Skip to main content

Abstract

The natural and synthetic nucleic acids are polymers of nucleotides that in turn are made up of an aromatic base, a sugar, and a phosphate group. The bases are the chromophores that absorb ultraviolet light to undergo electronic transitions, which begin at 300 nm and continue into the vacuum UV region. In the case of DNA these bases are adenine (A), guanine (G), cytosine (C), and thymine (T); in the case of RNA the bases are A, G, C, and uracil (U), which is closely related to T both structurally and chromophorically. The structure of these five bases is given in Fig. 1. The sugar is ribose in the case of RNA and 2′-deoxyribose in the case of DNA. The electronic transitions of the ether and hydroxyl groups of these saturated sugars begin at 200 nm, but their weak intensity is buried under the strong intensity of the electronic transitions of the aromatic bases. Electronic transitions of the phosphate group begin even further into the vacuum UV. Therefore, the CD of the nucleic acids that corresponds to the electronic transitions results from the bases.

The electronic structure of the nucleic acid bases: adenine (A), guanine (G), cytosine (C) thymine (T), and uracil (U). ○, π electrons; ●, nonbonding electrons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 209.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 269.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, F. S., Gray, D. M., Roberts, G. P., and Tinoco, I., Jr., 1972, The ultraviolet circular dichroism of some natural DNAs and an analysis of the spectra for sequence information, Biopolymers 11: 853–879.

    Article  PubMed  CAS  Google Scholar 

  • André, A., Guschlbauer, W., and Holy, A., 1974, Oligonucleotide conformations, Nucleic Acids Res. 1: 1031–1042.

    Article  PubMed  Google Scholar 

  • Antao, V. P., Gray, D. M., and Ratliff, R. L., 1988, CD of six different conformational rearrangements of poly[d(A-G)•d(C-T)] induced by low pH, Nucleic Acids Res. 16: 719–738.

    Article  PubMed  CAS  Google Scholar 

  • Antao, V. P., Ratliff, R. L., and Gray, D. M., 1990, CD evidence that the alternating purine—pyrimidine sequence poly[d(A-C) d(G-T)], but not poly[d(A-T) d(A-T)1, undergoes an acid-induced transition to a modified secondary conformation, Nucleic Acids Res. 18: 4111–4121.

    Article  PubMed  CAS  Google Scholar 

  • Baase, W. A., and Johnson, W. C., Jr., 1979, Circular dichroism and DNA secondary structure, Nucleic Acids Res. 6: 797–814.

    Article  PubMed  CAS  Google Scholar 

  • Behe, M., and Felsenfeld, G., 1981, Effects of methylation on a synthetic polynucleotide: The B—Z transition in poly(dG-msdC)poly(dG-msdC), Proc. Natl. Acad. Sci. USA 78: 1619–1623.

    Article  PubMed  CAS  Google Scholar 

  • Bokma, J. T., Johnson, W. C., Jr., and Blok, J., 1987, CD of the Li-salt of DNA in ethanol/water mixtures: Evidence for the B- to C-form transition in solution, Biopolymers 26: 893–909.

    Article  PubMed  CAS  Google Scholar 

  • Bourtayre, P., Liquier, J., Pizzorni, L., and Taillandier, E., 1987, Z form of poly d(A-T)•poly d(A-T) in solution studied by CD and UV spectroscopies, J. Biomol. Structure Dynamics 5: 97–104.

    Article  CAS  Google Scholar 

  • Brahms, J., and Mommaerts, W. F. H. M., 1964, A study of conformation of nucleic acids in solution by means of circular dichroism, J. Mol. Biol. 10: 73–88.

    Article  PubMed  CAS  Google Scholar 

  • Brahms, J., Michelson, A. M., and van Holde, K. E., 1966, Adenylate oligomers in single-and double-stranded conformation, J. Mol. Biol. 15: 467–488.

    Article  PubMed  CAS  Google Scholar 

  • Brahms, J., Maurizot, J. C., and Michelson, A. M., 1967a, Conformation and thermodynamic properties of oligocytidylic acids, J. Mol. Biol. 25: 465–480.

    Article  PubMed  CAS  Google Scholar 

  • Brahms, J., Maurizot, J. C., and Michelson, A. M., 1967b, Conformational stability of dinucleotides in solution, J. Mol. Biol. 25: 481–495.

    Article  PubMed  CAS  Google Scholar 

  • Brahms, S., Vergne, J., Brahms, J. G., DiCapua, E., Bucher, P., and Koller, T., 1982, Natural DNA sequences can form left-handed helices in low salt solution under conditions of topological constraint, J. Mol. Biol. 162: 473–493.

    Article  PubMed  CAS  Google Scholar 

  • Bush, C. A., and Scheraga, H. A., 1969, Optical activity of single-stranded polydeoxyadenylic and polyriboadenylic acids; dependence of adenine chromophore Cotton effects on polymer conformation, Biopolymers 7: 395–409.

    Article  CAS  Google Scholar 

  • Butzow, J. J., Shin, Y. A., and Eichhorn, G. L., 1984, Effect of template conversion from the B to the Z conformation on RNA polymerase activity, Biochemistry 23: 4837–4843.

    Article  PubMed  CAS  Google Scholar 

  • Cantor, C. R., Fairclough, R. H., and Newmark, R. A., 1969, Oligonucleotide interactions. II. Differences in base stacking in linear and cyclic deoxythymidine oligonucleotides, Biochemistry 8: 3610–3617.

    Article  PubMed  CAS  Google Scholar 

  • Cantor, C. R., Warshaw, M. M., and Shapiro, H., 1970, Oligonucleotide interactions. III. Circular dichroism studies of the conformation of deoxyoligonucleotides, Biopolymers 9: 1059–1077.

    Article  PubMed  CAS  Google Scholar 

  • Causley, G. C., Staskus, P. W., and Johnson, W. C., Jr., 1983, Improved methods of analysis for CD data applied to single-strand stacking, Biopolymers 22: 945–967.

    Article  PubMed  CAS  Google Scholar 

  • Chen, C., Kilkuskie, R., and Hanlon, S., 1981, Circular dichroism spectral properties of covalent complexes of deoxyribonucleic acid and n-butylamine, Biochemistry 20: 4987–4995.

    Article  PubMed  CAS  Google Scholar 

  • Chen, H. H., Behe, M. J., and Rau, D. C., 1984, Critical amount of oligovalent ion binding required for the B—Z transition of poly(dG-m5dC), Nucleic Acids Res. 12: 2381–2389.

    Article  PubMed  CAS  Google Scholar 

  • Cowman, M. K., and Fasman, G. D., 1978, Circular dichroism analysis of mononucleosome DNA conformation, Proc. Natl. Acad. Sci. USA 75: 4759–4763.

    Article  PubMed  CAS  Google Scholar 

  • El Antri, S., Mauffret, O., Monnot, M., Lescot, E., Convert, O., and Fermandjian, S., 1993, Structural deviations of CpG provides a plausible explanation for the high frequency of mutation of this site, J. Mol. Biol. 230: 373–378.

    Article  PubMed  Google Scholar 

  • Galat, A., and Jankowski, A., 1982, Circular dichroism study of modified nucleosides, Biopolymers 21: 849–858.

    Article  CAS  Google Scholar 

  • Girod, J. C., Johnson, W. C., Jr., Huntington, S. K., and Maestre, M. F., 1973, Conformation of deoxyribonucleic acid in alcohol solutions, Biochemistry 12: 5092–5096.

    Article  PubMed  CAS  Google Scholar 

  • Gray, D. M., and Tinoco, I., Jr., 1970, A new approach to the study of sequence-dependent properties of polynucleotides, Biopolymers 9: 223–244.

    Article  CAS  Google Scholar 

  • Gray, D. M., Ratliff, R. L., and Allen, F. S., 1981, Sequence dependence of the circular dichroism of synthetic double stranded RNAs, Biopolymers 20: 1337–1382.

    Article  CAS  Google Scholar 

  • Gray, D. M., Liu, J. J., Ratliff, R. L., Antao, V. P., and Gray, C. W., 1987, CD spectroscopy of acid-induced structures of polydeoxyribonucleotides: Importance of CC’ base pairs, Struct. Express. 2: 147–166.

    Google Scholar 

  • Greve, J., Maestre, M. F., and Levin, A., 1977, Circular dichroism of adenine and thymine containing synthetic polynucleotides, Biopolymers 16: 1489–1504.

    Article  PubMed  CAS  Google Scholar 

  • Gudibande, S. R., Jayasena, S. D., and Behe, M. J., 1988, CD studies of double-stranded polydeoxynucleotides composed of repeating units of contiguous homopurine residues, Biopolymers 27: 1905–1915.

    Article  PubMed  CAS  Google Scholar 

  • Guschlbauer, W., and Courtois, Y., 1968, pH induced changes in optical activity of guanine nucleosides, FEBS Lett. 1: 183–186.

    Google Scholar 

  • Hall, K. B., and Maestre, M. F., 1984, Temperature-dependent reversible transition of poly(dCdG)• poly(dCdG) in ethanolic and methanolic solutions, Biopolymers 23: 2127–2139.

    Article  PubMed  CAS  Google Scholar 

  • Hanlon, S., Johnson, R. S., Wolf, B., and Chan, A., 1972, Mixed conformations of deoxyribonucleic acid in chromatin: A preliminary report, Proc. Natl. Acad. Sci. USA 69: 3263–3267.

    Article  PubMed  CAS  Google Scholar 

  • Harder, M. E., and Johnson, W. C., Jr., 1990, Stabilization of the Z’ form of poly(dGdC): poly(dGdC) in solution by multivalent ions relates to the Z„ form in crystals, Nucleic Acids Res. 18: 2141–2148.

    Article  PubMed  CAS  Google Scholar 

  • Hung, S.-H., Yu, Q., Gray, D. M., and Ratliff, R. L., 1994, Evidence from CD spectra that d(purine)r(pyrimidine) and r(purine)d(pyrimidine) hybrids are in different structural classes, Nucleic Acids Res. 22: 4326–4334.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, K. H., and Gray, D. M., 1991, A method for estimating the nearest neighbor base-pair content of RNAs using CD and absorption spectroscopy, Biopolymers 31373–384.

    Google Scholar 

  • Johnson, K. H., and Gray, D. M., 1992, Analysis of an RNA pseudoknot structure by CD spectroscopy, J. Biomol. Struct. Dyn. 9: 733–745.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, K. H., Gray, D. M., Morris, P. A., and Sutherland, J. C., 1990, A•U and G•C base pairs in synthetic RNAs have characteristic vacuum UV CD bands, Biopolymers 29: 325–333.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, W. C., Jr., 1985, Circular dichroism and its empirical application, in: Methods of Biochemical Analysis ( D. Glick, ed.), Vol. 31, pp. 62–125, Wiley, New York.

    Chapter  Google Scholar 

  • Johnson, W. C., Jr., 1990, Electronic circular dichroism spectroscopy of nucleic acids, in: LandoltBörnstein Numerical Data and Functional Relationships in Science and Technology ( W. Saenger, ed.), Vol. 1, pp. 1–24, Springer-Verlag, Berlin.

    Google Scholar 

  • Kang, H., Chou, P.-J., Johnson, W. C., Jr., Weller, D., Huang, S.-B., and Summerton, J. E., 1992, Stacking interactions of ApA analogues with modified backbones, Biopolymers 32: 1351–1363.

    Article  PubMed  CAS  Google Scholar 

  • MacDermott, A. J., and Drake, A. F., 1986, Circular dichroism of positively and negatively supercoiled DNA, Stud. Biophys. 115: 59–67.

    CAS  Google Scholar 

  • Markham, A. F., Uesugi, S., Ohtsuka, E., and Ikehara, M., 1979, Influence of terminal 3’ phosphates or 2’,3’-cyclic phosphates on the conformations of oligoriboadenylates, oligoribocytidylates, and the corresponding monomers, Biochemistry 18: 4936–4942.

    Article  PubMed  CAS  Google Scholar 

  • Mathelier, H. D., Howard, F. B., and Miles, H. T., 1979, Circular dichroism of helices formed by purine monomers with pyrimidine polynucleotides, Biopolymers 18: 709–722.

    Article  CAS  Google Scholar 

  • Pettegrew, J. W., Miles, D. W., and Eyring, H., 1977, Circular dichroism of adenosine dinucleotides, Proc. Natl. Acad. Sci. USA 74: 1785–1788.

    Article  PubMed  CAS  Google Scholar 

  • Pohl, F. M., and Jovin, T. M., 1972, Salt-induced co-operative conformation change of a synthetic DNA: Equilibrium and kinetic studies with poly(dG-dC), J. Mol. Biol. 67: 375–396.

    Article  PubMed  CAS  Google Scholar 

  • Puglisi, J. D., Wyatt, J. R., and Tinoco, I., Jr., 1990, Conformation of an RNA pseudoknot, J. Mol. Biol. 214: 437–453.

    Article  PubMed  CAS  Google Scholar 

  • Riazance, J. H., Baase, W. A., Johnson, W. C., Jr., Hall, K., Cruz, P., and Tinoco, I., Jr., 1985, Evidence for Z-form RNA by vacuum UV circular dichroism, Nucleic Acids Res. 13: 4983–4989.

    Article  PubMed  CAS  Google Scholar 

  • Riazance, J. H., Johnson, W. C., Jr., McIntosh, L. P., and Jovin, T. M., 1987, Vacuum UV circular dichroism is diagnostic for the left-handed Z form of poly[d(A-C)d(G-T)] and other polydeoxynucleotides, Nucleic Acids Res. 15: 7627–7636.

    Google Scholar 

  • Riazance-Lawrence, J. H., and Johnson, W. C., Jr., 1992, Multivalent ions are necessary for poly[d(AC)•d(GT)] to assume the Z form: A CD study, Biopolymers 32: 271–276.

    Article  PubMed  CAS  Google Scholar 

  • Rill, R., and van Holde, K. E., 1973, Properties of nuclease-resistant fragments of calf thymus chromatin, J. Biol. Chem. 248: 1080–1083.

    PubMed  CAS  Google Scholar 

  • Sprecher, C. A., and Johnson, W. C., Jr., 1977, Circular dichroism of the nucleic acid monomers, Biopolymers 16: 2243–2264.

    Google Scholar 

  • Sprecher, C. A., and Johnson, W. C., Jr., 1982, Change in conformation of various DNAs on melting as followed by circular dichroism, Biopolymers 21: 321–329.

    Article  PubMed  CAS  Google Scholar 

  • Sprecher, C. A., Baase, W. A., and Johnson, W. C., Jr., 1979, Conformation and circular dichroism of DNA, Biopolymers 18: 1009–1019.

    Article  PubMed  CAS  Google Scholar 

  • Steely, H. T., Jr., Gray, D. M., and Ratliff, R. L., 1986, CD of homopolymer DNA-RNA hybrid duplexes and triplexes containing A-T or A U base pairs, Nucleic Acids Res. 14: 10071–10090.

    Article  PubMed  CAS  Google Scholar 

  • Sutherland, J. C., and Griffin, K. P., 1983, Vacuum ultraviolet circular dichroism of poly(dI-dC)poly(dIdC): No evidence for a left-handed double helix, Biopolymers 22: 1445–1448.

    Article  CAS  Google Scholar 

  • Sutherland, J. C., Griffin, K. P., Keck, P. C., and Takacs, P. Z., 1981, Z-DNA: Vacuum ultraviolet circular dichroism, Proc. Natl. Acad. Sci. USA 78: 4801–4804.

    Article  PubMed  CAS  Google Scholar 

  • Sutherland, J. C., Lin, B., Mugavero, J., Trunk, J., Tomasz, M., Santella, R., Marky, L., and Breslauer, K. J., 1986, Vacuum ultraviolet circular dichroism of double stranded nucleic acids, Photochem. Photobiol. 44: 295–301.

    Article  PubMed  CAS  Google Scholar 

  • Tunis-Schneider, M. J. B., and Maestre, M. F., 1970, Circular dichroism spectra of oriented and unoriented deoxyribonucleic acid films—A preliminary study, J. Mol. Biol. 52: 521–541.

    Article  PubMed  CAS  Google Scholar 

  • Vorlíckovâ, M., Kypr, J., Kleinwächter, K., and Palecek, E., 1980, Self-induced conformational changes in poly(dA-dT), Nucleic Acids Res. 8: 3965–3973.

    Article  PubMed  Google Scholar 

  • Vorlíckovâ, M., Sklenâr, V., and Kypr, J., 1983, Salt-induced conformational transition of poly[d(A-T)]poly[d(A-T)], J. Mol. Biol. 166: 85–92.

    Article  PubMed  Google Scholar 

  • Vorlíckovâ, M., Johnson, W. C., Jr., and Kypr, J., 1994, Vacuum-UV CD spectrum of the X-form of double-stranded poly(dA-dT), Biopolymers 34: 299–301.

    Article  Google Scholar 

  • Wang, J. C., 1978, DNA: Bihelical structure, supercoiling, and relaxation, Cold Spring Harbor Symp. Quant. Biol. 43: 29–33.

    Article  Google Scholar 

  • Wang, J. C., 1979, Helical repeat of DNA in solution, Proc. Natl. Acad. Sci. USA 76: 200–203.

    Article  PubMed  CAS  Google Scholar 

  • Warshaw, M. M., and Cantor, C. R., 1970, Oligonucleotide interactions. IV. Conformational differences between deoxy-and ribodinucleoside phosphates, Biopolymers 9: 1079–1103.

    Article  PubMed  CAS  Google Scholar 

  • Wells, B. D., and Yang, J. T., 1974a, A computer probe of the circular dichroic bands of nucleic acids in the ultraviolet region. I. Transfer ribonucleic acid, Biochemistry 13: 1311–1316.

    Article  PubMed  CAS  Google Scholar 

  • Wells, B. D., and Yang, J. T., 1974b, A computer probe of the circular dichroic bands of nucleic acids in the ultraviolet region. II. Double-stranded ribonucleic acid and deoxyribonucleic acid, Biochemistry 13: 1317–1321.

    Article  PubMed  CAS  Google Scholar 

  • Wyatt, J. R., Puglisi, J. D., and Tinoco, I., Jr., 1990, RNA pseudoknots stability and loop size requirements, J. Mol. Biol. 214: 455–470.

    Article  PubMed  CAS  Google Scholar 

  • Xodo, L. E., Manzini, G., Quadrifoglio, F., Yathindra, N., van der Marel, G. A., and van Boom, J. H., 1989, The left-handed Z-DNA conformation in oligodeoxynucleotides containing different amounts of AT base pairs: A far UV circular dichroism study, J. Biomol. Struct. Dynam. 6: 1217–1231.

    Article  CAS  Google Scholar 

  • Zacharias, W., Larson, J. E., Klysik, J., Stirdivant, S. M., and Wells, R. D., 1982, Conditions which cause the right-handed to left-handed DNA conformational transitions, J. Biol. Chem. 257: 2775–2782.

    PubMed  CAS  Google Scholar 

  • Zimmerman, S. B., and Pheiffer, B. H., 1979, Helical parameters of DNA do not change when DNA fibers are wetted: X-ray diffraction study, Proc. Natl. Acad. Sci. USA 76: 2703–2707.

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman, S. B., and Pheiffer, B. H., 1980, Does DNA adopt the C form in concentrated salt solutions or in organic solvent/water mixtures? An X-ray diffraction study of DNA fibers immersed in various media, J. Mol. Biol. 142: 315–330.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Johnson, W.C. (1996). Determination of the Conformation of Nucleic Acids by Electronic CD. In: Fasman, G.D. (eds) Circular Dichroism and the Conformational Analysis of Biomolecules. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2508-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2508-7_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3249-5

  • Online ISBN: 978-1-4757-2508-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics