Vibrational circular dichroism of polypeptides. 8. Poly(lysine) conformations as a function of pH in aqueous solution, J. Am. Chem. Soc. 108: 5576–5581.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Robert W. Woody
    • 1
  1. 1.Department of Biochemistry and Molecular BiologyColorado State UniversityFort CollinsUSA

Personalised recommendations