Calcium Hydroxyapatite in Total Joint Arthroplasty

  • Kjeld Søballe
  • Richard J. Friedman


Young active patients will usually outlive the fixation of a total hip or knee arthroplasty. There is widespread concern about the considerable risk of failure in these patients, especially because of the subsequent need for even more difficult operative treatment with fewer beneficial results (1–4). As a result, there is an increased interest in other principles for implant fixation, such as biological fixation to the bone without the use of bone cement (5).


Femoral Component Calcium Phosphate Cement Bone Ingrowth Titanium Implant Fibrous Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chandler HP, Reineck FT, Wixson RL, and McCarthy JC. Total hip replacement in patients younger than thirty years old. j bone joint surg 1981; 63-A: 1426–1434.Google Scholar
  2. 2.
    Halley DK and Wroblewski BM. Long-term results of low-friction arthroplasty in patients 30 years of age or younger. clin orthop 1986; 211: 43–50.Google Scholar
  3. 3.
    Strömberg CN, Herberts P, and Palmertz B. Cemented revision hip arthroplasty. A multicenter 5–9-year study of 204 first revisions for loosening. acta orthop scand 1992; 63 (2): 111–119.Google Scholar
  4. 4.
    Retpen JB, Varmarken J-E, Röck ND, and Jensen JS. Unsatisfactory results after repeated revision of hip arthroplasty. 61 cases followed for 5 (1–10) years. acta orthop scand 1992; 63 (2): 120–127.CrossRefGoogle Scholar
  5. 5.
    Galante JO, Rostoker W, Lueck R, and Ray RD. Sintered fiber metal composites as a basis for attachment of implants to bone. jbone joint surg 1971; 53-A: 101–108.Google Scholar
  6. 6.
    Bobyn JD, Engh CA, and Glassman AH. Histological analysis of a retrieved microporouscoated femoral prosthesis. clin orthop 1987; 224: 303–310.Google Scholar
  7. 7.
    Collier JP, Mayor MB, Chae JC, Surprenant VA, Surprenant HP, and Dauphinais LA. Macroscopic and microscopic evidence of prosthetic fixation with porous-coated materials. clin orthop 1988; 235: 173–180.Google Scholar
  8. 8.
    Cook SD, Barrack RL, Thomas KA, and Haddad RJ. Quantitative analysis of tissue growth into human porous total hip components. JArthroplasty 1988; 3: 249–262.CrossRefGoogle Scholar
  9. 9.
    Cook S, Thomas K, and Haddad R. Histologic analysis of retrieved human porous coated total joint components. Clin Orthop 1988; 234: 90–101.Google Scholar
  10. 10.
    Engh CA, Bobyn JD, and Petersen TL. Radiographic and histologic study of porous coated tibial component fixation in cementless total knee arthroplasty. Ortopedics 1988; 11: 725–731.Google Scholar
  11. 11.
    Geesink RGT, de Groot K, and Klein CP. Chemical implant fixation using hydroxyl-apatite coatings. Clin Orthop 1987; 225: 147–170.Google Scholar
  12. 12.
    de Groot K, Geesink RGT, Klein CPAT, and Serekian P. Plasma sprayed coatings of hydroxylapatite. JBiomed MaterRes 1987; 21: 1375–1381.CrossRefGoogle Scholar
  13. 13.
    Thomas KA, Kay JF, Cook SD, and Jarcho M. The effect of surface macrotexture and hydroxyapatite coating on the mechanical strengths and histological profiles of titanium implant materials. J Biomed Mater Res 1987; 21: 1395–1414.CrossRefGoogle Scholar
  14. 14.
    Landon G, Galante J, and Manley M. Non-cemented total knee arthroplasty. Clin Orthop 1986; 205: 49–57.Google Scholar
  15. 15.
    Engh C, Bobyn J, and Glassman A. Porous-coated hip replacement: the factors governing bone ingrowth, stress shielding and clinical results. J Bone Joint Surg (Br) 1987; 69: 44–55.Google Scholar
  16. 16.
    Cook SD. Hydroxyapatite-coated total hip replacement, Dent Clin NAm 1992; 36: 235–238.Google Scholar
  17. 17.
    Jarcho M, Kay JF, Gumaer KI, Doremus RH, and Drobeck HP. Tissue, cellular, and subcellular events at a bone-ceramic hydroxyapatite interface. JBioeng 1977; 1: 79–92.Google Scholar
  18. 18.
    Jarcho M. Calcium phosphate ceramics as hard tissue prosthetics. Clin Orthop 1981; 157: 259–278.Google Scholar
  19. 19.
    Jarcho M. Biomaterial aspects of calcium phosphates, properties and applications. Dent Clin N Am 1986; 30: 25–47.Google Scholar
  20. 20.
    Lacefield W. Hydroxyapatite coatings. Ann NY Acad Sci 1988; 523: 72–80.CrossRefGoogle Scholar
  21. 21.
    Dalton JE, Cook SD, and Manley MT. In vivo mechanical and histologic characteristics of HA implants vary with coating vendor. Trans Soc Biomater 1993; 16: 335.Google Scholar
  22. 22.
    LeGeros J, and Lovell RZ. Characterization of calcium phosphate coatings on implants. Trans Soc Biomater 1991; 14: 192.Google Scholar
  23. 23.
    Edwards B, Aberman HM, Dichiara JF, Higham P, Cantwell HD, Gillis P, and Weber W. In vivo performance of a hydroxylapatite coating system deposited by low pressure plasma spraying. Trans Soc Biomater 1991; 14: 173.Google Scholar
  24. 24.
    Kester M, Manley M, Taylor S, and Cohen R. Influence of thickness on the mechanical properties and bond strength of HA coatings applied to orthopaedic implants. Trans Orthop Res Soc 1991; 16: 951.Google Scholar
  25. 25.
    de Groot K, in Bioceramics of Calcium Phosphate 1982; (de Groot K, ed), CRC, Boca Raton, FL, pp 99–114.Google Scholar
  26. 26.
    Cook S, Thomas K, Kay J, and Jarcho M. Hydroxyapatite-coated titanium for orthopaedic implant applications. Clin Orthop 1988; 232: 225–243.Google Scholar
  27. 27.
    Cook S, Thomas K, Dalton J, Volkman T, and Kay J. Enhancement of bone ingrowth and fixation strength by hydroxyapatite coating porous implants. Trans Orthop Res Soc 1991; 16: 550.Google Scholar
  28. 28.
    Brunski J, Edwards J, Cochran G, and Higuchi K. Tensile tests of interfaces comprised of bone-titanium and bone-hydroxyapatite-coated titanium. Trans Orthop Res Soc 1991; 16: 502.Google Scholar
  29. 29.
    Seballe K, Hansen ES, B-Rasmussen H, Pedersen CM, and Bünger C. Hydroxyapatite coating enhances fixation of porous coated implants. A comparison between press fit and non-interference fit. Acta Orthop Scand 1990; 61 (4): 299–306.CrossRefGoogle Scholar
  30. 30.
    Seballe K, Pedersen CM, Odgaard A, Juhl GI, Hansen ES, Rasmussen HB, Hvid I, and Bunger C. Physical bone changes in Carragheenininduced arthritis evaluated by quantitative corn-puted tomography. Skeletal Radiol 1991; 20: 345–352.CrossRefGoogle Scholar
  31. 31.
    Seballe K, Hansen ES, Rasmussen HB, Hjortdal VE, Juhl GI, Pedersen CM, Hvid I, and Bunger C. Fixation of titanium-and hydroxyapatite coated implants in arthritic osteopenic bone. JArthroplasty 1991; 6 (4): 307–316.CrossRefGoogle Scholar
  32. 32.
    Seballe K, Hansen ES, B-Rasmussen H, Hjortdal VE, Juhl GI, Pedersen CM, Hvid I, and Bunger C. Gap healing enhanced by hydroxyapatite coating in dogs. Clin Orthop 1991; 272: 300–307.Google Scholar
  33. 33.
    Seballe K, Hansen ES, B-Rasmussen H, Pedersen CM, and Bünger C. Bone graft incorporation around titanium-alloy and hydroxyapatite coated“ implants in dogs. Clin Orthop 1992; 274: 282–293.Google Scholar
  34. 34.
    Seballe K, Hansen ES, B-Rasmussen H, and Bünger C. Tissue ingrowth into titanium-and hydroxyapatite coated implants during stable and unstable mechanical conditions. JOrthop Res 1992; 10: 285–299.CrossRefGoogle Scholar
  35. 35.
    Seballe K, B-Rasmussen H, Hansen ES, and Bünger C. Hydroxyapatite coating modifies implant membrane formation. Controlled micro-motion studied in dogs. Acta Orthop Scand 1992; 63 (2): 128–140.Google Scholar
  36. 36.
    Seballe K, Hansen ES, Rasmussen HB, and Bünger C. Hydroxyapatite coating converts fibrous tissue to bone around loaded implants. J Bone Joint Surg 1993; 75B: 270–278.Google Scholar
  37. 37.
    Seballe K, Toksvig-Larsen S, Gelineck J, Fruensgaard S, Hansen ES, Ryd L, Lucht U, and Bunger C. Migration ofhydroxyapatite coated femoral prostheses. A roentgen stereophotogrammetric study. J Bone Joint Surg (Br) 1993; 75: 681–687.Google Scholar
  38. 38.
    Seballe K. Hydroxyapatite ceramic coating for bone implant fixation. Mechanical and histological studies in dogs. Acta Orthop Scand Thesis Suppl 1993; 64: 255.Google Scholar
  39. 39.
    Schimmel J-W and Huiskes R. Primary fit of the Lord cementless total hip. A geometric study in cadavers. Acta Orthop Scand 1988; 59: 638–642.CrossRefGoogle Scholar
  40. 40.
    Noble PC, Alexander JW, Granberry MI, Granberry WM, Maltry JA, and Tullos HS. The myth of “press-fit” in the proximal femur. Sci Exhibit 55th Ann Meet Am Acad Orth Surg 1988.Google Scholar
  41. 41.
    Noble PC, Alexander JW, Lindahl LJ, Yew DT, Granberry WM, and Tullos HS. The anatomical basis of femoral component design. Clin Orthop 1988; 235: 148–165.Google Scholar
  42. 42.
    Martin RB, Paul HA, Bargar WL, Dannucci GA, and Sharkey NA. Effects of estrogen deficiency on the growth of tissue into porous titanium implants. JBoneJointSurg 1988; 70A: 540–547.Google Scholar
  43. 43.
    Nakajima I, Dai KR, Kelly PJ, and Chao EYS. The effect of age on bone ingrowth into titanium fibermetal segmental prosthesis: an experimental study. Trans Orthop Res Soc 1985; 9: 296.Google Scholar
  44. 44.
    R¢nningen H, Urban RM, and Galante JO. Bone ingrowth in a fiber metal implant in rabbits with steroid induced osteopenia. Trans Orthop Res Soc 1983; 8: 134.Google Scholar
  45. 45.
    Bünger C. Hemodynamics of the juvenile knee. Acta Orthop Scand PhD Thesis 1987; 58 (Suppl 222); 1–104.CrossRefGoogle Scholar
  46. 46.
    Gustilo RB and Pasternak HS. Revision total hip arthroplasty with titanium ingrowth prosthesis and bone grafting for failed cemented femoral component loosening. Clin Orthop 1988; 235: 111–119.Google Scholar
  47. 47.
    Head WC, Malinin TI, and Berklacich F. Freeze-dried proximal femur allografts in revision total hip arthroplasty. Clin Orthop 1987; 215: 109–121.Google Scholar
  48. 48.
    Hungerford DS and Jones LC. The rationale for cementless revision of cemented arthroplasty failures. Clin Orthop 1988; 235: 12–24.Google Scholar
  49. 49.
    McGann WA, Welch RB, and Picetti GD. Ace-tabular preparation in cementless revision total hip arthroplasty. Clin Orthop 1988; 235: 35–46.Google Scholar
  50. 50.
    Samuelson KM. Bone grafting and noncemented revision arthroplasty of the knee. Clin Orthop 1988; 226: 93–101.Google Scholar
  51. 51.
    Turner TM, Urban RM, Sumner DR, and Galante JO. Bone ingrowth in cementless revision of an aseptically loosened canine THA model. Trans 35th Ann Meet Orthop Res Soc 1989; 14: 551.Google Scholar
  52. 52.
    Kennedy AC and Lindsay R. Bone involvement in rheumatoid arthritis. Clin Rheum Dis 1977; 3: 403–420.Google Scholar
  53. 53.
    Spector M. Factors augmenting/inhibiting biological fixation of porous-coated noncemented prostheses. Orthop Trans Hip Soc 1986; 10(3): 547,548.Google Scholar
  54. 54.
    Branson PJ, Steege JW, Wixson RL, Lewis J, and Stulberg SD. Rigidity of internal fixation with uncemented tibial knee implants. JArthroplasty 1989; 4: 21–26.CrossRefGoogle Scholar
  55. 55.
    Burke DW, O’Connor DA, Zalenski EB, Jasty M, and Harris WH. Micromotion of cemented and uncemented femoral components. J Bone Joint Surg 1991; 73B: 33–37.Google Scholar
  56. 56.
    Shimagaki H, Bechtold JE, Sherman R, and Gustilo RB. Initial stability of tibial components in cementless total knee arthroplasty. Trans 34th Ann Meet Orthop Res Soc 1988; 13: 477.Google Scholar
  57. 57.
    Strickland AB, Chan KH, Andriacchi TP, and Miller J. The initial fixation of porous coated tibial components evaluated by the study of rigid body motion under static load. Trans 34th Ann Meet Orthop Res Soc 1988; 13: 476.Google Scholar
  58. 58.
    Vanderby R, Manley PA, Kohles SS, Belloli DM, and McBeath AA. A micromotion comparison of cemented and porous ingrowth total hip replacements in a canine model. Trans 35th Ann Meet Orthop Res Soc 1989; 14: 577.Google Scholar
  59. 59.
    Volz RG, Nisbet JK, Lee RW, and McMurtry MG. The mechanical stability of various non-cemented tibial components. Clin Orthop 1988; 226: 38–42.Google Scholar
  60. 60.
    Ryd L. Micromotion in knee arthroplasty. Acta Orthop Scand PhD Thesis 1986; 57 (Suppl 220): 1–80.Google Scholar
  61. 61.
    Frost HM. Intermediary Organization of the Skeleton, vol I. 1986; CRC, Boca Raton, FL, pp 50–52.Google Scholar
  62. 62.
    Eitel F, Klapp F, Jacobsen W, and Schweiberer L. Bone regeneration in animals and in man. A contribution to understanding the relative value of animal experiments to human pathophysiology. Arch Orthop Trauma Surg 1981; 99: 59–64.CrossRefGoogle Scholar
  63. 63.
    Berry JL, Geiger JM, Moran JM, Skraba JS, and Greenwald AS. Use of tricalcium phosphate or electrical stimulation to enhance the bone-porous implant interface. JBiomed Mater Res 1986; 20: 65–77.CrossRefGoogle Scholar
  64. 64.
    Cook SD, Thomas KA, Kay JF, and Jarcho M. Hydroxyapatite-coated porous titanium for use as an orthopaedic biologic attachment system. Clin Orthop 1988; 230: 303–312.Google Scholar
  65. 65.
    Carlsson L, Regnér L, Johansson C, Gottlander M, and Herberts P. Histomorphometrical comparison of titanium and hydroxyapatite-coated implants in the human arthritic knee. Trans 38th Ann Meet Orthop Res Soc 1992; 17: 267.Google Scholar
  66. 66.
    Cook SD, Thomas KA, Dalton JE, and Kay JF. Enhanced bone ingrowth and fixation strength with hydroxyapatite-coated porous implants. Semin Arthroplasty 1991; 2 (4): 268–279.Google Scholar
  67. 67.
    Ducheyne P, Hench LL, Kagan A, Martens M, Bursens A, and Mulier C. Effect of hydroxyapatite impregnation on skeletal bonding of porous coated implants. JBiomed Mater Res 1980; 14: 225–237.CrossRefGoogle Scholar
  68. 68.
    Rivero DP, Fox J, Skipor AK, Urban RM, and Galante JO. Calcium phosphate-coated porous titanium implants for enhanced skeletal fixation. JBiomed Mater Res 1988; 22: 191–201.CrossRefGoogle Scholar
  69. 69.
    Oonishi H, Yamamoto M, Tsuji E, Kushitani S, Aono M, and Ukon Y. The effect of hydroxyapatite coating on bone growth into porous coated titanium alloy implants. JBone Joint Surg 1989; 71-B: 213–216.Google Scholar
  70. 70.
    Boone PS, Zimmerman MC, Gutteling E, Lee CK, and Parsons JR. Bone attachment to hydroxyapatite coated polymers. JBiomed Mater Res 1989; 23: 183–199.Google Scholar
  71. 71.
    Stephenson PK, Freeman MAR, Revell PA, Germain J, Tuke M, and Pirie CJ. The effect of hydroxyapatite coating on ingrowth of bone into cavities in an implant. JArthroplasty 1991; 6 (1): 51–58.CrossRefGoogle Scholar
  72. 72.
    Cook SD, Kay JF, Thomas KA, and Jarcho M. Interface mechanics and histology of titanium and hydroxyapatite coated titanium for dental implant application. Int J Oral Maxillofac Surg 1987; 2: 15–22.Google Scholar
  73. 73.
    Geesink RGT, de Groot K, and Klein CPAT. Bonding of bone to apatite-coated implants. J Bone Joint Surg 1988; 70-B: 17–23.Google Scholar
  74. 74.
    Beight J, Radin S, Cuckler J, and Ducheyne P. Effect of solubility of calcium phosphate coatings on mechanical fixation of porous ingrown implants. Trans 35th Ann Meet Orthop Res Soc 1989; 14: 334.Google Scholar
  75. 75.
    Stulberg BN, Watson JT, Bauer TW, and Kambic H. Hydroxyapatite vs. titanium mesh coating for uncemented tibial fixation in the canine knee. Trans 38th Ann Meet Orthop Res Soc 1992; 17: 381.Google Scholar
  76. 76.
    Berger RA, Klein AH, Rodosky MW, Seel MJ, Anderson G, and Rubash HE. The mechanical and histological effects of plasma sprayed hydroxyapatite coating in a canine femoral endoprosthesis model. Trans 38th Ann Meet Orthop Res Soc 1992; 17: 401.Google Scholar
  77. 77.
    Manley MT, Kay JF, Yoshiya S, Stern LS, and Stulberg BN. Accelerated fixation of weight bearing implants by hydroxyapatite coatings. Trans 33rd Ann Meet Orthop Res Soc 1987; 12: 214.Google Scholar
  78. 78.
    Thomas KA, Cook SD, Haddad RJ, Kay JF, and Jarcho M. Biological response to hydroxylapatite-coated titanium hips. JArthroplasty 1989; 4: 43–53.CrossRefGoogle Scholar
  79. 79.
    Poser RD, Magee FP, Kay JF, Toal TR, and Hedley AK. Biomechanical and histologic assessment of HA enhanced long-term fixation in a unique loaded canine implant. Presented at the Fourth World Biomaterials Congress, April 1992, Berlin.Google Scholar
  80. 80.
    Albrektsson T and Albrektsson B. Osseointegration of bone implants. A review of bone implant fixation. Acta Orthop Scand 1987; 58: 567–577.CrossRefGoogle Scholar
  81. 81.
    Cameron HU, Pilliar RM, and Macnab I. The rate of bone ingrowth into porous metal. J Biomed Mater Res 1976; 10: 295–302.CrossRefGoogle Scholar
  82. 82.
    Carlsson L, Röstlund T, Albrektsson B, and Albrektsson T. Implant fixation improved by close fit. Acta Orthop Scand 1988; 59 (3): 272–275.CrossRefGoogle Scholar
  83. 83.
    Harris WH, White RE, McCarthy JC, Walker PS, and Weinberg EH. Bony ingrowth fixation of the acetabular component in canine hip joint arthroplasty. Clin Orthop 1983; 176: 7–11.Google Scholar
  84. 84.
    Sandborn PM, Cook SD, Spires WP, and Kester MA. Tissue response to porous-coated implants lacking initial bone apposition. J Arthroplasty 1988; 3: 337–346.CrossRefGoogle Scholar
  85. 85.
    Toksvig-Larsen S and Ryd L. Surface flatness after bone cutting. A cadaver study of tibial condyles. Acta Orthop Scand 1991; 62 (1): 15–18.Google Scholar
  86. 86.
    Toksvig-Larsen S. On bone cutting. PhD thesis 1992; Lund, Sweden.Google Scholar
  87. 87.
    Bobyn JD and Engh CA. Human histology of the bone-porous metal implant interface. Orthopaedics 1984; 7: 1410.Google Scholar
  88. 88.
    Linder L, Carlsson A. Marsal L, Bjursten LM, and Brdnemark P-I. Clinical aspects of osseointegration in joint replacement. J Bone Joint Surg 1988; 70-B: 550–555.Google Scholar
  89. 89.
    Albrektsson T. Healing of bone grafts. PhD thesis 1979; Gothenburg.Google Scholar
  90. 90.
    Burchardt H, Jones H, Glowczewskie F, Rudner C, and Enneking WF. Freeze-dried allogenic segmental cortical-bone grafts in dogs. JBone Joint Surg 1978; 60A: 1082–1090.Google Scholar
  91. 91.
    Burchardt H. The biology of bone graft repair. Clin Orthop 1983; 174: 28–42.Google Scholar
  92. 92.
    Goldberg VM, Powell A, Zika J, Bos GD, and Heiple KG. Bone grafting: role of histocompatibility in transplantation. J Orthop Res 1985; 3: 389–404.CrossRefGoogle Scholar
  93. 93.
    Friedlaender GE. Current concepts review. Bone grafting. JBone Joint Surg 1987; 69A: 786–789.Google Scholar
  94. 94.
    Heiple KG, Chase SW, and Herndon CH. A comparative study of the healing process following different types of bone transplantation. J Bone Joint Surg 1963; 45-A: 1593–1616.Google Scholar
  95. 95.
    Goldberg VM and Stevenson S. Natural history of autografts and allografts. Clin Orthop 1987; 225: 7–16.Google Scholar
  96. 96.
    McDonald DJ, Fitzgerald RH, and Chao EYS. The enhancement of fixation of a porous-coated femoral component by autograft and allograft in the dog. JBone Joint Surg 1988; 70A: 728–737.Google Scholar
  97. 97.
    Lewis CG, Jones LC, Connor KM, Lennox DW, and Hungerford DS. An evaluation of grafting materials in cementless arthroplasty. Trans 33rd Ann Meet Orthop Res Soc 1987; 12: 319.Google Scholar
  98. 98.
    Kienapfel H, Sumner DR, Turner TM, Urban RM, and Galante JO. Efficacy of autograft and freeze-dried allograft to enhance fixation of porous coated implants in the presence of interface gaps. J Orthop Res 1992; 10: 423–433.CrossRefGoogle Scholar
  99. 99.
    Kang JD, McKernan DJ, Kruger M, Mutschler T, Thompson WH, and Rubash HE. Defect filling and bone ingrowth: a comparative study in a canine fiber metal total hip model. Trans 35th Ann Meet Orthop Res Soc 1989; 14: 552.Google Scholar
  100. 100.
    Turner TM, Urban RM, Sumner DR, and Galante JO. Enhancement of bone ingrowth in cementless revision THA using a two stage procedure. Trans 38th Ann Meet Orthop Res Soc 1992; 17: 369.Google Scholar
  101. 101.
    Sumner DR, Jacobs JJ, Turner TM, Urban RM, and Galante JO. The amount and distribution of bone ingrowth in tibial components retrieved from human patients. Trans 35th Ann Meet Orthop Res Soc 1989; 14: 375.Google Scholar
  102. 102.
    Stulberg BN, Watson JT, Stulberg SD, Bauer TW, and Manley MT. A new model to assesstibial fixation. II. Concurrent histologic and biomechanical observation. Clin Orthop 1991; 263: 303–309.Google Scholar
  103. 103.
    SchatzkerJ, Horne JG, and Sumner-Smith G. The effect of movement on the holding power of screws in bone. Clin Orthop 1975; 111: 257–262.CrossRefGoogle Scholar
  104. 104.
    Uhthoff HK and Germain J-P. The reversal of tissue differentiation around screws. Clin Orthop 1977; 123: 248–252.Google Scholar
  105. 105.
    Uhthoff HK. Mechanical factors influencing the holding power of screws in compact bone. JBone Joint Surg 1973; 55-B: 633–639.Google Scholar
  106. 106.
    Cameron HU. The effect of movement on the bonding ofporous metal on bone. JBiomed Mater Res 1973; 7: 301–311.CrossRefGoogle Scholar
  107. 107.
    Cameron HU, Macnab I, and Pilliar RM. Porous surfaced vitallium staples. South African J Surg 1972; 10: 63–70.Google Scholar
  108. 108.
    Pilliar RM, Lee JM, and Maniatopoulos C. Observations on the effect of movement on bone ingrowth into porous-surfaced implants. Clin Orthop 1986; 208: 108–113.Google Scholar
  109. 109.
    Pilliar RM, Cameron HU, Welsh RP, and Binnington AG. Radiographical and morphological studies of load-bearing porous surfaced structured implants. Clin Orthop 1981; 156: 249–257.Google Scholar
  110. 110.
    Ducheyne P, De Meester P, Aernoudt E, Martens M, and Mulier C. Influence of a functional dynamic loading on bone ingrowth into surface pores of orthopaedic implants. J Biomed Mater Res 1977; 11: 811–838.CrossRefGoogle Scholar
  111. 111.
    Heck DA, Nakajima I, Kelly PJ, and Chao EYS. The effect of load alteration on the biological and biomechanical performance ofa titanium fiber-metal segmental prosthesis. J Bone Joint Surg 1986; 68-A: 118–126.Google Scholar
  112. 112.
    Eschenroeder HC, Jones LC, and Hungerford DS. Biological ingrowth into a porous metal surface following established fibrous reaction. Trans 34th Ann Meet Orthop Res Soc 1988; 13: 333.Google Scholar
  113. 113.
    Aspenberg P, Goodman S, Toksvig-Larsen S, Ryd L, and Albrektsson T. Intermittent micro-motion inhibits bone ingrowth. Titanium implants in rabbits. Acta Orthop Scand 1992; 63 (2): 141–145.Google Scholar
  114. 114.
    Zalenski EB, Jasty M, O’Connor DO, et al. Micromotion of porous-surfaced, cementless prostheses following 6 months of in vivo bone ingrowth in a canine model. Trans 35th Ann Meet Orthop Res Soc 1989; 14: 377.Google Scholar
  115. 115.
    Burke DW, Bragdon CR, O’Connor DO, Jasty M, Haire T, and Harris WH. Dynamic measurement of interface mechanics in vivo and the effect of micromotion on bone ingrowth into a porous surface device under controlled loads in vivo. Trans 37th Ann Meet Orthop Res Soc 1991; 16: 103.Google Scholar
  116. 116.
    Natarajan R and Andriacchi TP. The influence of displacement incompatibilities on bone ingrowth in porous tibial components. Trans 34th Ann Meet Orthop Res Soc 1988; 13: 331.Google Scholar
  117. 117.
    Yang A, Sumner DR, Choi IS, Natarajan R, and Andriacchi TP. Direct measurement of micro-motion at the bone-implant interface: the tibial component in a canine model. Trans 36th Ann Meet Orthop Res Soc 1990; 15: 233.Google Scholar
  118. 118.
    Hori RY and Lewis JL. Mechanical properties of the fibrous tissue found at the bone-cement interface following total joint replacement. JBiomed Mater Res 1982; 16: 911–927.CrossRefGoogle Scholar
  119. 119.
    Tibrewal SO, Grant KA, and Goodfellow JW. The radiolucent line beneath the tibial components of the Oxford meniscal knee. J Bone Joint Surg 1984; 66-B: 523–528.Google Scholar
  120. 120.
    Walker PS, Onchi K, Kurosawa H, and Rodger RF. Approaches to the interface problem in total joint arthroplasty. Clin Orthop 1984; 182: 99–108.Google Scholar
  121. 121.
    Longo JA, Magee FP, Mather SE, Yapp RA, Koeneman JB, and Weinstein AM. Comparison of HA and non-HA coated carbon composite femoral stems. Trans 35th Ann Meet Orthop Res Soc 1989; 14: 384.Google Scholar
  122. 122.
    Ryd L and Linder L. On the correlation between micromotion and histology of the bone-cement interface. JArthroplasty 1989; 4: 303–309.CrossRefGoogle Scholar
  123. 123.
    Perren SM. Physical and biological aspects of fracture healing with special reference to internal fixation. Clin Orthop 1979; 138: 175–196.Google Scholar
  124. 124.
    Hench LL. Bioactive ceramics, in Bioceramics: Material Characteristics Versus In Vivo Behavior ( Ducheyne P and Lemons JE, eds ), Ann NY Acad Sci (II) 1988; 54–71.Google Scholar
  125. 125.
    Goldring SR, Schiller AL, Roelke M, Rourke CM, O’Niell DA, and Harris WH. The synovial-like membrane at the bone cement interface in loose total hip replacements and its proposed role in bone lysis. JBone Joint Surg 1983; 65-A: 575–584.Google Scholar
  126. 126.
    Goldring SR, Jasty M, Roelke MS, Rourke CM, Bringhurst FR, and Harris WH. Formation of a synovial-like membrane at the bone-cement interface. Arthr Rheum 1986; 29: 836–842.CrossRefGoogle Scholar
  127. 127.
    Turner TM, Sumner DR, Urban RM, Rivero DP, and Galante JO. A comparative study of porous coatings in a weight-bearing total hip arthroplasty model.JBoneJointSurg 1986; 68-A: 1396–1409.Google Scholar
  128. 128.
    Jasty M and Harris WH. Observations on factors controlling bony ingrowth into weight-bearing, porous, canine total hip replacements, in Non-Cemented Total Hip Replacement 1988; (Fitzgerald R Jr, ed), Raven, New York, pp 175–189.Google Scholar
  129. 129.
    Wolff J. Das Gesetz der Transformation der Knochen. Qvarto, Berlin 1892.Google Scholar
  130. 130.
    Geesink RGT, in Hydroxlyapatite Coatings in Orthopaedic Surgery 1993; (Geesink RGTand Manley MT, eds), Raven, New York, pp 171–208.Google Scholar
  131. 131.
    D’Antonio JA, Capello WN, Crothers OD, Jaffe WL, and Manley MT. Early clinical experience with hydroxyapatite-coated femoral implants. J Bone Joint Surg (Am) 1992; 74: 995–1008.Google Scholar
  132. 132.
    Friedman R, Don L, Gustke K, et al. Two to four year results ofhydroxyapatite total hip arthroplasty. Abstracts of the 9th Meeting of the Combined English Speaking Orthopaedic Associations. Toronto, 1992; p 243.Google Scholar
  133. 133.
    D’Antonio JA, Capello WN, and Jaffe WL, in Hydroxlyapatite Coatings in Orthopaedic Surgery 1993; (Geesink RGT and Manley MT, eds), Raven, New York, pp 209–226.Google Scholar
  134. 134.
    McPherson EJ, Friedman RJ, and Don LD, in Hydroxlyapatite Coatings in Orthopaedic Surgery 1993; (Geesink RGT and Manley MT, eds), Raven, New York, pp 249–261.Google Scholar
  135. 135.
    Geesink RGT, in Hydroxlyapatite Coatings in Orthopaedic Surgery 1993; (Geesink RGT and Manley MT, eds), Raven, New York, pp 271–286.Google Scholar
  136. 136.
    Cook SD, Enis J, Armstrong D, and Lisecki E. Early clinical results with the hydroxyapatitecoated porous LSF Total Hip System. Dent Clin NAm 1992; 36: 247–255.Google Scholar
  137. 137.
    Dorr L. Clinical total hip replacement with hydroxyapatite from 1984 to 1991. Sem Arthroplasty 1991; 2: 289–294.Google Scholar
  138. 138.
    Emerson R, Head W, and Peters P. Comparison of the early healing course of porous titanium with hydroxyapatite-coated porous titanium hip implants. Sem Arthroplasty 1991; 2: 295–301.Google Scholar
  139. 139.
    Vaughn B, Lombardi A, and Mallory T. Clinical and radiographic experience with a hydroxyapatite-coated titanium plasma-sprayed porous implant. Dent Clin NAm 1992; 36: 263–272.Google Scholar
  140. 140.
    Kroon P-O and Freeman MAR. Hydroxyapatite coating on hip prostheses. J Bone Joint Surg 1992; 74-B: 518–521.Google Scholar
  141. 141.
    Kärrholm J, Malchau H, Snorrason F, and Herberts P. Femoral component fixation in total hip arthroplasty. Evaluation of contemporary cementing technique, porous and hydroxyapatite coatings using stereophotogrammetric analysis. Trans 38th Ann Meet Orthop Res Soc 1992; 17: 291.Google Scholar
  142. 142.
    Carlsson L, Regnér L, and Herberts P. Approximate randomized study comparing the micromotion for the Miller-Galante II and the Freeman- Samuelson hydroxyapatite knee arthroplasty. Second Conf Eur Orthop Res Soc 1992; Varese.Google Scholar
  143. 143.
    Bauer TW, Stulberg BN, Ming J, and Geesink RGT. Uncemented acetabular components. Histologic analysis of retrieved hydroxyapatitecoated and porous implants. JArthroplasty 1993; 8: 167–177.Google Scholar
  144. 144.
    Bauer TW, Geesink RGT, Zimmerman R, and McMahon JT. Hydroxyapatite-coated femoral stems. Histological analysis of components retrieved at autopsy. J Bone Joint Surg (Am) 1991; 73: 1439–1452.Google Scholar
  145. 145.
    Bloebaum RD, Bachus KN, Rubman MH, and Dorr LD. Postmortem comparative analysis of titanium and hydroxyapatite porous-coated femoral implants retrieved from the same patient. J Arthroplasty 1993; 8: 203–211.CrossRefGoogle Scholar
  146. 146.
    Bloebaum RD, Merrell M, Gustke K, and Simmons M. Retrieval analysis of a hydroxyapatite-coated hip prosthesis. Clin Orthop 1991; 267: 97–102.Google Scholar
  147. 147.
    Furlong RJ and Osborn JF. Fixation of hip prostheses by hydroxyapatite ceramic coatings. J Bone Joint Surg (Br) 1991; 73: 741–745.Google Scholar
  148. 148.
    Hardy DC, Frayssinet P, Guilhem A, Lafontaine MA, and Delince PE. Bonding of hydroxyapatite-coated femoral prostheses. Histopathology of specimens from four cases. J Bone Joint Surg (Br) 1991; 73: 732–740.Google Scholar
  149. 149.
    Saballe K, Gotfredsen K, Brockstedt RH, Nielsen PT, and Rechnagel K. Histologic analysis of a retrieved hydroxyapatite-coated femoral prosthesis. Clin Orthop 1991; 272: 255–258.Google Scholar
  150. 150.
    Bloebaum RD and Dupont JA. Osteolysis from a press-fit hydroxyapatite-coated implant. JArthroplasty 1993; 8: 195–202.CrossRefGoogle Scholar
  151. 151.
    Campbell P, McKellop H, Park SH, and Malcolm A. Evidence of abrasive wear by particles from a hydroxyapatite coated hip prosthesis. Trans Orthop Res Soc 1993; 18: 224.Google Scholar
  152. 152.
    Taylor JK, Bargar WL, Gross TP, et al. Hydroxylapatite vs. porous ingrowth in canine uncemented hip replacement model at 6 weeks and 13 months: osteolysis and fixation. Trans Orthop Res Soc 1993; 18: 219.Google Scholar
  153. 153.
    Friedman R, Bauer T, Garg K, and Draughn R. Histologic and mechanical comparison of hydroxyapatite coated cobalt chrome and titanium implants. Trans Soc Biomater 1993; 16: 61.Google Scholar
  154. 154.
    Longo J, Poser R, and Szivek J. HA coating enhancement ofcancellous screw removal torques. Trans Orthop Res Soc 1991; 16: 521.Google Scholar
  155. 155.
    Baker J, McKinney L, Gunasekaran S, et al. An in vivo evaluation of artificial bone constructs. Trans Orthop Res Soc 1992; 17: 575.Google Scholar
  156. 156.
    Constantz B, Gunasekaran S, and Barr B. Evaluation of bioactive cements using a rabbit femoral canal model. Trans Orthop Res Soc 1992; 17: 370.Google Scholar
  157. 157.
    Constantz B, Young S, Kienapfe H, et al. Pilot investigations of a calcium phosphate cement in a rabbit femoral canal model and a canine humeral plug model. Trans Soc Biomater 1991; 14: 92.Google Scholar
  158. 158.
    Oonishi H. Orthopaedic applications of hydroxyapatite. Biomaterials 1991; 12: 171–178.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Kjeld Søballe
  • Richard J. Friedman

There are no affiliations available

Personalised recommendations