Skip to main content

Biopolymer Alloy for Surgical Plates

  • Chapter
Human Biomaterials Applications

Abstract

Our development work focuses on the use of biodegradable, biocompatible polymeric alloys in the production of bone repair plates. The basic premise proposed is that inclusion of a crosslinkable polymer (PPF) in an alloy composed primarily of PLA, heretofore the biopolymeric plate standard, will improve the dimensional stability of a PLA-only plate, while maintaining acceptable mechanical characteristics. Thus, our work has been to focus on making plate specimens and characterizing, in comparative fashion, the mechanical properties. Feasibility was assessed via the demonstration of dimensional stability and resistance to bending. Our initial work detailed our preparation of alloy specimens and their mechanical (primarily tensile) testing. Additional work on these preparations has included PLA-only specimens and additional mechanical (primarily bending) tests. Our results now tentatively demonstrate that a cross-linkable PLA/PPF alloy does not have superior dimensional stability. Some restrictions in strength have been noted also, but it is the attempt to balance dimensional characteristics with strength that guides current work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hayes WC. Biomechanics of fracture healing, in Fracture Treatment and Healing 1980; (Heppenstall RB and Saunders WB, eds), Saunders, Philadelphia, pp 124–172.

    Google Scholar 

  2. Muller ME,Allgower M, andWillenegger H.Manual of Internal Fixation 1970; Springer- Verlag, Berlin.

    Google Scholar 

  3. Slatis P, Karaharju E, Holmstrom T, Ahonen J, and Paavolainen P. Structural changes in intact tubular bone after application of rigid plates with and without compression.JBoneJointSurg 1978; 60-A: 516–522.

    Google Scholar 

  4. Uhthoff HK and Dubuc FL. Bone structure changes in the dog under rigid internal fixation. Clin Orthop Rel Res 1971; 81: 165–170.

    Article  CAS  Google Scholar 

  5. Uhthoff K and Jaworski ZFG. Bone loss in response to long-term immobilization. J Bone Joint Surg 1978; 60B: 420–429.

    Google Scholar 

  6. Akeson WH, Woo SL-Y, Rutherford L, Coutts RD, Gonsalves M, and Amiel D. The effects of rigidity of internal fixation plates on long bone remodeling. Acta Orthop Scand 1976; 47: 241–249.

    Article  CAS  Google Scholar 

  7. Tonino AJ, Davison CL, Klopper PJ, and Lineau LA. Protection from stress in bone and its effects. J Bone Joint Surg 1976; 58B: 107–113.

    CAS  Google Scholar 

  8. Woo SL-Y, Akeson WH, Coutts RD, Rutherford L, Doty D, Jemmott GF, and Amiel D. A comparison of cortical bone atrophy secondary to fixation with plates with large differences in bending stiffness. J Bone Joint Surg 1976; 58A: 190–195.

    CAS  Google Scholar 

  9. Moyen BJ-L, Lahey PJ Jr, Weinberg EH, and Harris WH. Effects on intact femora of dogs of the application and removal of metal plates. J Bone Joint Surg 1978; 60-A: 940–947.

    Google Scholar 

  10. Pilliar RM, Cameron HU, Binnington AG, Szivek J, and MacNab I. Bone ingrowth and stress shielding with a porous surface coated fracture fixation plate. J Biomed Mater Res 1979; 13: 799–810.

    Article  CAS  Google Scholar 

  11. Gunst MA. Interference with bone blood supply through plating of intact bone, in Current Concepts of Internal Fixation of Fractures 1980; (Uhthoff HK, ed), Springer-Verlag, Berlin, pp 268–276.

    Google Scholar 

  12. Carter DR, Vasu R, and Harris WH. The plated femur relationships between the changes in bone stresses and bone loss. Acta Orthop Scand 1981; 52: 2487.

    Google Scholar 

  13. Carter DR, Vasu R, Spengler DM, and Dueland RT. Stress fields in the unplated and plated canine femur calculated from in vivo strain measurements. JBiomech 1980; 14: 63–70.

    Article  Google Scholar 

  14. Woo SL-Y, Simon BR, Akeson WH, and McCarty MP. An interdisciplinary approach to evaluate the effect of internal fixation plate on long bone remodeling. JBiomech 1977; 10: 87–95.

    Article  CAS  Google Scholar 

  15. Simon BR, Woo SL-Y, McCarty M, Lee S, and Akeson WH. Parametric study of bone remodeling beneath internal fixation plates of varying stiffness. JBioengng 1978; 2: 543–556.

    CAS  Google Scholar 

  16. Woo SL-Y, Akeson WH, Coutts RD, Rutherford L, Doty D, Jemmott GF, and Amiel D. A comparison of cortical bone atrophy secondary to fixation with plates with large differences in bending stiffness. J Bone Joint Surg (A) 1976; 58: 190–195.

    CAS  Google Scholar 

  17. Baggott D, Goodship AE, and Lanydon LE. A quantitative assessment of compression plate fixation in vivo: an experimental study using the sheep radius. JBiomech 1981; 14: 701–711.

    Article  CAS  Google Scholar 

  18. Perren SM, Huggler A, Russenbergon M, et al. Cortical bone healing. Acta Orthop Scand 1969; 125 (Suppl): 19–29.

    CAS  Google Scholar 

  19. Akeson WH, Woo SL-Y, Coutts RD, Matthews JV, Gonsalves M, and Amiel D. Quantitative histological evaluation of early fracture healing of cortical bones immobilized by stainless steel and composite plates. Calcif Tiss Res 1975; 19: 27–37.

    Article  CAS  Google Scholar 

  20. Matter P, Brenwald J, and Perren SM. The effect of static compression and tension on internal remodeling of cortical bone. Heiv Chir Acta Suppl 1975; 12: 125–130.

    Google Scholar 

  21. Uhthoff HK. Current concepts of internal fixation offractures. Springer-Verlag, Berlin (1980).

    Google Scholar 

  22. Uhthoff HK, Bardos DI, and Lisova-Hiar M. The advantages of titanium over stainless steel plates for the internal fixation of fractures. J Bone Joint Surg 1981; 63B: 427–434.

    Google Scholar 

  23. Perren SM. Biomechanics of fracture healing, in Current Concepts oflnternal Fixation ofFractures 1980; ( Uhthof HK, ed ), Springer-Verlag, Berlin.

    Google Scholar 

  24. Cheal EJ, Hayes WC, and White AA. Stress analysis of a simplified compression plate fixation system for fractured bones. Comp Struct 1983; 17 (5–6): 845–855.

    Article  Google Scholar 

  25. Wise DL (ed). Biopolymeric Controlled Release Systems, vols I and II, 1984; CRC, Boca Raton, FL.

    Google Scholar 

  26. Langer RJ and Wise DL. Medical Applications of Controlled Release Drug Delivery Systems, vols I and II, 1984; CRC, Boca Raton, FL.

    Google Scholar 

  27. Lockwood LB, Yoder DE, and Zienty M. Ann NY Acad Sci 1965; 119 (3): 854.

    Article  CAS  Google Scholar 

  28. Kulkarni RK, Pani KC, Neuman C, and Leonard F. Arch Surg 1966; 93: 839–843.

    Article  CAS  Google Scholar 

  29. Kulkarni RK, Moore EG, Hegyeli AF, and Leonard F. Biodegradable poly(lactic acid) polymers. Biomed Mater Res 1971; 5: 169.

    Article  CAS  Google Scholar 

  30. Morgan MN. New synthetic absorbable suture material. Br Med J 1969; 2: 308.

    Article  CAS  Google Scholar 

  31. Kelly RJ. Rev Surg 1970; March-April, 142.

    Google Scholar 

  32. Herrmann JB, Kelly RJ, and Higgins GA. Arch Surg 1970; 100: 468.

    Google Scholar 

  33. Frazza EJ and Schmitt EE. A new absorbable suture. JBiomed Mater Res Symp 1971; 1: 43.

    Article  Google Scholar 

  34. Fife D and Barancik J. Northeastern Ohio trauma study III: incidence of fracture. Ann Emerg Med 1985; 14 (3): 244–250.

    Article  CAS  Google Scholar 

  35. Persson KM, Roy WA, Persing JA, Rodeheaver GT, and Winn HR. Craniofacial growth following experimental craniosynostosis and craniecomy in rabbits. JNeurosurg 1979; 50: 187–197.

    Article  CAS  Google Scholar 

  36. Challenges of the Eighties 1983; National Institute of Dental Research, Long-range research plan FY 1985–1989 NIH Public, 853–860, 1983.

    Google Scholar 

  37. Getter L, Cutright DE, Bhaskar SN, and Augsburg JK. A biodegradable intraosseous appliance in the treatment of mandibular fractures. J Oral Surg 1972; 30: 344–348.

    CAS  Google Scholar 

  38. Hollinger JO and Schmitz JP. Restoration of bone discontinuities in dogs using a biodegradable implant. J Oral Maxillofacial Surg 1987; 45: 594–600.

    Article  CAS  Google Scholar 

  39. Bos RRM, Boering G, Rozema FR, and Leenslag JW. Resorbable poly(L-lactide) plates and screws for the fixation ofzygomatic fractures. JOral Maxillofacial Surg 1987; 45: 751–753.

    Article  CAS  Google Scholar 

  40. Sanderson JE. US Patent 4,722,948, Feb. 2, 1988.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gresser, J.D., Trantolo, D.J., Wise, D.L., Altobelli, D.E., Yaszemski, M.J., Wnek, G.E. (1996). Biopolymer Alloy for Surgical Plates. In: Wise, D.L., Trantolo, D.J., Altobelli, D.E., Yaszemski, M.J., Gresser, J.D. (eds) Human Biomaterials Applications. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4757-2487-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2487-5_5

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-012-0

  • Online ISBN: 978-1-4757-2487-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics