Advertisement

Vibrational Circular Dichroism

Applications to Conformational Analysis of Biomolecules
  • Timothy A. Keiderling
Chapter

Abstract

The use of electronic circular dichroism (ECD) of transitions in the ultraviolet for biomolecular structural studies has been one of the dominant applications of the technique as amply demonstrated in the preceding chapters of this book. In retrospect, it is amazing that so much useful structural information has been gleaned from ECD spectra which typically provide only a few independent, poorly resolved spectral features in these molecules. The compilation of such a body of structural insight stands as a tribute to the exquisite structural sensitivity of this chiroptical technique. In proteins, the most useful transitions that yield insight into secondary structure have proven to be the n−π* and π−π* of the amide groups, both of which lie in the region from 220 to 190 nm. The π−π* transitions of aromatic residues are useful for monitoring tertiary structure but offer limited interpretability. For nucleic acids, the π−π* transitions of the bases are spectrally more spread out but are still severely overlapped. Interactions among these transitions in the respective polymers yield information about the peptide backbone conformation or the nucleotide base stacking. On the other hand, information about other structural aspects of these biomolecules is more difficult to obtain because of the difficulty of accessing spectral transitions centered on other parts of the molecule. Furthermore, since the accessible electronic excitations are relatively delocalized and involve changes in the π−bonding electron configurations, the resulting transitions are susceptible to significant frequency shifts and intensity variations caused by environmental or local perturbations. Spectrally, these transitions are broad and overlapping.

Keywords

Secondary Structure Band Shape Vibrational Circular Dichroism Spectral Coefficient Faraday Discuss 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Acharya, K. R., Stuart, D. I., Walker, N. P. C., Lewis, M., and Phillips, D. C., 1989, J. Mol. Biol. 208: 99–124.PubMedGoogle Scholar
  2. Acharya, K. R., Ren, J., Stuart, D. I., Phillips, D. C., and Feena, R. E., 1991, J. Mol. Biol. 221:571. Amos, R. D., Jalkanen, K. J., and Stephens, P. J., 1988, J. Phys. Chem. 92: 55–71.Google Scholar
  3. Annamalai, A., and Keiderling, T. A., 1987, J. Am. Chem. Soc. 109: 31–25.Google Scholar
  4. Bak, K. L., Jorgenson, P., Helgaker, T., Rund, K., and Jensen, H. J. A., 1993, J. Chem. Phys. 98: 8873.Google Scholar
  5. Bak, K. L., Jorgenson, P., Helgaker, T., Rund, K., and Jensen, H. J. A., 1994, J. Chem. Phys. 100: 6620.Google Scholar
  6. Bak, K. L., Jorgenson, P., Helgaker, T., and Rund, K., 1995, Faraday Discuss. 99: 121.Google Scholar
  7. Barron, L. D., 1982, Molecular Light Scattering and Optical Activity, Cambridge University Press, London. Barron, L. D., 1989, Vibrational Spectra and Structure 17B: 343.Google Scholar
  8. Barron, L. D., and Hecht, L., 1993, in: Biomolecular Spectroscopy Part B (R. J. H. Clark and R. E. Hester, eds.), pp. 235–266, Wiley, New York.Google Scholar
  9. Baumruk, V., and Keiderling, T. A., 1993, J. Am. Chem. Soc. 115: 6939–6942.Google Scholar
  10. Baumruk, V., Huo, D., Dukor, R. K., Keiderling, T. A., Lelievre, D., and Brack, A., 1994, Biopolymers 34: 1115–1121.PubMedGoogle Scholar
  11. Birke, S. S., and Diem, M., 1995, Biophys. J. 68: 1045.PubMedGoogle Scholar
  12. Birke, S. S., Zhong, W., Goss, D. J., and Diem, M., 1991, in: Spectroscopy of Biological Molecules (R. E. Hester and R. B. Girling, eds.), pp. 135–136, Royal Society of Chemistry, Cambridge.Google Scholar
  13. Birke, S. S., Agbadje, I., and Diem, M., 1992, Biochemistry 31: 450–455.PubMedGoogle Scholar
  14. Birke, S. S., Moses, M., Gulotta, M., Kagarlovsky, B., Jao, D., and Diem, M., 1993, Biophys. J. 65: 1262–1271.PubMedGoogle Scholar
  15. Bour, P., 1993, Ph.D. thesis, Academy of Science, Prague, Czech Republic.Google Scholar
  16. Bour, P., and Keiderling, T. A., 1992, J. Am. Chem. Soc. 114: 9100–9105.Google Scholar
  17. Bour, P., and Keiderling, T. A., 1993, J. Am. Chem. Soc. 115: 9602–9607.Google Scholar
  18. Boyd, W. J., Jennings, D. E., Blass, W. E., and Gailar, N. M., 1974, Rev. Sci. Instrum. 45:1286. Byler, D. M., and Susi, H., 1986, Biopolymers 25: 469–487.Google Scholar
  19. Chernovitz, A. C., Freedman, T. B., and Nafie, L. A., 1987, Biopolymers 26: 1879.PubMedGoogle Scholar
  20. Chou, P. Y., and Fasman, G. D., 1974a, Biochemistry 13: 211–222.PubMedGoogle Scholar
  21. Chou, P. Y., and Fasman, G. D., 1974b, Biochemistry 13: 222–245.PubMedGoogle Scholar
  22. Citra, M., Paterlini, M. G., Freedman, T. B., Fissi, A., and Pieroni, 0., 1994, Biopolymers, in press. Devlin, F., and Stephens, P. J., 1987, Appl. Spectrosc. 41:1142.Google Scholar
  23. Diem, M., 1988, J. Am. Chem. Soc. 110: 6967–6970.Google Scholar
  24. Diem, M., 1991, Vibrational Spectra and Structure 19: 1–54.Google Scholar
  25. Diem, M., 1994, in: Techniques and Instrumentation in Analytical Chemistry (N. Purdie and H. G. Brittian, eds.), pp. 91–130, Elsevier, Amsterdam.Google Scholar
  26. Diem, M., Gotkin, P. J., Kupfer, J. M., and Nafie, L. A., 1978, J. Am. Chem. Soc. 100: 5644.Google Scholar
  27. Diem, M., Oboodi, M. R., and Alva, C., 1984, Biopolymers 23: 1917.PubMedGoogle Scholar
  28. Diem, M., Roberts, G. M., Lee, 0., and Barlow, A., 1988, Appl. Spectrosc. 42: 20.Google Scholar
  29. Dousseau, F., and Pezolet, M., 1990, Biochemistry 29: 8771–8779.PubMedGoogle Scholar
  30. Dukor, R. K., 1991, Ph.D. thesis, University of Illinois, Chicago.Google Scholar
  31. Dukor, R. K., and Keiderling, T. A., 1989, in: Proceedings of the 20th European Peptide Symposium (E. Bayer and G. Jung, eds.), pp. 519–521, deGruyter, Berlin.Google Scholar
  32. Dukor, R. K., and Keiderling, T. A., 1991, Biopolymers 31: 747–1761.Google Scholar
  33. Dukor, R. K., Keiderling, T. A., and Gut, V., 1991, Int. J. Peptide Protein Res. 38: 198–203.Google Scholar
  34. Dukor, R. K., Pancoska, P., Prestrelski, S., Arakawa, T., and Keiderling, T. A., 1992, Arch. Biochem. Biophys. 298: 678: 681.Google Scholar
  35. Dutler, R., and Rauk, A., 1989, J. Am. Chem. Soc. 111: 6957.Google Scholar
  36. Fasman, G. D., ed., 1989, Prediction of Protein Structure and the Principles of Protein Conformation, Plenum Press, New York.Google Scholar
  37. Freedman, T. B., and Nafie, L. A., 1983, J. Chem. Phys. 78: 27.Google Scholar
  38. Freedman, T. B., and Nafie, L. A., 1987, Top. Stereochem. 17: 113–206.Google Scholar
  39. Freedman, T. B., and Nafie, L. A., 1994, Adv. Chem. Phys. 85: 207–263.Google Scholar
  40. Freedman, T. B., Chernovitz, A. C., Zuk, W. M., Paterlini, G., and Nafie, L. A., 1988, J. Am. Chem. Soc. 110: 6970–6974.Google Scholar
  41. Freedman, T. B., Cianciosi, S. J., Ragunathan, N., Baldwin, J. E., and Nafie, L. A., 1991, J. Am. Chem. Soc. 113: 8298.Google Scholar
  42. Freedman, T. B., Nafie, L. A., and Yang, D., 1994, Chem. Phys. Lett. 227: 419–428.Google Scholar
  43. Freedman, T. B., Ragunathan, N., and Alexander, S., 1995a, Faraday Discuss. 99: 131.Google Scholar
  44. Freedman, T. B., Nafie, L. A., and Keiderling, T. A., 1995b, Biopolymers 37: 265–279.PubMedGoogle Scholar
  45. Griffiths, P. R., and deHaseth, J. A., 1986, Fourier Transform Infrared Spectroscopy, Wiley, New York.Google Scholar
  46. Gulotta, M., Goss, D. J., and Diem, M., 1989, Biopolymers 28: 2047–2058.PubMedGoogle Scholar
  47. Gupta, V. P., and Keiderling, T. A., 1992, Biopolymers 32: 239–248.PubMedGoogle Scholar
  48. Hansen, A. E., Stephens, P. J., and Bouman, T. D., 1991, J. Phys. Chem. 92: 5571.Google Scholar
  49. Harata, K., and Muraki, M., 1992, J. Biol. Chem. 267: 1419.PubMedGoogle Scholar
  50. Hennessey, J. P., and Johnson, W. C., 1981, Biochemistry 20: 1085–1094.PubMedGoogle Scholar
  51. Holzwarth, G., and Chabay, I., 1972, J. Chem. Phys. 57: 1632.Google Scholar
  52. Ingle, J. P., and Crouch, S. R., 1988, Spectrochemical Analysis, Prentice—Hall, Englewood Cliffs, NJ.Google Scholar
  53. Jalkanen, K., Stephens, P. J., Amos, R. D., and Handy, N. C., 1987, J. Am. Chem. Soc. 109: 7193.Google Scholar
  54. Johnson, W. C., 1985, Methods Biochem. Anal. 31: 61–163.Google Scholar
  55. Johnson, W. C., 1988, Annu. Rev. Biophys. Biophys. Chem. 17: 145–166.PubMedGoogle Scholar
  56. Kabsch, W., and Sander, C., 1983, Biopolymers 22: 2577–2637.PubMedGoogle Scholar
  57. Kauppinen, J. K., Moffat, D. J., Mantsch, H. H., and Cameron, D. G., 1981, Appl. Spectrosc. 35: 271–276.Google Scholar
  58. Keiderling, T. A., 1981, Appl. Spectrosc. Rev. 17: 189–226.Google Scholar
  59. Keiderling, T. A., 1986, Nature 322: 851–852.Google Scholar
  60. Keiderling, T. A., 1990, in: Practical Fourier Transform Infrared Spectroscopy (J. R. Ferraro and K. Krishnan, eds.), pp. 203–284, Academic Press, New York.Google Scholar
  61. Keiderling, T. A., 1993, in: Physical Chemistry of Food Processes, Advanced Techniques, Structures and Applications (I. C. Bianau, H. Pessen, and T. F. Kumoninski, eds.), pp. 307–337, van Nostrand Reinhold, New York.Google Scholar
  62. Keiderling, T. A., 1994, in: Circular Dichroism Principles and Applications (K. Nakanishi, N. Berova, and R. W. Woody, eds.), pp. 497–521, VCH Publishers, New York.Google Scholar
  63. Keiderling, T. A., and Pancoska, P., 1993, in: Biomolecular Spectroscopy Part B (R. J. H. Clark and R. E. Hester, eds.), pp. 267–315, Wiley, New York.Google Scholar
  64. Keiderling, T. A., Yasui, S. C., Dukor, R. K., and Yang, L., 1989a, Polym. Prep. 30:423–424. Keiderling, T. A., Pancoska, P., Dukor, R. K., and Yang, L., 1989b, Proc. SPIE 1057:7–14. Keiderling, T. A., Yasui, S. C., Malon, P., Pancoska, P., Dukor, R. K., Croatto, P. V., and Yang, L., 1989c, Proc. SPIE 1145: 57–63.Google Scholar
  65. Keiderling, T. A., Pancoska, P., Yasui, S. C., Urbanova, M., and Dukor, R. K., 1991, in: Proteins: Structure, Dynamics, Design (V. Renugopalkrishnan, P. R. Carey, I. C. P. Smith, S. G. Huang, and A. C. Storer, eds.), pp. 165–170, ESCOM, Leiden.Google Scholar
  66. Keiderling, T. A., Wang, B., Urbanova, M., Pancoska, P., and Dukor, R. K., 1995, Faraday Discuss. 99: 263.Google Scholar
  67. Kobrinskaya, R., Yasui, S. C., and Keiderling, T. A., 1988, in: Peptides, Chemistry and Biology, Proceedings of the 10th American Peptide Symposium (G. R. Marshall, ed.), pp. 65–66, ESCOM, Leiden.Google Scholar
  68. Krimm, S., and Bandekar, J., 1986, Adv. Protein Chem. 38: 181–364.Google Scholar
  69. Krimm, S., and Reisdorf, W. G., Jr., 1995, Faraday Discuss. 99: 181.Google Scholar
  70. Kronman, M. J., 1989, Crit. Rev. Biochem. Mol. Biol. 24: 565–667.PubMedGoogle Scholar
  71. Kuwajima, K., 1989, Proteins Struct. Funct. Genet. 6: 87.PubMedGoogle Scholar
  72. LaBrake, C. C., Wang, L., Keiderling, T. A., and Fung, L. W.-M., 1993, Biochemistry 32: 10296–10302.PubMedGoogle Scholar
  73. Lal, B. B., and Nafie, L. A., 1982, Biopolymers 21. 2161–2183.PubMedGoogle Scholar
  74. Lee, D. C., Haris, P. I., Chapman, D., and Mitchell, R. C., 1990, Biochemistry 29:9185–9193. Lee, O., Roberts, G. M., and Diem, M., 1989, Biopolymers 29. 1759–1770.Google Scholar
  75. Levitt, M., and Chothia, C., 1976, Nature 261. 552–558.PubMedGoogle Scholar
  76. Levitt, M., and Greer, J., 1977, J. Mol. Biol. 114: 181–293.PubMedGoogle Scholar
  77. McKenzie, H. A., and White, F. H., 1991, Adv. Protein Chem. 41: 173.PubMedGoogle Scholar
  78. Malinowski, E. R., and Howery, D. G., 1980, Factor Analysis in Chemistry, Wiley, New York. Malon, P., and Keiderling, T. A., 1988, Appl. Spectrosc. 42: 32–38.Google Scholar
  79. Malon, P., Kobrinskaya, R., and Keiderling, T. A., 1988, Biopolymers 27: 733–746.PubMedGoogle Scholar
  80. Manning, M., 1989, J. Pharm. Biomed. Anal. 7: 1103–1119.PubMedGoogle Scholar
  81. Mantsch, H. H., Casal, H. L., and Jones, R. N., 1986, in: Spectroscopy, Vol. 13 (R. J. H. Clark and R. E. Hester, eds.), pp. 1–46, Wiley, New York.Google Scholar
  82. Marcott, C., Dowrey, A. E., and Noda, 1., 1993, Appl. Spectrosc. 47: 1324–1328.Google Scholar
  83. Marshall, G. R., Hodgkin, E. E., Langs, D. A., Smith, G. D., Zabrocki, J., and Leplawy, M. T., 1990, Proc. Natl. Acad. Sci. USA 87: 487–491.Google Scholar
  84. Nafie, L. A., 1984, Adv. Infrared Raman Spectrosc. 11: 49.Google Scholar
  85. Nafie, L. A., and Che, D., 1994, Adv. Chem. Phys. 85: 105–206.Google Scholar
  86. Nafie, L. A., and Freedman, T. B., 1983, J. Chem. Phys. 78: 7108.Google Scholar
  87. Nafie, L. A., Keiderling, T. A., and Stephens, P. J. 1976, J. Am. Chem. Soc. 98: 2715–2723.Google Scholar
  88. Nafie, L. A., Yu, G.-S., Qu, X., and Freedman, T. B., 1995, Faraday Discuss. 99: 13.Google Scholar
  89. Narayanan, U., Keiderling, T. A., Bonora, G. M., and Toniolo, C., 1985, Biopolymers 24: 1257–1263.PubMedGoogle Scholar
  90. Narayanan, U., Keiderling, T. A., Bonora, G. M., and Toniolo, C., 1986, J. Am. Chem. Soc. 108: 2431–2437.PubMedGoogle Scholar
  91. Pancoska, P., and Keiderling, T. A., 1991, Biochemistry 30: 6885–6895.PubMedGoogle Scholar
  92. Pancoska, P., Fric, I., and Blaha, K., 1979, Collect. Czech. Chem. Commun. 44:1296–1312. Pancoska, P., Yasui, S. C., and Keiderling, T. A., 1989, Biochemistry 28: 5917–5923.Google Scholar
  93. Pancoska, P., Yasui, S. C., and Keiderling, T. A., 1991, Biochemistry 30: 5089–5103.PubMedGoogle Scholar
  94. Pancoska, P., Blazek, M., and Keiderling, T. A., 1992, Biochemistry 31: 10250–10257.PubMedGoogle Scholar
  95. Pancoska, P., Wang, L., and Keiderling, T. A., 1993, Protein Sci. 2: 411–419.PubMedGoogle Scholar
  96. Pancoska, P., Bitto, E., Janota, V., and Keiderling, T. A., 1995a, Faraday Discuss. 99: 287.Google Scholar
  97. Pancoska, P., Bitto, E., Janota, V., Urbanova, M., Gupta, V. P., and Keiderling, T. A., 1995b, Prot. Scl 4: 1384–1481.Google Scholar
  98. Pancoska, P., Baumruk, V., Keiderling, T. A., 1996, submitted for publication.Google Scholar
  99. Parker, F. S., 1983, Applications of Infrared, Raman, and Resonance Raman Spectroscopy in Biochemistry, Plenum Press, New York.Google Scholar
  100. Paterlini, G. M., Freedman, T. B., and Nafie, L. A., 1986, Biopolymers 25: 1751–1765.PubMedGoogle Scholar
  101. Perczel, A., Hollosi, M., Tusnady, G., and Fasman, G. D., 1991, Protein Eng. 4: 669–679.PubMedGoogle Scholar
  102. Polavarapu, P. L., 1984, Vibrational Spectra and Structure 13: 103.Google Scholar
  103. Polavarapu, P. L., 1985, in: Fourier Transform Infrared Spectroscopy, Vol. 4 ( J. R. Ferraro and L. Basile, ed.), Academic Press, New York.Google Scholar
  104. Polavarapu, P. L., 1989, Vibrational Spectra and Structure 17B: 319–342.Google Scholar
  105. Polavarapu, P. L., and Chen, G.-C., 1994, Appl. Spectrosc. 48: 1410–1418.Google Scholar
  106. Polavarapu, P. L., Chen, G.-C., and Weibel, S., 1994, Appl. Spectrosc. 48: 1224–1235.Google Scholar
  107. Press, W. H., 1992, Numerical Recipes in C; the Art of Scientific Computing, 2nd ed. Ver 2. 0, Cambridge University Press, London.Google Scholar
  108. Prestrelski, S. J., Arakawa, T., Kenney, W. C., and Byler, D. M., 1991, Arch. Biochem. Biophys. 285: 111–115.PubMedGoogle Scholar
  109. Pribic, R., van Stokkum, I. H. M., Chapman, D., Haris, P. I., and Bloemendal, M., 1993, Anal. Biochem. 214: 366.Google Scholar
  110. Provencher, S. W., and Glöckner, J., 1981, Biochemistry 20: 33–37.PubMedGoogle Scholar
  111. Rauk, A., and Yang, D., 1992, J. Phys. Chem. 96: 437.Google Scholar
  112. Roberts, G. M., Lee, O., Callienni, J., and Diem, M., 1988, J. Am. Chem. Soc. 110:1749–1752. Sarver, R. W., and Kruger, W. C., 1991a, Anal. Biochem. 194: 89–100.Google Scholar
  113. Sarver, R. W., and Kruger, W. C., 1991b, Anal. Biochem. 199: 61–67.PubMedGoogle Scholar
  114. Schellman, J. A., 1972, J. Chem. Phys. 58:2882 [Erratum: 1974, 60:343].Google Scholar
  115. Sen, A. C., and Keiderling, T. A., 1984a, Biopolymers 23: 1519–1532.PubMedGoogle Scholar
  116. Sen, A. C., and Keiderling, T. A., 1984b, Biopolymers 23: 1533–1546.PubMedGoogle Scholar
  117. Singh, R. D., and Keiderling, T. A., 1981, Biopolymers 20: 237–240.Google Scholar
  118. Snir, J., Frankel, R. A., and Schellman, J. A., 1974, Biopolymers 14: 173.Google Scholar
  119. Sreerama, N., and Woody, R. W., 1993, Anal. Biochem. 209: 32–44.PubMedGoogle Scholar
  120. Sreerama, N., and Woody, R. W., 1994, J. Mol. Biol. 242: 497–507.PubMedGoogle Scholar
  121. Stephens, P. J., 1985, J. Phys. Chem. 89: 784.Google Scholar
  122. Stephens, P. J., 1987, J. Phys. Chem. 91: 1712.Google Scholar
  123. Stephens, P. J., and Lowe, M. A., 1985, Annu. Rev. Phys. Chem. 36: 213–241.Google Scholar
  124. Stephens, P. J., Jalkanen, K. J., Devlin, F. J., and Chabalowski, C. F., 1993, J. Phys. Chem. 97: 6107.Google Scholar
  125. Stephens, P. J., Chabalowski, C. F., Devlin, F. J., and Jalkanen, K. J., 1994a, Chem. Phys. Lett. 225: 247.Google Scholar
  126. Stephens, P. J., Devlin, F. J., Chabalowski, C. F., and Frisch, M. J., 1994b, J. Phys. Chem. 98: 11623–11627.Google Scholar
  127. Stephens, P. J., Devlin, F. J., Ashvar, C. S., Chabalowski, C. F., and Frisch, M. J., 1995, Faraday Discuss. 99: 103.Google Scholar
  128. Su, C. N., Heintz, V., and Keiderling, T. A., 1981, Chem. Phys. Lett. 73: 157–159.Google Scholar
  129. Surewicz, W., and Mantsch, H. H., 1988, Biochim. Biophys. Acta 952: 115–130.PubMedGoogle Scholar
  130. Surewicz, W., Mantsch, H. H., and Chapman, D., 1993, Biochemistry 32: 389–394.PubMedGoogle Scholar
  131. Sutherland, J. C., and Griffen, K. P., 1983, Biopolymers 22:1445–1448.Google Scholar
  132. Tiffany, M. L., and Krimm, S., 1974, Isr. J. Chem. 12: 189.Google Scholar
  133. Tinoco, I., 1963, Radiat. Res. 20: 133.Google Scholar
  134. Urbanova, M., Dukor, R. K., Pancoska, P., Gupta, V. P., and Keiderling, T. A., 1991, Biochemistry 30: 10479–10485.PubMedGoogle Scholar
  135. Urbanova, M., Pancoska, P., and Keiderling, T. A., 1993, Biochim. Biophys. Acta 1203: 290–294.Google Scholar
  136. van Stokkum, I. H. M., Spoelder, H. J. W., Bloemendal, M., van Grundelle, R., and Groen, F. C. A., 1990, Anal. Biochem. 191: 110.PubMedGoogle Scholar
  137. Venyaminov, S. Y., and Kalnin, N. N., 1990, Biopolymers 30: 1243–1247.PubMedGoogle Scholar
  138. Wang, B., and Keiderling, T. A., 1995, Appl. Spectrosc. 49: 1347.Google Scholar
  139. Wang, L., and Keiderling, T. A., 1992, Biochemistry 31. 10265–10271.PubMedGoogle Scholar
  140. Wang, L., and Keiderling, T. A., 1993, Nucl. Acids Res. 21: 4127–4132.PubMedGoogle Scholar
  141. Wang, L., Yang, L., and Keiderling, T. A., 1991, in: Spectroscopy of Biological Molecules (R. E. Hester and R. B. Girling, eds.), pp. 137–138, Royal Society of Chemistry, Cambridge.Google Scholar
  142. Wang, L., Pancoska, P., and Keiderling, T. A., 1994a, Biochemistry 33: 8428–8435.PubMedGoogle Scholar
  143. Wang, L., Yang, L., and Keiderling, T. A., 1994b, Biophys. J. 67: 2460–2467.PubMedGoogle Scholar
  144. Wyssbrod, H., and Diem, M., 1992, Biopolymers 31: 1237.Google Scholar
  145. Xiang, T., Goss, D. J., and Diem, M., 1993, Biophys. J. 65: 1255–1261.PubMedGoogle Scholar
  146. Xie, P., Zhou, Q., and Diem, M., 1995, Faraday Discuss. 99: 233.Google Scholar
  147. Yang, J. T., Wu, C. S. C., and Martinez, H. M., 1986, Methods Enzymol. 130: 208–269.PubMedGoogle Scholar
  148. Yang, L., and Keiderling, T. A., 1993, Biopolymers 33: 315–327.PubMedGoogle Scholar
  149. Yasui, S. C., and Keiderling, T. A., 1986a, J. Am. Chem. Soc. 108: 5576–5581.Google Scholar
  150. Yasui, S. C., and Keiderling, T. A., 1986b, Biopolymers 25: 5–15.PubMedGoogle Scholar
  151. Yasui, S. C., and Keiderling, T. A., 1988a, in: Peptides, Chemistry and Biology, Proceedings of the 10th American Peptide Symposium (G. R. Marshall, ed.), pp. 90–91, ESCOM, Leiden.Google Scholar
  152. Yasui, S. C., and Keiderling, T. A., 1988b, Mikrochim. Acta 11: 325.Google Scholar
  153. Yasui, S. C., Keiderling, T. A., Bonora, G. M., and Toniolo, C., 1986a, Biopolymers 25: 79–89.PubMedGoogle Scholar
  154. Yasui, S. C., Keiderling, T. A., Formaggio, F., Bonora, G. M., and Toniolo, C., 1986b, J. Am. Chem. Soc. 108: 4988–4993.Google Scholar
  155. Yasui, S. C., Keiderling, T. A., and Sisido, M., 1987a, Macromolecules 20: 2403.Google Scholar
  156. Yasui, S. C., Keiderling, T. A., and Katachia, R., 1987b, Biopolymers 26: 1407–1412.PubMedGoogle Scholar
  157. Yasui, S. C., Pancoska, P., Dukor, R. K., Keiderling, T. A., Renugopalakrishnan, V., Glimcher, M. J., and Clark, R. C., 1990, J. Biol. Chem. 265: 3780–3788.PubMedGoogle Scholar
  158. Yasui, S. C., Yoder, G., Pancoska, P. Keiderling, T. A., Formaggio, F., and Toniolo, C., 1996, to be published.Google Scholar
  159. Yoder, G., Keiderling, T. A., Formaggio, F., Crisma, M., and Toniolo, C., 1995a, Biopolymers 35: 103–111.PubMedGoogle Scholar
  160. Yoder, G., Keiderling, T. A., Formaggio, F., Crisma, M., Toniolo, C., and Kamphuis, J., 1995b, Tetrahedron Asym. 6: 687–690.Google Scholar
  161. Yoo, R. K., Wang, B., Croatto, P. V., and Keiderling, T. A., 1991, Appl. Spectrosc. 45:231–236.Google Scholar
  162. Zhong, W., Gulotta, M., Goss, D. J., and Diem, M., 1990, Biochemistry 29: 7485–7491.Google Scholar
  163. Zuk, W. M., Freedman, T. B., and Nafie, L. A., 1989, J. Phys. Chem. 93: 1771–1779.Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Timothy A. Keiderling
    • 1
  1. 1.Department of ChemistryUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations