Skip to main content

Abstract

This chapter will treat the intrinsic ultraviolet CD spectra of interacting nucleic acids and proteins. The CD spectra to be discussed will be restricted to the ultraviolet wavelength region below 320 nm, where nucleic acids and proteins have optical activity as a result of their secondary structures. Since protein secondary structures generally dominate CD spectra at wavelengths below 250 nm, the region from about 250 to 320 nm provides a valuable spectral “window” for detecting the secondary structures of nucleic acids that are complexed with proteins. Of course, aromatic amino acid side chains contribute to the CD in the wavelength region from 250 to 320 nm, but this contribution is usually small relative to the CD of polymeric nucleic acids. Moreover, CD difference spectra (of complexes minus components) in this wavelength region do not generally exhibit the complex features that can be attributed to the transitions of the aromatic amino acids. Therefore, the CD effects observed above 250 nm on forming proteinnucleic acid complexes are usually considered to be reflective of changes in the nucleic acid secondary structure. Likewise, the CD contributions of individual amino acid side chains are often, but not always, less than those of peptide secondary structures at wavelengths below 250 nm. Exceptions to these generalities will be seen in the CD spectra of some filamentous phages, for which the DNA signal above 250 nm can be essentially absent, and in the CD spectra of the fd gene 5 protein, where tyrosines dominate the CD of a ß-structure protein below 250 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 209.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 269.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alberts, B., Frey, L., and Delius, H., 1972, Isolation and characterization of gene 5 protein of filamentous bacterial viruses, J. Mol. Biol. 68: 139–152.

    Article  PubMed  CAS  Google Scholar 

  • Altschmied, L., and Hillen, W., 1984, TET repressor—tet operator complex formation induces conformational changes in the tet operator DNA, Nucleic Acids Res. 12: 2171–2180.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, R. A., Nakashima, Y., and Coleman, J. E., 1975, Chemical modifications of functional residues of fd gene 5 DNA-binding protein, Biochemistry 14: 907–917.

    Article  PubMed  CAS  Google Scholar 

  • Arnold, G. E., Day, L. A., and Dunker, A. K., 1992, Tryptophan contributions to the unusual circular dichroism of fd bacteriophage, Biochemistry 31. 7948–7956.

    Article  PubMed  CAS  Google Scholar 

  • Baase, W. A., and Johnson, W. C., Jr., 1979, Circular dichroism and DNA secondary structure, Nucleic Acids Res. 6: 797–814.

    Article  PubMed  CAS  Google Scholar 

  • Blazy, B., Culard, F., and Maurizot, J. C., 1987, Interaction between the cyclic AMP receptor protein and DNA: Conformational studies, J. Mol. Biol. 195: 175–183.

    Article  PubMed  CAS  Google Scholar 

  • Bryan, P. N., Wright, E. B., Hsie, M. H., Olins, A. L., and Olins, D. E., 1978, Physical properties of inner histone—DNA complexes, Nucleic Acids Res. 5: 3603–3617.

    Article  PubMed  CAS  Google Scholar 

  • Bulsink, H., Harmsen, B. J. M., and Hilbers, C. W., 1988, DNA-binding properties of gene-5 protein encoded by bacteriophage M13. 2. Further characterization of the different binding modes for poly-and oligodeoxynucleic acids, Eur. J. Biochem. 176: 597–608.

    Article  PubMed  CAS  Google Scholar 

  • Bustamante, C., Tinoco, I., Jr., and Maestre, M. F., 1983, Circular differential scattering can be an important part of the circular dichroism of macromolecules, Proc. Natl. Acad. Sci. USA 80: 3568–3572.

    Article  PubMed  CAS  Google Scholar 

  • Carpenter, M. L., and Kneale, G. G., 1991, Circular dichroism and fluorescence analysis of the interaction of Pfl gene 5 protein with poly(dT), J. Mol. Biol. 217: 681–689.

    Article  PubMed  CAS  Google Scholar 

  • Casadevall, A., and Day, L. A., 1983, Silver and mercury probing of deoxyribonucleic acid structures in the filamentous viruses fd, Ifl, IKe, Xf, Pfl, and Pf3, Biochemistry 22: 4831–4842.

    Article  PubMed  CAS  Google Scholar 

  • Casadevall, A., and Day, L., 1985, The precursor complex of Pf3 bacteriophage, Virology 145: 260–272.

    Article  PubMed  CAS  Google Scholar 

  • Chen, C., Kilkuskie, R., and Hanlon, S., 1981, Circular dichroism spectral properties of covalent complexes of deoxyribonucleic acid and n-butylamine, Biochemistry 20: 4987–4995.

    Article  PubMed  CAS  Google Scholar 

  • Chen, C. Y., Pheiffer, B. H., Zimmerman, S. B., and Hanlon, S., 1983, Conformational characteristics of deoxyribonucleic acid–butylamine complexes with C-type circular dichroism specra. 1. An X-ray fiber diffraction study, Biochemistry 22: 4746–4751.

    Article  PubMed  CAS  Google Scholar 

  • Clack, B. A., and Gray, D. M., 1989, A CD determination of the a-helix contents of the coat proteins of four filamentous bacteriophages: fd, IKe, Pfl, and Pf3, Biopolymers 28: 1861–1873.

    Article  PubMed  CAS  Google Scholar 

  • Clack, B. A., and Gray, D. M., 1992, Flow linear dichroism spectra of four filamentous bacteriophages: DNA and coat protein contributions, Biopolymers 32: 795–810.

    Article  PubMed  CAS  Google Scholar 

  • Connor, F., Cary, P. D., Read, C. M., Preston, N. S., Driscoll, P. C., Denny, P., Crane-Robinson, C., and Ashworth, A., 1994, DNA binding and bending properties of the post-meiotically expressed Sry-related protein Sox-5, Nucleic Acids Res. 22: 3339–3346.

    Article  PubMed  CAS  Google Scholar 

  • Cowman, M. K., and Fasman, G. D., 1978, Circular dichroism analysis of mononucleosome DNA conformation, Proc. Natl. Acad. Sci. USA 75: 4759–4763.

    Article  PubMed  CAS  Google Scholar 

  • Cowman, M. K., and Fasman, G. D., 1980, Dependence of mononucleosome deoxyribonucleic acid conformation on the deoxyribonucleic acid length and H1/H5 content. Circular dichroism and thermal denaturation studies, Biochemistry 19: 532–541.

    Article  PubMed  CAS  Google Scholar 

  • Culard, F., and Maurizot, J. C., 1981, Lac repressor–lac operator interaction: Circular dichroism study, Nucleic Acids Res. 19: 5175–5184.

    Article  Google Scholar 

  • Day, L. A., 1966, Protein conformation in fd bacteriophage as investigated by optical rotatory dispersion, J. Mol. Biol. 15: 395–398.

    Article  PubMed  CAS  Google Scholar 

  • Day, L. A., 1973, Circular dichroism and ultraviolet absorption of a deoxyribonucleic acid binding protein of filamentous bacteriophage, Biochemistry 12: 5329–5339.

    Article  PubMed  CAS  Google Scholar 

  • Day, L. A., Marzec, C. J., Reisberg, S. A., and Casadevall, A., 1988, DNA packing in filamentous bacteriophages, Annu. Rev. Biophys. Biophys. Chem. 17: 509–539.

    Article  PubMed  CAS  Google Scholar 

  • Diaspro, A., Bertolotto, M., Vergani, L., and Nicolini, C., 1991, Polarized light scattering of nucleosomes and polynucleosomes—In situ and in vitro studies, IEEE Trans. Biomed. Eng. 38: 670–678.

    Article  PubMed  CAS  Google Scholar 

  • Dorman, B. P., and Maestre, M. F., 1973, Experimental differential light-scattering correction to the circular dichroism of bacteriophage T2, Proc. Natl. Acad. Sci. USA 70: 255–259.

    Article  PubMed  CAS  Google Scholar 

  • Ebnath, A., Schweers, O., Thole, H., Fagin, U., Urbanke, C., Maass, G., and Wolfes, H., 1994, Biophysical characterization of the c-Myb DNA-binding domain, Biochemistry 33: 14586–14593.

    Article  Google Scholar 

  • Edmondson, S. P., and Gray, D. M., 1983, A circular dichroism study of the structure of Penicillium chrysogenum mycovirus, Nucleic Acids Res. 11: 175–192.

    Article  PubMed  CAS  Google Scholar 

  • Fasman, G. D., 1977, Histone–DNA interactions: Circular dichroism studies, in: Chromatin and Chromo-some Structure ( H. J. Li and R. A. Eckhardt, eds.), pp. 71–142, Academic Press, New York.

    Google Scholar 

  • Ferré-D’Amaré, A. R., Prendergast, G. C., Ziff, E. B., and Burley, S. K., 1993, Recognition by Max of its cognate DNA through a dimeric b/HLH/Z domain, Nature 363: 38–45.

    Article  PubMed  Google Scholar 

  • Ferré-D’Amaré, A. R., Pognonec, P., Roeder, R. G., and Burley, S. K., 1994, Structure and function of the b/HLH/Z domain of USF, EMBO J. 13: 180–189.

    PubMed  Google Scholar 

  • Fisher, D. E., Parent, L. A., and Sharp, P. A., 1993, High affinity DNA-binding Myc analogs: Recognition by an a-helix, Cell 72: 467–476.

    Article  PubMed  CAS  Google Scholar 

  • Folkers, P. J. M., van Duynhoven, J. P. M., Jonker, A. J., Harmsen, B. J. M., Konings, R. N. H., and Hilbers, C. W., 1991a, Sequence-specific ‘H-NMR assignment and secondary structure of the Tyr41 –* His mutant of the single-stranded DNA binding protein, gene V protein, encoded by the filamentous bacteriophage M13, Eur. J. Biochem. 202: 349–360.

    Article  PubMed  CAS  Google Scholar 

  • Folkers, P. J. M., Stassen, A. P. M., van Duynhoven, J. P. M., Harmsen, B. J. M., Konings, R. N. H., and Hilbers, C. W., 1991b, Characterization of wild-type and mutant M13 gene V proteins by means of ‘H-NMR, Eur. J. Biochem. 200: 139–148.

    Article  PubMed  CAS  Google Scholar 

  • Fried, M. G., Wu, H.-M., and Crothers, D. M., 1983, CAP binding to B and Z forms of DNA, Nucleic Acids Res. 1E2479–2494.

    Google Scholar 

  • Geiselmann, J., Yager, T. D., and von Hippel, P. H., 1992, Functional interactions of ligand cofactors with Escherichia coli transcription termination factor rho. II. Binding of RNA, Protein. Sci. 1: 861–873.

    Article  PubMed  CAS  Google Scholar 

  • Gongadze, G. M., Gudkov, A. T., and Venyaminov, S. Y., 1985, Secondary structure of total ribosomal proteins and 23S RNA in the 50S ribosome and in the isolated state, Mol. Biol. (Moscow) 19: 1633–1642.

    CAS  Google Scholar 

  • Gray, C. W., 1989, Three-dimensional structure of complexes of single-stranded DNA-binding proteins with DNA: IKe and fd gene 5 proteins form left-handed helices with single-stranded DNA, J. Mol. Biol. 208: 57–64.

    Article  PubMed  CAS  Google Scholar 

  • Gray, C. W., Page, G. A., and Gray, D. M., 1984, Complex of fd gene 5 protein and double-stranded RNA, J. Mol. Biol. 175: 553–559.

    Article  PubMed  CAS  Google Scholar 

  • Gray, D. M., Taylor, T. N., and Lang, D., 1978, Dehydrated circular DNA: Circular dichroism of molecules in ethanol solutions, Biopolymers 17: 145–157.

    Article  PubMed  CAS  Google Scholar 

  • Gray, D. M., Mark, B. L., Powell, M. D., and Terwilliger, T. C., 1993, Influence of tyrosines on the CD of fd and Pf3 single-stranded DNA-binding proteins, 5th International Conference on Circular Dichroism, Pingree Park, CO, Aug. 18–22, Abstracts, pp. 54–58.

    Google Scholar 

  • Greve J. Maestre, M. F., Moise, H. and Hosoda, J., 1978a, Circular dichroism study of the interaction between T4 gene 32 protein and polynucleotides, Biochemistry 17:887–893.

    Google Scholar 

  • Greve J., Maestre, M. F., Moise, H., and Hosoda, J., 1978b, Circular dichroism studies of the interaction of a limited hydrolysate of T4 gene 32 protein with T4 DNA and poly[d(A-T)•poly[d(A-T)], Biochemistry 17: 893–898.

    Google Scholar 

  • Holwitt, E., and Krasna, A. I., 1982, Interaction of gene 5 protein with DNA, Arch Biochem. Biophys. 214: 792–805.

    Google Scholar 

  • Holzwarth, G., Gordon, D. G., McGinness, J. E., Dorman, B. P., and Maestre, M. F., 1974, Mie scattering contributions to the optical density and circular dichroism of T2 bacteriophage, Biochemistry 13: 126–132.

    Article  PubMed  CAS  Google Scholar 

  • Huber, P. W., Blobe, G. C., and Hartmann, K. M., 1991, Conformational studies of the nucleic acid binding sites for Xenopus transcription factor IIIA, J. Biol. Chem. 266: 3278–3286.

    PubMed  CAS  Google Scholar 

  • Hurstel, S., Granger-Schnarr, M., and Schnarr, M., 1990, The LexA repressor and its isolated amino-terminal domain interact cooperatively with poly[d(A-T)I, a contiguous pseudo-operator, but not with random DNA: A circular dichroism study, Biochemistry 29: 1961–1970.

    Article  PubMed  CAS  Google Scholar 

  • Ivanov, V. I., Minchenkova, L. E., Schylokina, A. K., and Poletayev, A. I., 1973, Different conformations of double-stranded nucleic acid in solution as revealed by circular dichroism, Biopolymers 1.2:89–110.

    Google Scholar 

  • Jensen, D. E., Kelly, R. C., and von Hippel, P. H., 1976, DNA “melting” proteins II: Effects of bacteriophage T4 gene 32-protein binding on the conformation and stability of nucleic acid structures, J. Biol. Chem. 251: 7215–7228.

    PubMed  CAS  Google Scholar 

  • Johnson, B. B., Dahl, K. S., Tinoco, I., Jr., Ivanov, V. I., and Zhurkin, V. B., 1981, Correlations between deoxyribonucleic acid structural parameters and calculated circular dichroism spectra, Biochemistry 20: 73–78.

    Google Scholar 

  • Johnson, N. P., Lindstrom, J., Baase, W. A., and von Hippel, P. H., 1994, Double-stranded DNA templates can induce a-helical conformation in peptides containing lysine and alanine: Functional implications for leucine zipper and helix—loop—helix transcriptional factors, Proc. Natl. Acad. Sci. USA 91: 4840–4844.

    Google Scholar 

  • Kansy, J. W., Clack, B. A., and Gray, D. M., 1986, The binding of fd gene 5 protein to polydeoxynucleotides: Evidence from CD measurements for two binding modes, J. BiomoL Struct. Dyn. 3: 1079–1110.

    Article  PubMed  CAS  Google Scholar 

  • Kirpichnikov, M. P., Yartzev, A. P., Minchenkova, L. E., Chernov, B. K., and Ivanov, V. I., 1985, The absence of non-local conformational changes in OR3 operator DNA on complexing with the Cro repressor, J. Biomol. Struct. Dyn. 3: 529–536.

    Google Scholar 

  • Kostrikis, L. G., Liu, D. J., and Day, L. A., 1994, Ultraviolet absorption and circular dichroism of Pfl virus: Nucleotide/subunit ratio of unity, hyperchromic tyrosines and DNA bases, and high helicity in the subunits, Biochemistry 33: 1694–1703.

    Article  PubMed  CAS  Google Scholar 

  • Kostrikis, L. G., Reisberg, S. A., Kim, H.-Y., Shin, S., and Day, L. A., 1995, C2, an unusual filamentous bacterial virus: protein sequence and conformation, DNA size and conformation, and nucleotide/ subunit ratio, Biochemistry 34: 4077–4087.

    Article  PubMed  CAS  Google Scholar 

  • Kuil, M. E., Holmlund, K., Vlaanderen, C. A., and van Grondelle, R., 1990, Study of the binding of single-stranded DNA-binding protein to DNA and poly(rA) using electric field induced birefringence and circular dichroism spectroscopy, Biochemistry 29: 8184–8189.

    Article  PubMed  CAS  Google Scholar 

  • Lawson, R. C., Jr., and York, S. S., 1987, Stoichiometry of lac repressor binding to nonspecific DNA: Three different complexes form, Biochemistry 26: 4867–4875.

    Article  PubMed  CAS  Google Scholar 

  • Livolant, F., and Maestre, M. F., 1988, Circular dichroism microscopy of compact forms of DNA and chromatin in vivo and in vitro: Cholesteric liquid-crystalline phases of DNA and single dinoflagellate nuclei, Biochemistry 27: 3056–3068.

    Article  PubMed  CAS  Google Scholar 

  • Long, K. S., and Crothers, D. M., 1995, Interaction of human immunodeficiency virus type 1 Tat-derived peptides with TAR RNA, Biochemistry 34: 8885–8895.

    Article  PubMed  CAS  Google Scholar 

  • Loret, E. P., Georgel, P., Johnson, W. C., Jr., and Ho, P. S., 1992, Circular dichroism and molecular modeling yield a structure for the complex of human immunodeficiency virus type 1 trans-activation response RNA and the binding region of Tat, the trans-acting transcriptional activator, Proc. Natl. Acad. Sci. USA 89: 9734–9738.

    Article  PubMed  CAS  Google Scholar 

  • Maestre, M. F., Gray, D. M., and Cook, R. B., 1971, Magnetic circular dichroism study on synthetic polynucleotides, bacteriophage structure, and DNA’s, Biopolymers 10: 2537–2553.

    Article  PubMed  CAS  Google Scholar 

  • Maestre, M. F., Salzman, G. C., Tobey, R. A., and Bustamante, C., 1985, Circular dichroism studies on single Chinese hamster cells, Biochemistry 24: 5152–5157.

    Article  PubMed  CAS  Google Scholar 

  • Maniatis, T., Venable, J. H., Jr., and Lerman, L. S.,1974, The structure of ’’I’ DNA, J. Mol. Biol. 84: 37–64.

    Google Scholar 

  • Marvin, D. A., Hale, R. D., Nave, C., and Citterich, M. H., 1994, Molecular models and structural comparisons of native and mutant class I filamentous bacteriophages, J. Mol. Biol. 235: 260–286.

    Article  PubMed  CAS  Google Scholar 

  • Oda, Y., Iwai, S., Ohtsuka, E., Ishikawa, M., Ikehara, M., and Nakamura, H., 1993, Binding of nucleic acids to E. coli RNase HI observed by NMR and CD spectroscopy, Nucleic Acids Res. 21: 4690–4695.

    Article  PubMed  CAS  Google Scholar 

  • Pavletich, N. P., and Pabo, C. 0., 1993, Crystal structure of a five-finger GLI—DNA complex: New perspectives on zinc fingers, Science 26E1701–1707.

    Google Scholar 

  • Pineiro, M., Puerta, C., and Palacian, E., 1991, Yeast nucleosomal particles: Structural and transcriptional properties, Biochemistry 30: 5805–5810.

    Article  PubMed  CAS  Google Scholar 

  • Pineiro, M., Gonzalez, P. J., Palaciân, E., and Hernandez, F., 1992, Effect of high mobility group proteins 14 and 17 on the structural and transcriptional properties of acetylated complete H2A,H2B-deficient nucleosomal cores, Arch. Biochem. Biophys. 295: 115–119.

    Article  PubMed  CAS  Google Scholar 

  • Powell, M. D., and Gray, D. M., 1993, Characterization of the Pf3 single-stranded DNA binding protein by circular dichroism spectroscopy, Biochemistry 32: 12538–12547.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, L. M., and Dunker, A. K., 1993, Structural changes accompanying chloroform-induced contraction of the filamentous phage fd, Biochemistry 32: 10479–10488.

    Article  PubMed  CAS  Google Scholar 

  • Sang, B.-C., and Gray, D. M., 1987, fd gene 5 protein binds to double-stranded polydeoxyribonucleotides poly(dA•dT) and poly[d(A-T)•d(A-T)], Biochemistry 26: 7210–7214.

    Google Scholar 

  • Sang, B.-C., and Gray, D. M., 1989a, Specificity of the binding of fd gene 5 protein to polydeoxyribonucleotides, J. Biomol. Struct. Dyn. 7: 693–706.

    Article  PubMed  CAS  Google Scholar 

  • Sang, B.-C., and Gray, D. M., 1989b, CD measurements show that fd and IKe gene 5 proteins undergo minimal conformational changes upon binding to poly(rA), Biochemistry 28: 9502–9507.

    Article  PubMed  CAS  Google Scholar 

  • Scheerhagen, M. A., Bokma, J. T., Vlaanderen, C. A., Blok, J., and van Grondelle, R., 1986, A specific model for the conformation of single-stranded polynucleotides in complex with the helix-destabilizing protein GP32 of bacteriophage T4, Biopolymers 25: 1419–1448.

    Article  PubMed  CAS  Google Scholar 

  • Sims, P. W., Gelfand, C. A., Woodson, B., Montelaro, R., Ehrlich, L., Carter, C., and Jentoft, J. E., 1995, Lentiviral nucleocapsid protein induces large changes in the circular dichroism spectra of poly(rA), Biophys. J. 68: A296.

    Google Scholar 

  • Sipos, K., and Olson, M. O. J., 1991, Nucleolin promotes secondary structure in ribosomal RNA, Biochem. Biophys. Res. Commun. 177: 673–678.

    Article  PubMed  CAS  Google Scholar 

  • Skinner, M. M., Zhang, H., Leschnitzer, D. H., Guan, Y., Bellamy, H., Sweet, R. M., Gray, C. W., Konings, R. N. H., Wang, A. H.-J., and Terwilliger, T. C., 1994, Structure of the gene V protein of bacteriophage fl determined by multiwavelength X-ray diffraction on the selenomethionyl protein, Proc. Natl. Acad. Sci. USA 91: 2071–2075.

    Article  PubMed  CAS  Google Scholar 

  • Sokolova, M. V., Yaroslavtseva, N. G., Kharitonenkov, I. G., and Khristova, M. L., 1982, An investigation of influenza virus ribonucleoprotein structure by means of circular dichroism, Mol. Biol. (Moscow) 16: 59–65.

    CAS  Google Scholar 

  • Steely, H. T., Jr., Gray, D. M., and Lang, D., 1986a, Study of the circular dichroism of bacteriophage cp6 and (p6 nucleocapsid, Biopolymers 25: 171–188.

    Article  PubMed  CAS  Google Scholar 

  • Steely, H. T., Jr., Gray, D. M., Lang, D., and Maestre, M. F., 1986b, Circular dichroism of double-stranded RNA in the presence of salt and ethanol, Biopolymers 25: 91–117.

    Article  PubMed  CAS  Google Scholar 

  • Talanian, R. V., McKnight, C. J., and Kim, P. S., 1990, Sequence-specific DNA binding by a short peptide dimer, Science 249: 769–771.

    Article  PubMed  CAS  Google Scholar 

  • Tan, R., and Frankel, A. D., 1992, Circular dichroism studies suggest that TAR RNA changes conformation upon specific binding of arginine or guanidine, Biochemistry 31: 10288–10294.

    Article  PubMed  CAS  Google Scholar 

  • Tan, R., and Frankel, A. D., 1994, Costabilization of peptide and RNA structure in an HIV Rev peptide—RRE complex, Biochemistry 33: 14579–14585.

    Article  CAS  Google Scholar 

  • Taylor, I. A., Davis, K. G., Watts, D., and Kneale, G. G., 1994, DNA binding induces a major structural transition in a type I methyltransferase, EMBO J. 13: 5772–5778.

    PubMed  CAS  Google Scholar 

  • Thomas, G. J., Jr., and Agard, D. A., 1984, Quantitative analysis of nucleic acids, proteins, and viruses by Raman band deconvolution, Biophys. J. 46: 763–768.

    Article  PubMed  CAS  Google Scholar 

  • Torigoe, C., Kidokoro, S., Takimoto, M., Kyogoku, Y., and Wada, A., 1991, Spectroscopic studies on X cro protein—DNA interactions, J. Mol. Biol. 219: 733–746.

    Article  PubMed  CAS  Google Scholar 

  • van Amerongen, H., van Grondelle, R., and van der Vliet, P. C., 1987, Interaction between adenovirus DNA-binding protein and single-stranded polynucleotides studied by circular dichroism and ultraviolet absorption, Biochemistry 26: 4646–4652.

    Article  PubMed  CAS  Google Scholar 

  • Vergani, L., Gavazzo, P., Mascetti, G., and Nicolini, C., 1994. Ethidium bromide intercalation and chromatin structure: A spectropolarimetric analysis, Biochemistry 33: 6578–6585.

    Article  PubMed  CAS  Google Scholar 

  • Walker, I. O., and Wolffe, A. P., 1984, The thermal denaturation of chromatin core particles, Biochim. Biophys. Acta 785: 97–103.

    Article  PubMed  CAS  Google Scholar 

  • Wang, L., Voloshin, O. N., and Camerini-Otero, R. D., 1995, Single-stranded DNA binding domain of RecA protein: Conformational changes in both the DNA binding peptides and single-stranded DNA upon complex formation, Biophys. J. 68: A296.

    Google Scholar 

  • Wartell, R. M., and Adhya, S., 1988, DNA conformational change in Gal repressor-operator complex: Involvement of central G-C base pair(s) of dyad symmetry, Nucleic Acids Res. 16: 11531–11541.

    Article  PubMed  CAS  Google Scholar 

  • Wellman, S. E., Sittman, D. B., and Chaires, J. B., 1994, Preferential binding of Hie histone to GC-rich DNA, Biochemistry 33: 384–388.

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman, S. B., and Pheiffer, B. H., 1980, Does DNA adopt the C form in concentrated salt solutions or in organic solvent—water mixtures? An X-ray diffraction study of DNA fibers in various media, J. Mol. Biol. 142: 315–330.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gray, D.M. (1996). Circular Dichroism of Protein-Nucleic Acid Interactions. In: Fasman, G.D. (eds) Circular Dichroism and the Conformational Analysis of Biomolecules. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2508-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2508-7_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3249-5

  • Online ISBN: 978-1-4757-2508-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics