Advertisement

Dissemination of Information in Interconnection Networks (Broadcasting & Gossiping)

  • Juraj Hromkovič
  • Ralf Klasing
  • Burkhard Monien
  • Regine Peine
Part of the Applied Optimization book series (APOP, volume 1)

Abstract

Considerable attention in recent theoretical computer science is devoted to parallel computing. Here, we would like to present a special part of this large topic, namely, the part devoted to an abstract study of the dissemination of information in interconnection networks. The importance of this research area lies in the fact that the ability of a network to effectively disseminate information is an important qualitative measure for the suitabilty of the network for parallel computing. This follows simply from the observation that the communication among processes working in parallel is one of the main parts of the whole parallel computation. So, the effectivity of information exchange among processors essentially influences the effectivity of the whole computation process.

Keywords

Cayley Graph Interconnection Network Communication Mode Broadcast Algorithm Communication Round 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S.B. Akers, B. Krishnamurthy, “A group-theoretic model for symmetric interconnection networks” , IEEE Transactions on Computers, Vol. 38, No. 4, pp. 555–566, 1989.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    F. Annexstein, M. Baumslag, A.L. Rosenberg, “Group action graphs and parallel architectures” , SIAM J. Comput., Vol. 19, No. 3, pp. 544–569, 1990.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    P. Berthomé, A. Ferreira, S. Perennes, “Optimal information dissemination in star and pancake networks” , In: Proc. 5th IEEE Symp. on Parallel and Distributed Processing (SPDP ‘93), 1993, 720–724.Google Scholar
  4. [4]
    J.-C. Bermond, P. Hell, A.L. Liestman, J.G. Peters, “Broadcasting in bounded degree graphs” , SIAM Journal on Discrete Maths. 5, pp. 10–24, 1992.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    A. Bagchi, S.L. Hakimi, J. Mitchem, E. Schmeichel, “ Parallel algorithms for gossiping by mail” , Inform. Proces. Letters 34 (1990), No. 4, pp. 197–202.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    C.A. Brown, P.W. Purdom, The Analysis of Algorithms, Holt, Rinehart and Winston, New York, 1985, p 5.3.Google Scholar
  7. [7]
    J.-C. Bermond, C. Peyrat, “Broadcasting in deBruijn networks” , Proc. 19th Southeastern Conference on Combinatorics, Graph Theory and Computing, Congressus Numerantium 66, pp. 283–292, 1988.MathSciNetGoogle Scholar
  8. [8]
    J.C. Bermond, C. Peyrat, “De Bruijn and Kautz networks: a competitor for the hypercube?” , In F. Andre, J.P. Verjus, editors, Hypercube and Distributed Computers, pp. 279–294, North-Holland, 1989.Google Scholar
  9. [9]
    B. Baker, R. Shostak: “Gossips and Telephones”, Discr. Mathem. 2 (1972), pp. 191–193.MathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    R.M. Capocelli, L. Gargano, U. Vaccaro, “Time Bounds for Broadcasting in Bounded Degree Graphs” , 15th Int. Workshop on Graph- Theoretic Concepts in Computer Science (WG 89), LNCS 411, pp. 19–33, 1989.MathSciNetGoogle Scholar
  11. [11]
    G. Cybenko, D.W. Krumme, K.N. Venkataraman, “Simultaneous broadcasting in multiprocessor networks”, Proc. International Conference on Parallel Processing (1986), pp. 555–558.Google Scholar
  12. [12]
    G. Cybenko, D.W. Krumme, K.N. Venkataraman, “Gossiping in minimal time” , SIAM J. Comput. 21 (1992), pp. 111–139.MathSciNetzbMATHCrossRefGoogle Scholar
  13. [13]
    N.G. De Bruijn, “A combinatorial problem” , Koninklijke Nederlandsche Akademie van Wetenschappen Proc., Vol. 49, pp. 758–764, 1946.zbMATHGoogle Scholar
  14. [14]
    S. Even, B. Monien, “On the number of rounds necessary to disseminate information”, Proc. 1 st A CM Symp. on Parallel Algorithms and Architectures, Santa Fe, June 1989, pp. 318–327.Google Scholar
  15. [15]
    R.C. Entringer, P.J. Slater, “ Gossips and telegraphs” , J. Franklin Institute 307 (1979), pp. 353–360.MathSciNetzbMATHCrossRefGoogle Scholar
  16. [16]
    A.M. Farley, “Minimum-Time Line Broadcast Networks” , Networks, Vol. 10 (1980), pp. 5 9–70.Google Scholar
  17. [17]
    R. Feldmann, J. Hromkovič, S. Madhavapeddy, B. Monien, P. Mysliwietz, “ Optimal algorithms for dissemination of information in generalized communication modes”, Proc. PARLE’92, Lecture Notes in Computer Science 605, Springer Verlag 1992, pp. 115–130.Google Scholar
  18. [18]
    P. Fraigniaud, E. Lazard, “Methods and problems of communication in usual networks”, Discrete Applied Mathematics 53 (1994), No. 1–3, 79–133.MathSciNetzbMATHCrossRefGoogle Scholar
  19. [19]
    A.M. Farley, A. Proskurowski, “Gossiping in grid graphs”, J. Combin. Inform. System Sci. 5 (1980), pp. 161–172.MathSciNetzbMATHCrossRefGoogle Scholar
  20. [20]
    R. Feldmann, W. Unger, “The Cube-Connected Cycles Network is a Subgraph of the Butterfly Network”, Parallel Processing Letters, Vol. 2, No. 1 (1992), pp. 13–19.CrossRefGoogle Scholar
  21. [21]
    C. Gowrisankaran, “Broadcasting in recursively decomposable Cayley graphs”, Discrete Applied Mathematics 53 (1994), No. 1–3, 171–182.MathSciNetzbMATHCrossRefGoogle Scholar
  22. [22]
    S.M. Hedetniemi, S.T. Hedetniemi, A.L. Liestman, “A survey of gossiping and broadcasting in communication networks”, Networks, Vol. 18, pp. 319–349, 1988.MathSciNetzbMATHCrossRefGoogle Scholar
  23. [23]
    J. Hromkovič, C. D. Jeschke, B. Monien, “Optimal algorithms for dissemination of information in some interconnection networks”, extended abstract in Proc. MFCS’90, Lecture Notes in Computer Science 452, Springer Verlag 1990, pp. 337–346; full version in: Algorithmica 10 (1993), 24–40.Google Scholar
  24. [24]
    J. Hromkovič, C.D. Jeschke, B. Monien, “ Optimal algorithms for dissemination of information in some interconnection networks” , Theoretical Computer Science 127 (1994), No. 2, 395–402.MathSciNetzbMATHCrossRefGoogle Scholar
  25. [25]
    A. Hajnal, E.C. Milner, E. Szemeredi, “A cure for the telephone disease”, Can. Math. Bull. 15 (1972), pp. 447–450.MathSciNetzbMATHCrossRefGoogle Scholar
  26. [26]
    M.C. Heydemann, J. Opatrny, D. Sotteau, “Broadcasting and spanning trees in de Bruijn and Kautz networks” , Discrete Applied Mathematics 37/38 (1992), 297–317.MathSciNetCrossRefGoogle Scholar
  27. [27]
    R. Klasing, R. Lüling, B. Monien, “Compressing cube-connected cycles and butterfly networks” , extended abstract in Proc. 2nd IEEE Symposium on Parallel and Distributed Processing, pp. 858–865, 1990; full version in Discrete Applied Mathematics 53 (1994), No. 1–3, 183–197.Google Scholar
  28. [28]
    R. Klasing, B. Monien, R. Peine, E. Stöhr, “Broadcasting in Butterfly and DeBruijn networks”, Proc. STACS’92, Lecture Notes in Computer Science 577, Springer Verlag 1992, pp. 351–362.Google Scholar
  29. [29]
    D.E. KnuthThe art of computer programming, Vol. 1, Addison-Wesley, Reading-Massachusetts, 1968.zbMATHGoogle Scholar
  30. [30]
    W. Knödel, “New gossips and telephones” , Discrete Math. 13 (1975), p. 95.MathSciNetzbMATHCrossRefGoogle Scholar
  31. [31]
    D.W. Krumme, “Fast gossiping for the hypercube” , SIAM J. Comput. 21 (1992), to appear.Google Scholar
  32. [32]
    A.L. Liestman, J.G. Peters, “ B roadcast networks of bounded degree” , SIAM Journal on Discrete Maths, Vol. 1, No. 4, pp. 531–540, 1988.MathSciNetzbMATHCrossRefGoogle Scholar
  33. [33]
    R. Labahn, I. Warnke, “ Quick gossiping by multi-telegraphs” , In R. Bodendiek, R. Henn (Eds.), Topics in Combinatorics and Graph Theory, pp. 451–458, Physica-Verlag Heidelberg, 1990.CrossRefGoogle Scholar
  34. [34]
    B. Monien, I.H. Sudborough, “Embedding one Interconnection Network in Another”, Computing Supplementum7 (1990), 257–282.MathSciNetCrossRefGoogle Scholar
  35. [35]
    V.E. Mendia, D. Sarkar, “ Optimal broadcasting on the star graph” , IEEE Transactions on Parallel and Distributed Systems 3 (1992), No. 4, 389–396.MathSciNetCrossRefGoogle Scholar
  36. [36]
    M.G. Pease, “An adaptation of the Fast Fourier transform for parallel processing”, Journal ACM, Vol. 15, pp. 252–264, April 1968.zbMATHCrossRefGoogle Scholar
  37. [37]
    D. Richards, A.L. Liestman, “Generalization of broadcasting and gossiping”, Networks 18 (1988), pp. 125–138.MathSciNetzbMATHCrossRefGoogle Scholar
  38. [38]
    M.R. Samatham, D.K. Pradhan, “The de Bruijn multiprocessor network: a versatile parallel processing and sorting network for VLSI” , IEEE Transactions on Computers, Vol. 38, No. 4, pp. 567–581, 1989.MathSciNetzbMATHCrossRefGoogle Scholar
  39. [39]
    E.A. Stöhr, “Broadcasting in the butterfly network” , Information Processing Letters 39 (1991), pp. 41–43.MathSciNetzbMATHCrossRefGoogle Scholar
  40. [40]
    E.A. Stöhr, “On the broadcast time of the butterfly network”, Proc. 17th Int. Workshop on Graph-Theoretic Concepts in Computer Science (WG 91), LNCS 570, pp. 226–229, 1991.Google Scholar
  41. [41]
    E.A. Stöhr, “An upper bound for broadcasting in the butterfly network”, manuscript, University of Manchester, United Kingdom.Google Scholar
  42. [42]
    V.S. Sunderam, P. Winkler, “Fast information sharing in a distributed system”, Discrete Applied Mathematics 42 (1993), pp. 75–86.MathSciNetzbMATHCrossRefGoogle Scholar
  43. [43]
    I.H. Wilkinson, The algebraic eigenvalue problem, Clarendon Press, Oxford, 1965.zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1996

Authors and Affiliations

  • Juraj Hromkovič
    • 1
  • Ralf Klasing
    • 2
  • Burkhard Monien
    • 2
  • Regine Peine
    • 2
  1. 1.Institut für Informatik und Praktische MathematikUniversität zu KielKielGermany
  2. 2.Department of Mathematics and Computer ScienceUniversity of PaderbornPaderbornGermany

Personalised recommendations