Circular Dichroism Instrumentation

  • W. Curtis JohnsonJr.


Circular dichroism (CD) measures the difference in absorption between the two rotations of circularly polarized light by an asymmetric molecule. Most biological molecules are asymmetric, and their measured CD is sensitive to their conformation. In the case of biological polymers, CD is the method of choice for monitoring secondary structure. The technique is nondestructive, requires only a small amount of material, and can be applied to molecules in solution.


Circular Dichroism Electric Vector Vacuum Ultraviolet Circular Dichroism Signal Vibrational Circular Dichroism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brahms, S., Brahms, J., Spach, G., and Brack, A.,1977, Identification of 3-sheets, 13-turns and unordered conformations in polypeptide chains by vacuum ultraviolet circular dichroism, Proc. Natl. Acad. Sci. USA 74: 3208–3212.Google Scholar
  2. Bree, A., and Lyons, L. E., 1956, The intensity of ultraviolet light absorption by monocrystals. Part I. Measurement of thickness of thin crystals by interferometry, J. Chem. Soc. London 1956: 2658–2670.Google Scholar
  3. Buffington, L. A., Stevens, E. S., Morris, E. R., and Rees, D. A., 1980, Vacuum ultraviolet circular dichroism of galactomannans, Int. J. Biol. Macromol. 2: 199–203.CrossRefGoogle Scholar
  4. Chen, G. C., and Yang, J. T., 1977, Two point calibration of circular dichrometer with d-10-camphorsulfonic acid, Anal. Lett. 10: 1195–1207.CrossRefGoogle Scholar
  5. Devlin, F., and Stephens, P. J., 1987, Vibrational circular dichroism measurement in the frequency range of 800 to 650 cm-I, Appl. Spectrosc. 41: 1142–1144.CrossRefGoogle Scholar
  6. Diem, M., Gotkin, P. J., Kupfer, J. M., and Nafie, L. A., 1978, Vibrational circular dichroism in amino acids and peptides. 2. Simple alanyl peptides, J. Am. Chem. Soc. 100: 5644–5650.CrossRefGoogle Scholar
  7. Diem, M., Roberts, G. M., Lee, O., and Barlow, A., 1988, Design and performance of an optimized dispersive infrared dichrograph, Appt Spectrosc. 42: 20–27.CrossRefGoogle Scholar
  8. Drake, A. F., and Mason, S. F., 1977, The absorption and circular dichroism spectra of chiral olefins, Tetrahedron 33: 937–949.CrossRefGoogle Scholar
  9. Gedanken, A., and Levy, M., 1977, New instrument for circular dichroism measurements in the vacuum ultraviolet, Rev. Sci. Instrum. 48: 1161–1164.CrossRefGoogle Scholar
  10. Grosjean, M., and Legrand, M., 1960, Polarimétrie-appareil de mesure du dichroisme circulaire dans le visible et l’ultraviolet, Comptes Rendus 251: 2150–2152.Google Scholar
  11. Gross, K. P., and Schnepp, 0., 1977, Improved circular dichroism instrument in the vacuum ultraviolet, Rev. Sci. Instrum. 48: 362–363.CrossRefGoogle Scholar
  12. Hecht, L., and Barron, L. D., 1990, An analysis of modulation experiments for Raman optical activity, Appl. Spectrosc. 44: 483–491.CrossRefGoogle Scholar
  13. Hecht, L., Barron, L. D., Gargaro, A. R., Wen, Z. Q., and Hug, W., 1992, Raman optical activity instrument for biochemical studies, J. Raman Spectrosc. 23: 401–411.CrossRefGoogle Scholar
  14. Hennessey, J. P., Jr., and Johnson, W. C., Jr., 1981, Information content in the circular dichroism of proteins, Biochemistry 20: 1085–1094.PubMedCrossRefGoogle Scholar
  15. Jasperson, S. N., and Schnatterly, S. E., 1969, An improved method for high reflectivity ellipsometry based on a new polarization modulation technique, Rev. Sci. Instrum. 40: 761–767.CrossRefGoogle Scholar
  16. Johnson, W. C., Jr., 1971, A circular dichroism spectrometer for the vacuum ultraviolet, Rev. Sci. Instrum. 42: 1283–1286.PubMedCrossRefGoogle Scholar
  17. Keiderling, T. A., 1981, Vibrational circular dichroism, Appl. Spectrosc. Rev. 17: 189–226.CrossRefGoogle Scholar
  18. Keiderling, T. A., 1990, Vibrational circular dichroism: Comparison of techniques and practical considerations, in: Practical Fourier Transform Infrared Spectroscopy, pp. 203–283, Academic Press, New York.Google Scholar
  19. Kemp, J. C., 1969, Piezo-optical birefringence modulators: New use for a long-known effect, J. Opt. Soc. Am. 59: 950–954.Google Scholar
  20. Lewis, D. G., and Johnson, W. C., Jr., 1978, Optical properties of sugars. VI. Circular dichroism of amylose and glucose oligomers, Bipolymers 17: 1439–1449.CrossRefGoogle Scholar
  21. Lewis, J. W., Tilton, R. F., Einterz, C. M., Milder, S. J., Kuntz, I. D., and Kliger, D. S., 1985, New technique for measuring circular dichroism changes on a nanosecond time scale. Application to (carbonmonoxy)myoglobin and (carbonmonoxy)hemoglobin, J. Phys. Chem. 89: 289–294.CrossRefGoogle Scholar
  22. Lewis, J. W., Goldbeck, R. A., Kliger, D. S., Xie, X., Dunn, R. C., and Simon, J. D., 1992, Time-resolved circular dichroism spectroscopy: Experiment, theory, and applications to biological systems, J. Phys. Chem. 96: 5243–5254.CrossRefGoogle Scholar
  23. Nafie, L. A., Keiderling, T. A., and Stephens, P. J., 1976, Vibrational circular dichroism, J. Am. Chem. Soc. 98: 2715–2723.CrossRefGoogle Scholar
  24. Nafie, L. A., Che, D., Yu, G.-S., and Freedman, T. B., 1991, New experimental methods and theory of Raman optical activity, in: Biomolecular Spectroscopy II (R. R. Birge and L. A. Nafie, eds.), Proc. SPIE Vol. 1432, pp. 37–51.Google Scholar
  25. Nelson, R. G., and Johnson, W. C., Jr., 1972, Optical properties of sugars. I. Circular dichroism of monomers at equilibrium, J. Am. Chem. Soc. 94: 3343–3345.CrossRefGoogle Scholar
  26. Polavarapu, P. L., 1985, Fourier transform infrared vibrational circular dichroism, in: Fourier Transform Infrared Spectroscopy 4 (J. R. Ferraro and L. Basile, eds.), pp. 61–96, Academic Press, New York. Pysh, E. S., 1976, Optical activity in the vacuum ultraviolet, Annu. Rev. biophys. Bioeng. 5: 63–75.Google Scholar
  27. Schnepp, O., Allen, S., and Pearson, E. F., 1970, The measurement of circular dichroism in the vacuum ultraviolet, Rev. Sci. Instrum. 41: 1136–1141.CrossRefGoogle Scholar
  28. Snyder, P. A., 1984, Status of natural and magnetic circular dichroism instrumentation using synchrotron radiation, Nucl. Instrum. Methods Phys. Res. 222: 364–371.CrossRefGoogle Scholar
  29. Sutherland, J. C., and Griffin, K. P., 1983, Vacuum ultraviolet circular dichroism of poly(dI-dC):poly(dI-dC): No evidence for a left-handed double helix, Biopolymers 22: 1445–1448.CrossRefGoogle Scholar
  30. Sutherland, J. C., Cimino, G. D., and Lowe, J. T., 1976, Emission and polarization spectrometer for biophysical spectroscopy, Rev. Sci. Instrum. 47: 358–360.PubMedCrossRefGoogle Scholar
  31. Sutherland, J. C., Desmond, E. J., and Takacs, P. Z., 1980, Versatile spectrometer for experiments using synchrotron radiation at wavelengths greater than 100 nm, Nucl. Instrum. Methods 172: 195–199.CrossRefGoogle Scholar
  32. Tinoco, I., Jr., Bustamante, C., and Maestre, M. F., 1980, The optical activity of nucleic acids and their aggregates, Annu. Rev. Biophys. Bioeng. 9: 107–141.PubMedCrossRefGoogle Scholar
  33. Wells, B. D., and Yang, J. T., 1974, A computer probe of the circular dichroic bands of nucleic acids in the ultraviolet region. II. Doluble-stranded ribonucleic acid and deoxyribonucleic acid, Biochemistry 13: 1317–1321.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • W. Curtis JohnsonJr.

There are no affiliations available

Personalised recommendations