Circular Dichroism of Protein-Nucleic Acid Interactions

  • Donald M. Gray


This chapter will treat the intrinsic ultraviolet CD spectra of interacting nucleic acids and proteins. The CD spectra to be discussed will be restricted to the ultraviolet wavelength region below 320 nm, where nucleic acids and proteins have optical activity as a result of their secondary structures. Since protein secondary structures generally dominate CD spectra at wavelengths below 250 nm, the region from about 250 to 320 nm provides a valuable spectral “window” for detecting the secondary structures of nucleic acids that are complexed with proteins. Of course, aromatic amino acid side chains contribute to the CD in the wavelength region from 250 to 320 nm, but this contribution is usually small relative to the CD of polymeric nucleic acids. Moreover, CD difference spectra (of complexes minus components) in this wavelength region do not generally exhibit the complex features that can be attributed to the transitions of the aromatic amino acids. Therefore, the CD effects observed above 250 nm on forming proteinnucleic acid complexes are usually considered to be reflective of changes in the nucleic acid secondary structure. Likewise, the CD contributions of individual amino acid side chains are often, but not always, less than those of peptide secondary structures at wavelengths below 250 nm. Exceptions to these generalities will be seen in the CD spectra of some filamentous phages, for which the DNA signal above 250 nm can be essentially absent, and in the CD spectra of the fd gene 5 protein, where tyrosines dominate the CD of a ß-structure protein below 250 nm.


Human Immunodeficiency Virus Type Circular Dichroism cAMP Receptor Protein Filamentous Phage Circular Dichroism Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alberts, B., Frey, L., and Delius, H., 1972, Isolation and characterization of gene 5 protein of filamentous bacterial viruses, J. Mol. Biol. 68: 139–152.PubMedCrossRefGoogle Scholar
  2. Altschmied, L., and Hillen, W., 1984, TET repressor—tet operator complex formation induces conformational changes in the tet operator DNA, Nucleic Acids Res. 12: 2171–2180.PubMedCrossRefGoogle Scholar
  3. Anderson, R. A., Nakashima, Y., and Coleman, J. E., 1975, Chemical modifications of functional residues of fd gene 5 DNA-binding protein, Biochemistry 14: 907–917.PubMedCrossRefGoogle Scholar
  4. Arnold, G. E., Day, L. A., and Dunker, A. K., 1992, Tryptophan contributions to the unusual circular dichroism of fd bacteriophage, Biochemistry 31. 7948–7956.PubMedCrossRefGoogle Scholar
  5. Baase, W. A., and Johnson, W. C., Jr., 1979, Circular dichroism and DNA secondary structure, Nucleic Acids Res. 6: 797–814.PubMedCrossRefGoogle Scholar
  6. Blazy, B., Culard, F., and Maurizot, J. C., 1987, Interaction between the cyclic AMP receptor protein and DNA: Conformational studies, J. Mol. Biol. 195: 175–183.PubMedCrossRefGoogle Scholar
  7. Bryan, P. N., Wright, E. B., Hsie, M. H., Olins, A. L., and Olins, D. E., 1978, Physical properties of inner histone—DNA complexes, Nucleic Acids Res. 5: 3603–3617.PubMedCrossRefGoogle Scholar
  8. Bulsink, H., Harmsen, B. J. M., and Hilbers, C. W., 1988, DNA-binding properties of gene-5 protein encoded by bacteriophage M13. 2. Further characterization of the different binding modes for poly-and oligodeoxynucleic acids, Eur. J. Biochem. 176: 597–608.PubMedCrossRefGoogle Scholar
  9. Bustamante, C., Tinoco, I., Jr., and Maestre, M. F., 1983, Circular differential scattering can be an important part of the circular dichroism of macromolecules, Proc. Natl. Acad. Sci. USA 80: 3568–3572.PubMedCrossRefGoogle Scholar
  10. Carpenter, M. L., and Kneale, G. G., 1991, Circular dichroism and fluorescence analysis of the interaction of Pfl gene 5 protein with poly(dT), J. Mol. Biol. 217: 681–689.PubMedCrossRefGoogle Scholar
  11. Casadevall, A., and Day, L. A., 1983, Silver and mercury probing of deoxyribonucleic acid structures in the filamentous viruses fd, Ifl, IKe, Xf, Pfl, and Pf3, Biochemistry 22: 4831–4842.PubMedCrossRefGoogle Scholar
  12. Casadevall, A., and Day, L., 1985, The precursor complex of Pf3 bacteriophage, Virology 145: 260–272.PubMedCrossRefGoogle Scholar
  13. Chen, C., Kilkuskie, R., and Hanlon, S., 1981, Circular dichroism spectral properties of covalent complexes of deoxyribonucleic acid and n-butylamine, Biochemistry 20: 4987–4995.PubMedCrossRefGoogle Scholar
  14. Chen, C. Y., Pheiffer, B. H., Zimmerman, S. B., and Hanlon, S., 1983, Conformational characteristics of deoxyribonucleic acid–butylamine complexes with C-type circular dichroism specra. 1. An X-ray fiber diffraction study, Biochemistry 22: 4746–4751.PubMedCrossRefGoogle Scholar
  15. Clack, B. A., and Gray, D. M., 1989, A CD determination of the a-helix contents of the coat proteins of four filamentous bacteriophages: fd, IKe, Pfl, and Pf3, Biopolymers 28: 1861–1873.PubMedCrossRefGoogle Scholar
  16. Clack, B. A., and Gray, D. M., 1992, Flow linear dichroism spectra of four filamentous bacteriophages: DNA and coat protein contributions, Biopolymers 32: 795–810.PubMedCrossRefGoogle Scholar
  17. Connor, F., Cary, P. D., Read, C. M., Preston, N. S., Driscoll, P. C., Denny, P., Crane-Robinson, C., and Ashworth, A., 1994, DNA binding and bending properties of the post-meiotically expressed Sry-related protein Sox-5, Nucleic Acids Res. 22: 3339–3346.PubMedCrossRefGoogle Scholar
  18. Cowman, M. K., and Fasman, G. D., 1978, Circular dichroism analysis of mononucleosome DNA conformation, Proc. Natl. Acad. Sci. USA 75: 4759–4763.PubMedCrossRefGoogle Scholar
  19. Cowman, M. K., and Fasman, G. D., 1980, Dependence of mononucleosome deoxyribonucleic acid conformation on the deoxyribonucleic acid length and H1/H5 content. Circular dichroism and thermal denaturation studies, Biochemistry 19: 532–541.PubMedCrossRefGoogle Scholar
  20. Culard, F., and Maurizot, J. C., 1981, Lac repressor–lac operator interaction: Circular dichroism study, Nucleic Acids Res. 19: 5175–5184.CrossRefGoogle Scholar
  21. Day, L. A., 1966, Protein conformation in fd bacteriophage as investigated by optical rotatory dispersion, J. Mol. Biol. 15: 395–398.PubMedCrossRefGoogle Scholar
  22. Day, L. A., 1973, Circular dichroism and ultraviolet absorption of a deoxyribonucleic acid binding protein of filamentous bacteriophage, Biochemistry 12: 5329–5339.PubMedCrossRefGoogle Scholar
  23. Day, L. A., Marzec, C. J., Reisberg, S. A., and Casadevall, A., 1988, DNA packing in filamentous bacteriophages, Annu. Rev. Biophys. Biophys. Chem. 17: 509–539.PubMedCrossRefGoogle Scholar
  24. Diaspro, A., Bertolotto, M., Vergani, L., and Nicolini, C., 1991, Polarized light scattering of nucleosomes and polynucleosomes—In situ and in vitro studies, IEEE Trans. Biomed. Eng. 38: 670–678.PubMedCrossRefGoogle Scholar
  25. Dorman, B. P., and Maestre, M. F., 1973, Experimental differential light-scattering correction to the circular dichroism of bacteriophage T2, Proc. Natl. Acad. Sci. USA 70: 255–259.PubMedCrossRefGoogle Scholar
  26. Ebnath, A., Schweers, O., Thole, H., Fagin, U., Urbanke, C., Maass, G., and Wolfes, H., 1994, Biophysical characterization of the c-Myb DNA-binding domain, Biochemistry 33: 14586–14593.CrossRefGoogle Scholar
  27. Edmondson, S. P., and Gray, D. M., 1983, A circular dichroism study of the structure of Penicillium chrysogenum mycovirus, Nucleic Acids Res. 11: 175–192.PubMedCrossRefGoogle Scholar
  28. Fasman, G. D., 1977, Histone–DNA interactions: Circular dichroism studies, in: Chromatin and Chromo-some Structure ( H. J. Li and R. A. Eckhardt, eds.), pp. 71–142, Academic Press, New York.Google Scholar
  29. Ferré-D’Amaré, A. R., Prendergast, G. C., Ziff, E. B., and Burley, S. K., 1993, Recognition by Max of its cognate DNA through a dimeric b/HLH/Z domain, Nature 363: 38–45.PubMedCrossRefGoogle Scholar
  30. Ferré-D’Amaré, A. R., Pognonec, P., Roeder, R. G., and Burley, S. K., 1994, Structure and function of the b/HLH/Z domain of USF, EMBO J. 13: 180–189.PubMedGoogle Scholar
  31. Fisher, D. E., Parent, L. A., and Sharp, P. A., 1993, High affinity DNA-binding Myc analogs: Recognition by an a-helix, Cell 72: 467–476.PubMedCrossRefGoogle Scholar
  32. Folkers, P. J. M., van Duynhoven, J. P. M., Jonker, A. J., Harmsen, B. J. M., Konings, R. N. H., and Hilbers, C. W., 1991a, Sequence-specific ‘H-NMR assignment and secondary structure of the Tyr41 –* His mutant of the single-stranded DNA binding protein, gene V protein, encoded by the filamentous bacteriophage M13, Eur. J. Biochem. 202: 349–360.PubMedCrossRefGoogle Scholar
  33. Folkers, P. J. M., Stassen, A. P. M., van Duynhoven, J. P. M., Harmsen, B. J. M., Konings, R. N. H., and Hilbers, C. W., 1991b, Characterization of wild-type and mutant M13 gene V proteins by means of ‘H-NMR, Eur. J. Biochem. 200: 139–148.PubMedCrossRefGoogle Scholar
  34. Fried, M. G., Wu, H.-M., and Crothers, D. M., 1983, CAP binding to B and Z forms of DNA, Nucleic Acids Res. 1E2479–2494.Google Scholar
  35. Geiselmann, J., Yager, T. D., and von Hippel, P. H., 1992, Functional interactions of ligand cofactors with Escherichia coli transcription termination factor rho. II. Binding of RNA, Protein. Sci. 1: 861–873.PubMedCrossRefGoogle Scholar
  36. Gongadze, G. M., Gudkov, A. T., and Venyaminov, S. Y., 1985, Secondary structure of total ribosomal proteins and 23S RNA in the 50S ribosome and in the isolated state, Mol. Biol. (Moscow) 19: 1633–1642.Google Scholar
  37. Gray, C. W., 1989, Three-dimensional structure of complexes of single-stranded DNA-binding proteins with DNA: IKe and fd gene 5 proteins form left-handed helices with single-stranded DNA, J. Mol. Biol. 208: 57–64.PubMedCrossRefGoogle Scholar
  38. Gray, C. W., Page, G. A., and Gray, D. M., 1984, Complex of fd gene 5 protein and double-stranded RNA, J. Mol. Biol. 175: 553–559.PubMedCrossRefGoogle Scholar
  39. Gray, D. M., Taylor, T. N., and Lang, D., 1978, Dehydrated circular DNA: Circular dichroism of molecules in ethanol solutions, Biopolymers 17: 145–157.PubMedCrossRefGoogle Scholar
  40. Gray, D. M., Mark, B. L., Powell, M. D., and Terwilliger, T. C., 1993, Influence of tyrosines on the CD of fd and Pf3 single-stranded DNA-binding proteins, 5th International Conference on Circular Dichroism, Pingree Park, CO, Aug. 18–22, Abstracts, pp. 54–58.Google Scholar
  41. Greve J. Maestre, M. F., Moise, H. and Hosoda, J., 1978a, Circular dichroism study of the interaction between T4 gene 32 protein and polynucleotides, Biochemistry 17:887–893.Google Scholar
  42. Greve J., Maestre, M. F., Moise, H., and Hosoda, J., 1978b, Circular dichroism studies of the interaction of a limited hydrolysate of T4 gene 32 protein with T4 DNA and poly[d(A-T)•poly[d(A-T)], Biochemistry 17: 893–898.Google Scholar
  43. Holwitt, E., and Krasna, A. I., 1982, Interaction of gene 5 protein with DNA, Arch Biochem. Biophys. 214: 792–805.Google Scholar
  44. Holzwarth, G., Gordon, D. G., McGinness, J. E., Dorman, B. P., and Maestre, M. F., 1974, Mie scattering contributions to the optical density and circular dichroism of T2 bacteriophage, Biochemistry 13: 126–132.PubMedCrossRefGoogle Scholar
  45. Huber, P. W., Blobe, G. C., and Hartmann, K. M., 1991, Conformational studies of the nucleic acid binding sites for Xenopus transcription factor IIIA, J. Biol. Chem. 266: 3278–3286.PubMedGoogle Scholar
  46. Hurstel, S., Granger-Schnarr, M., and Schnarr, M., 1990, The LexA repressor and its isolated amino-terminal domain interact cooperatively with poly[d(A-T)I, a contiguous pseudo-operator, but not with random DNA: A circular dichroism study, Biochemistry 29: 1961–1970.PubMedCrossRefGoogle Scholar
  47. Ivanov, V. I., Minchenkova, L. E., Schylokina, A. K., and Poletayev, A. I., 1973, Different conformations of double-stranded nucleic acid in solution as revealed by circular dichroism, Biopolymers 1.2:89–110.Google Scholar
  48. Jensen, D. E., Kelly, R. C., and von Hippel, P. H., 1976, DNA “melting” proteins II: Effects of bacteriophage T4 gene 32-protein binding on the conformation and stability of nucleic acid structures, J. Biol. Chem. 251: 7215–7228.PubMedGoogle Scholar
  49. Johnson, B. B., Dahl, K. S., Tinoco, I., Jr., Ivanov, V. I., and Zhurkin, V. B., 1981, Correlations between deoxyribonucleic acid structural parameters and calculated circular dichroism spectra, Biochemistry 20: 73–78.Google Scholar
  50. Johnson, N. P., Lindstrom, J., Baase, W. A., and von Hippel, P. H., 1994, Double-stranded DNA templates can induce a-helical conformation in peptides containing lysine and alanine: Functional implications for leucine zipper and helix—loop—helix transcriptional factors, Proc. Natl. Acad. Sci. USA 91: 4840–4844.Google Scholar
  51. Kansy, J. W., Clack, B. A., and Gray, D. M., 1986, The binding of fd gene 5 protein to polydeoxynucleotides: Evidence from CD measurements for two binding modes, J. BiomoL Struct. Dyn. 3: 1079–1110.PubMedCrossRefGoogle Scholar
  52. Kirpichnikov, M. P., Yartzev, A. P., Minchenkova, L. E., Chernov, B. K., and Ivanov, V. I., 1985, The absence of non-local conformational changes in OR3 operator DNA on complexing with the Cro repressor, J. Biomol. Struct. Dyn. 3: 529–536.Google Scholar
  53. Kostrikis, L. G., Liu, D. J., and Day, L. A., 1994, Ultraviolet absorption and circular dichroism of Pfl virus: Nucleotide/subunit ratio of unity, hyperchromic tyrosines and DNA bases, and high helicity in the subunits, Biochemistry 33: 1694–1703.PubMedCrossRefGoogle Scholar
  54. Kostrikis, L. G., Reisberg, S. A., Kim, H.-Y., Shin, S., and Day, L. A., 1995, C2, an unusual filamentous bacterial virus: protein sequence and conformation, DNA size and conformation, and nucleotide/ subunit ratio, Biochemistry 34: 4077–4087.PubMedCrossRefGoogle Scholar
  55. Kuil, M. E., Holmlund, K., Vlaanderen, C. A., and van Grondelle, R., 1990, Study of the binding of single-stranded DNA-binding protein to DNA and poly(rA) using electric field induced birefringence and circular dichroism spectroscopy, Biochemistry 29: 8184–8189.PubMedCrossRefGoogle Scholar
  56. Lawson, R. C., Jr., and York, S. S., 1987, Stoichiometry of lac repressor binding to nonspecific DNA: Three different complexes form, Biochemistry 26: 4867–4875.PubMedCrossRefGoogle Scholar
  57. Livolant, F., and Maestre, M. F., 1988, Circular dichroism microscopy of compact forms of DNA and chromatin in vivo and in vitro: Cholesteric liquid-crystalline phases of DNA and single dinoflagellate nuclei, Biochemistry 27: 3056–3068.PubMedCrossRefGoogle Scholar
  58. Long, K. S., and Crothers, D. M., 1995, Interaction of human immunodeficiency virus type 1 Tat-derived peptides with TAR RNA, Biochemistry 34: 8885–8895.PubMedCrossRefGoogle Scholar
  59. Loret, E. P., Georgel, P., Johnson, W. C., Jr., and Ho, P. S., 1992, Circular dichroism and molecular modeling yield a structure for the complex of human immunodeficiency virus type 1 trans-activation response RNA and the binding region of Tat, the trans-acting transcriptional activator, Proc. Natl. Acad. Sci. USA 89: 9734–9738.PubMedCrossRefGoogle Scholar
  60. Maestre, M. F., Gray, D. M., and Cook, R. B., 1971, Magnetic circular dichroism study on synthetic polynucleotides, bacteriophage structure, and DNA’s, Biopolymers 10: 2537–2553.PubMedCrossRefGoogle Scholar
  61. Maestre, M. F., Salzman, G. C., Tobey, R. A., and Bustamante, C., 1985, Circular dichroism studies on single Chinese hamster cells, Biochemistry 24: 5152–5157.PubMedCrossRefGoogle Scholar
  62. Maniatis, T., Venable, J. H., Jr., and Lerman, L. S.,1974, The structure of ’’I’ DNA, J. Mol. Biol. 84: 37–64.Google Scholar
  63. Marvin, D. A., Hale, R. D., Nave, C., and Citterich, M. H., 1994, Molecular models and structural comparisons of native and mutant class I filamentous bacteriophages, J. Mol. Biol. 235: 260–286.PubMedCrossRefGoogle Scholar
  64. Oda, Y., Iwai, S., Ohtsuka, E., Ishikawa, M., Ikehara, M., and Nakamura, H., 1993, Binding of nucleic acids to E. coli RNase HI observed by NMR and CD spectroscopy, Nucleic Acids Res. 21: 4690–4695.PubMedCrossRefGoogle Scholar
  65. Pavletich, N. P., and Pabo, C. 0., 1993, Crystal structure of a five-finger GLI—DNA complex: New perspectives on zinc fingers, Science 26E1701–1707.Google Scholar
  66. Pineiro, M., Puerta, C., and Palacian, E., 1991, Yeast nucleosomal particles: Structural and transcriptional properties, Biochemistry 30: 5805–5810.PubMedCrossRefGoogle Scholar
  67. Pineiro, M., Gonzalez, P. J., Palaciân, E., and Hernandez, F., 1992, Effect of high mobility group proteins 14 and 17 on the structural and transcriptional properties of acetylated complete H2A,H2B-deficient nucleosomal cores, Arch. Biochem. Biophys. 295: 115–119.PubMedCrossRefGoogle Scholar
  68. Powell, M. D., and Gray, D. M., 1993, Characterization of the Pf3 single-stranded DNA binding protein by circular dichroism spectroscopy, Biochemistry 32: 12538–12547.PubMedCrossRefGoogle Scholar
  69. Roberts, L. M., and Dunker, A. K., 1993, Structural changes accompanying chloroform-induced contraction of the filamentous phage fd, Biochemistry 32: 10479–10488.PubMedCrossRefGoogle Scholar
  70. Sang, B.-C., and Gray, D. M., 1987, fd gene 5 protein binds to double-stranded polydeoxyribonucleotides poly(dA•dT) and poly[d(A-T)•d(A-T)], Biochemistry 26: 7210–7214.Google Scholar
  71. Sang, B.-C., and Gray, D. M., 1989a, Specificity of the binding of fd gene 5 protein to polydeoxyribonucleotides, J. Biomol. Struct. Dyn. 7: 693–706.PubMedCrossRefGoogle Scholar
  72. Sang, B.-C., and Gray, D. M., 1989b, CD measurements show that fd and IKe gene 5 proteins undergo minimal conformational changes upon binding to poly(rA), Biochemistry 28: 9502–9507.PubMedCrossRefGoogle Scholar
  73. Scheerhagen, M. A., Bokma, J. T., Vlaanderen, C. A., Blok, J., and van Grondelle, R., 1986, A specific model for the conformation of single-stranded polynucleotides in complex with the helix-destabilizing protein GP32 of bacteriophage T4, Biopolymers 25: 1419–1448.PubMedCrossRefGoogle Scholar
  74. Sims, P. W., Gelfand, C. A., Woodson, B., Montelaro, R., Ehrlich, L., Carter, C., and Jentoft, J. E., 1995, Lentiviral nucleocapsid protein induces large changes in the circular dichroism spectra of poly(rA), Biophys. J. 68: A296.Google Scholar
  75. Sipos, K., and Olson, M. O. J., 1991, Nucleolin promotes secondary structure in ribosomal RNA, Biochem. Biophys. Res. Commun. 177: 673–678.PubMedCrossRefGoogle Scholar
  76. Skinner, M. M., Zhang, H., Leschnitzer, D. H., Guan, Y., Bellamy, H., Sweet, R. M., Gray, C. W., Konings, R. N. H., Wang, A. H.-J., and Terwilliger, T. C., 1994, Structure of the gene V protein of bacteriophage fl determined by multiwavelength X-ray diffraction on the selenomethionyl protein, Proc. Natl. Acad. Sci. USA 91: 2071–2075.PubMedCrossRefGoogle Scholar
  77. Sokolova, M. V., Yaroslavtseva, N. G., Kharitonenkov, I. G., and Khristova, M. L., 1982, An investigation of influenza virus ribonucleoprotein structure by means of circular dichroism, Mol. Biol. (Moscow) 16: 59–65.Google Scholar
  78. Steely, H. T., Jr., Gray, D. M., and Lang, D., 1986a, Study of the circular dichroism of bacteriophage cp6 and (p6 nucleocapsid, Biopolymers 25: 171–188.PubMedCrossRefGoogle Scholar
  79. Steely, H. T., Jr., Gray, D. M., Lang, D., and Maestre, M. F., 1986b, Circular dichroism of double-stranded RNA in the presence of salt and ethanol, Biopolymers 25: 91–117.PubMedCrossRefGoogle Scholar
  80. Talanian, R. V., McKnight, C. J., and Kim, P. S., 1990, Sequence-specific DNA binding by a short peptide dimer, Science 249: 769–771.PubMedCrossRefGoogle Scholar
  81. Tan, R., and Frankel, A. D., 1992, Circular dichroism studies suggest that TAR RNA changes conformation upon specific binding of arginine or guanidine, Biochemistry 31: 10288–10294.PubMedCrossRefGoogle Scholar
  82. Tan, R., and Frankel, A. D., 1994, Costabilization of peptide and RNA structure in an HIV Rev peptide—RRE complex, Biochemistry 33: 14579–14585.CrossRefGoogle Scholar
  83. Taylor, I. A., Davis, K. G., Watts, D., and Kneale, G. G., 1994, DNA binding induces a major structural transition in a type I methyltransferase, EMBO J. 13: 5772–5778.PubMedGoogle Scholar
  84. Thomas, G. J., Jr., and Agard, D. A., 1984, Quantitative analysis of nucleic acids, proteins, and viruses by Raman band deconvolution, Biophys. J. 46: 763–768.PubMedCrossRefGoogle Scholar
  85. Torigoe, C., Kidokoro, S., Takimoto, M., Kyogoku, Y., and Wada, A., 1991, Spectroscopic studies on X cro protein—DNA interactions, J. Mol. Biol. 219: 733–746.PubMedCrossRefGoogle Scholar
  86. van Amerongen, H., van Grondelle, R., and van der Vliet, P. C., 1987, Interaction between adenovirus DNA-binding protein and single-stranded polynucleotides studied by circular dichroism and ultraviolet absorption, Biochemistry 26: 4646–4652.PubMedCrossRefGoogle Scholar
  87. Vergani, L., Gavazzo, P., Mascetti, G., and Nicolini, C., 1994. Ethidium bromide intercalation and chromatin structure: A spectropolarimetric analysis, Biochemistry 33: 6578–6585.PubMedCrossRefGoogle Scholar
  88. Walker, I. O., and Wolffe, A. P., 1984, The thermal denaturation of chromatin core particles, Biochim. Biophys. Acta 785: 97–103.PubMedCrossRefGoogle Scholar
  89. Wang, L., Voloshin, O. N., and Camerini-Otero, R. D., 1995, Single-stranded DNA binding domain of RecA protein: Conformational changes in both the DNA binding peptides and single-stranded DNA upon complex formation, Biophys. J. 68: A296.Google Scholar
  90. Wartell, R. M., and Adhya, S., 1988, DNA conformational change in Gal repressor-operator complex: Involvement of central G-C base pair(s) of dyad symmetry, Nucleic Acids Res. 16: 11531–11541.PubMedCrossRefGoogle Scholar
  91. Wellman, S. E., Sittman, D. B., and Chaires, J. B., 1994, Preferential binding of Hie histone to GC-rich DNA, Biochemistry 33: 384–388.PubMedCrossRefGoogle Scholar
  92. Zimmerman, S. B., and Pheiffer, B. H., 1980, Does DNA adopt the C form in concentrated salt solutions or in organic solvent—water mixtures? An X-ray diffraction study of DNA fibers in various media, J. Mol. Biol. 142: 315–330.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Donald M. Gray
    • 1
  1. 1.Program in Molecular and Cell BiologyThe University of Texas at DallasRichardsonUSA

Personalised recommendations