Fine Structure—Property Relationships of Biomedical Ion-Containing Polymers

  • Huiying Chen
  • Yuankang He
  • Di Qiang


Ionic polymers cover a vast array of naturally existing and synthetic materials, and have numerous important uses that have been investigated according to focus interest. The anionic/anionic-containing polymers for biomedical applications have been investigated intensely (1–3),especially because many biological macromolecules or tissues, such as blood vessel inner walls or cells, are surface negatively charged or act as anionic membranes (4,5). Heparin is a naturally occurring anticoagulant with anionic carboxyl, sulfate, and aminosulfonate groups (6). Accordingly, diversified anionic-containing polymers or heparinoic polymers have been synthesized and examined for use as anticoagulant biomaterials for blood-contacting biomedical devices.


Contact Angle Hard Segment Soft Segment Anticoagulant Activity Transmitted Electron Micro 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Donaruma LG, Ottenbrite RM, and Vogl O. Ani- onic Polymeric Drugs 1980; Wiley, New York.Google Scholar
  2. 2.
    Reid DS. Ionic polysaccharides, in Developments in Ionic Polymers, vol. 1 1983; (Wilson AD and Prosser HJ, eds), Applied Science Publishers, London, New York, pp 269–292.Google Scholar
  3. 3.
    Otenbrite RM. Bioactive carboxylic acid poly-anions, in Bioactive Polymeric Systems 1985; (Gebelein CG and Carraher CE Jr, eds), Plenum, New York, pp 513–529.CrossRefGoogle Scholar
  4. 4.
    Sawyer PN and Deutsch B. Use of electric current to delay intravascular thrombosis in experimental animals. Am JPhysiol 1956; 187: 473–478.Google Scholar
  5. 5.
    Sawyer PN. Surface charge and thrombosis. Ann NYAcad Sci 1983; 416: 561–584.CrossRefGoogle Scholar
  6. 6.
    Comper WD. Heparin and Related Polysaccharides 1981; Gordon and Breach, New York, 198–201.Google Scholar
  7. 7.
    Muzzarelli RAA. Heparin-like substances and blood-compatible polymers obtained from chitin and chitosan, in Polymers in Medicine, Biomedical and Pharmacological Applications 1983; (Chiellini E and Giusti P, eds), Plenum, New York, pp 359–374.Google Scholar
  8. 8.
    Lovelock JE and Porterfield JG. Blood coagulation: its prolongation in vessels with negatively charged surfaces. Nature (Lond.) 1951; 167: 39–41.CrossRefGoogle Scholar
  9. 9.
    Gregor HP. Anticoagulant activity of sulfonate polymers and copolymers, in Biomedical Applications of Polymers 1975; (Gregor HP, ed), Plenum, New York, pp 51–56.Google Scholar
  10. 10.
    Lundell EO, Kwiatkowski GT, Byck JS, Osterholtz FD, Creasy WS, and Stewart DD. Biological and physical characteristics of some polyelectrolytes, in Hydrogels for Medical and Related Applications 1976; (Andrade, JD, ed), American Chemical Society, Washington DC, pp 305–328.Google Scholar
  11. 11.
    Fougnot C, Labarre D, Josefonvicz J, and Josefowicz M. Modifications to polymer surfaces to improve blood compatibility, in Macromolecular Biomaterials 1984; (Hastings GW and Ducheyne P, eds), CRC, Boca Raton, FL, pp 215–238.Google Scholar
  12. 12.
    Van der Does L, Beugeling T, Froehling PE, and Bantjes A. Synthetic polymers with anticoagulant activity. JPolym Sci Polym Symp 1979; 66: 337–348.CrossRefGoogle Scholar
  13. 13.
    Sorm M, Nespurek S, Mrkvickova L, Kalal J, and Vorlova Z. Anticoagulation activity of some sulfate-containing polymers of the methacrylate type. JPolym Sci Polym Symp 1979; 66: 349–356.Google Scholar
  14. 14.
    Morawetz H and Vogel B. Catalysis of ionic reactions by polyelectrolytes: reaction of Co(NH3)5C12+ and Co(NH3)5Br2+ with in poly(sulfonic acid) solution. JAm Chem Soc 1969; 91 (3): 563–568.CrossRefGoogle Scholar
  15. 15.
    Moraweetz H, Cho J-R, and Gans PJ. Consequences of the excluded volume effect on the rate of reactions involving two randomly cooled polymer chains. I. theoretical study. Macromolecules 1973; 6: 624–627.CrossRefGoogle Scholar
  16. 16.
    Chen W(H)Y, Xu BZ, and Feng, XD. Synthesis of polysulfohexyl methacrylate with anticoagulant activity. JPolym Sci Polym Chem Ed 1982; 20: 547–554.CrossRefGoogle Scholar
  17. 17.
    Chen WY, Sun DH, Xu BZ, Zhang GL, Feng XD, Zhu Y, et al. Anticoagulant activity of hydrophilic sulfoalkyl methacrylate and the SEM observation of its membrane. Chin JBiomed Eng 1989; 1: 1.Google Scholar
  18. 18.
    Chen HY, Xu BZ, and Feng XD. The structural factor in anticoagulant activity of polysulfoalkyl methacrylates. Proc Fifth Int Symp Hemoperfusion Artif Organs 1985; (Chang TMS and He BL, eds), Chinese Academic Publishers, Beijing, pp 431–442.Google Scholar
  19. 19.
    Chen ZS, Liu LH, Xu BZ, and Chen HY. Improvement on the synthesis of co-hexamethylenechlorohydrin. Huaxue Tongbao 1983; 5: 16–17.Google Scholar
  20. 20.
    Huang ZX, Chen HY, and Yang GQ. Synthesis of sulfoalkyl acrylates and graft polymerization of these monomers onto segmented polyetherurethane films. Petrol Chem Eng 1986; 15 (12): 725–730.Google Scholar
  21. 21.
    Sheetz DP. US Patents 3, 024, 221 (1962);Google Scholar
  22. Sheetz DP. US Patents 3, 147, 130 (1964);Google Scholar
  23. Sheetz DP. US Patents 3, 359, 305 (1967);Google Scholar
  24. Sheetz DP. British Patent 1, 097, 802 (1963).Google Scholar
  25. 22.
    Swisher DH. French Patent 1, 383, 552 (1964).Google Scholar
  26. 23.
    Laner WM. The addition of sodium bisulfite to alkylene oxide. JAm Chem Soc 1936; 58: 1873–1874.CrossRefGoogle Scholar
  27. 24.
    Chen HY, Yang B, Sun DH, and Feng XD. Copolymerization and polymerization of sodium sulfohexyl methacrylate and the anticoagulant activity of its polymers. Polym Commun 1984; 1: 33–38.Google Scholar
  28. 25.
    Kangas DA. Polymerization of sodium 2-sulfoethyl methacrylate in aqueous solution. J Polym Sci 1970; A-1,8: 1813–1821.Google Scholar
  29. 26.
    Chen ZS, Guo HQ, Chen HY, and He YK. Intrinsic viscosity molecular weight equation for aqueous solution of poly(sodium sulfohexyl methacrylate) by osmometry. Huaxue Tongbao 1983; 1: 18, 19.Google Scholar
  30. 27.
    Chen ZS, Chen HY, Guo HQ, and Piao CH Empirical correlations between intrinsic viscosity and molecular weight for aqueous solution of poly(6-sulfohexyl methacrylate) using small-angle laser light scattering spectroscopy. Polym Commun (GaofenziTongxan) 1983; 6: 463–467.Google Scholar
  31. 28.
    Chen ZS, Guo FZ, Chen HY, and Xu BZ. Studies on viscometric behavior of sodium salt of poly(6-sulfohexyl methacrylate solutions in the presence of added salts. Chem JChin Univ 1984; 5 (2): 251–254.Google Scholar
  32. 29.
    Chen ZS, Guo HQ, He YK, and Chen HY. Empirical correlations between intrinsic viscosity and number-average molecular weight for aqueous solution of polySSHMA. Chem J Chin Univ 1985; 6 (6): 565–567.Google Scholar
  33. 30.
    Flory PJ. Principles of Polymers Chemistry 1953; Cornell University Press, Ithaca, NY, 635–637.Google Scholar
  34. 31.
    He YK, Li WL, Xu BZ, Chen HY, Qiang D, and Huang TJ. Surface properties and viscosity behaviour of polysulfoalkyl methacrylate KUNMING. Int Symp Polym Biomat 1988; 138, 139.Google Scholar
  35. 32.
    Ganter JL, Milas M, and Rinando M. On the viscosity of sodium poly(styrene sulfonate)—a flexible polyelectrolyte. Polymers 1992; 33 (1): 113–116.CrossRefGoogle Scholar
  36. 33.
    Magny B, Iliopoulos I, and Audebert R. Intrinsic viscosity of hydrophobically modified polyelectrolytes. Polym Commun 1991; 32 (15): 456–458.Google Scholar
  37. 34.
    Fineman M and Ross SD. Linear method for determining monomer reactivity ratios in copolymerization. JPolym Sci 1950; 5 (2): 259–265.CrossRefGoogle Scholar
  38. 35.
    Brandrup J and Immergut EH. Polymer Handbook, 3rd ed, 1989; Wiley, New York.Google Scholar
  39. 36.
    Chen WY and Andrade DJ. Surface characteristics of polysulfoalkyl methacrylates J Colloid Interface 1986; 110 (2): 468–476.CrossRefGoogle Scholar
  40. 37.
    Johnson RE Jr and Dettre RH. Wettability and contact angles. Surface Colloid Sci 1969; 2: 85–153.Google Scholar
  41. 38.
    Qian RY. Structure and Property of High Polymers 1983; Academic, Beijing, China, pp 424.Google Scholar
  42. 39.
    Chen HY, Xu BZ, Feng XD, Qiang D, Xia LJ, Huang TJ, et al. Surface characteristics and blood compatibility of ion-containing polymers. Sino-Japn Symp Biomat Eng 1986; Shanghai, 33, 34.Google Scholar
  43. 40.
    Rosen MJ. Surfactants and interfacial phenomena. Wiley, New York (1989).Google Scholar
  44. 41.
    Andrade JD, Ma SM, King RN, and Gregonis DE. Contact angles at the solid-water interface. J Colloid Interface Sci 1979; 72 (3): 488–494.CrossRefGoogle Scholar
  45. 42.
    Baier RE and Zisman WA. Wetting properties of collagen and gelatin surfaces, in Applied Chemistry at Protein Interfaces 1975; (Baier RE, ed), ACS, Washington, DC, pp 155–174.Google Scholar
  46. 43.
    Xi TF, Zhang JC, and Xu HC. New method for quantitative determination of platelets adhering on biomaterials using monoclonal antibodies SZ-21 to human platelet membrane glycoprotein. Chin J Biomed Eng 1989; 8 (4): 222–229.Google Scholar
  47. 44.
    Xi TF, Zhang JC, and Xu HC. New method to quantitate platelets adhered on biomaterials using monoclonal antibodies SZ-21 to human platelet membrane glycoprotein. Biomat Art Cells Art Org 1990; 18 (3): 423–435.Google Scholar
  48. 45.
    Kataoka K, Akaike T, Sakural Y, and Tsuruta T. Effect of charge and molecular structure ofpolyion complexes on the morphology of adherent blood platelets. Macromol Chem 1978; 179: 1121–1124.CrossRefGoogle Scholar
  49. 46.
    Chen HY, Xu BZ, Qiang D, Xia LJ, Huang ZX, and Guo HQ. Surface dynamic effect and blood compatibility of ion-containing polymers. Third World Biomat. Cong. 1988; Kyoto, Japan, p 454.Google Scholar
  50. 47.
    Chen WY, Andrade JD, Okano T, Dost L, and Kim SW. Surface characteristics and blood compatibility of polysulfoalkyl methacrylates. Trans Soc Biomat 1985; 8: 153.Google Scholar
  51. 48.
    Xu BZ, Zhang L, Chen HY, Gu HQ, Lu MZ, and Lu ZQ. Blood compatibility of ionic polymers—electrolytes balance in hemoperfusion. Third Nat Conf Biomed Eng (Abstracts) Oct 9–11, 1987; Beijing, China, pp 117–119.Google Scholar
  52. 49.
    Planck H, Egbers G, and Syre I (eds) Polyurethanes in Biomedical Engineering 1984; Elsevier, Amsterdam.Google Scholar
  53. 50.
    Lelah MD and Cooper SL. Polyurethanes in Medicine 1986; CRC, Boca Raton, FL.Google Scholar
  54. 51.
    Ito Y and Lelah M. Blood compatibility ofpolyurethanes. Crit Rev Biocompat 1989; 5 (1): 45–66.Google Scholar
  55. 52.
    Lelah MD, Pierre JA, Lambrecht LK, and Cooper SL. Polyetherurethane ionomers: surface property/ex vivo blood compatibility relationships. J Colloid 64 Interf Sci 1985; 104 (2): 422–439.Google Scholar
  56. 53.
    Grasel TG and Cooper SL. Properties and biologi- 65 cal interactions ofpolyurethane anionomers: effect of sulfonate incorporation. J Biomed Mater Res 1989; 23 (3): 311–328.CrossRefGoogle Scholar
  57. 54.
    Silver JH, Marchant JH, and Cooper SL. Effect of 66 polyol type on the physical properties and thrombogenicity of sulfonate-containing polyurethanes. J Biomed Mater Res 1993; 27 (11): 1443–1457.CrossRefGoogle Scholar
  58. 55.
    Ito Y, Liu LS, and Imanishi Y Interaction ofpoly(sod- 67 ium vinyl sulfonate) and its surface graft with anti-thrombin III.JBiomed Mater Res 1991; 25 (1): 99–115.CrossRefGoogle Scholar
  59. 56.
    Ito Y, Iguchi Y, Kashiwagi T, and Imanishi Y. Synthesis and nonthrombogenicity ofpolyetherurethane 68 urea film grafted with poly(sodiumvinylsulfonate). JBiomed Mater Res 1991; 25 (11): 1347–1362.CrossRefGoogle Scholar
  60. 57.
    Han DK, Jeong SY, Kim YH, Cho HL, and Min BG. Negative cilia concept for thromoboresistance 69 (2): synergistic effect of PEO and sulfonate groups grafted onto polyurethanes. Trans Soc Biomat 1990; 13: 264.Google Scholar
  61. 58.
    Han DK, Jeong SY, Kim YH, Min BG, and Cho HI. 70 Negative cilia concept for thromboresistance. Synergistic effect of PEO and sulfonate groups grafted onto polyurethanes. J Biomed Mater Res 1991; 71 25(5): 561–575.Google Scholar
  62. 59.
    Han DK, Park KD, Jeong SY, Kim YH, Kim UY, 72 and Min BG. In vivo biostability and calcification-resistance of surface-modified PU-PEO-SO3. 73 J Biomed Mater Res 1993; 27 (8), 1063–1073.CrossRefGoogle Scholar
  63. 60.
    Chen HY, Mao CD, Feng SQ, Guo L, Qiang D, and Zhu Y. Synthesis and properties of segmented polyetherurethanes modified with ion-containing 74 extenders. Trans Soc Biomat 1991; 14: 134.Google Scholar
  64. 61.
    Chen HY, Mao CD, Feng SQ, Guo L, Qiang D, Xie XM, et al. Synthesis and properties of segmented polyetherurethanes modified with ion-containing 75 extenders. Chin Chem Letts 1992; 3 (8): 621–624.Google Scholar
  65. 62.
    Chen HY, Feng SQ, and Sun XH. Trans Far East- 76 ern ConfMed Biol Eng (FECMBE ‘83),August 15–18, 1993; Beijing, China, p 45.Google Scholar
  66. 63.
    Chen HY, Feng SQ, and Sun XH. Synthesis and fine structure-property relationships of ion-containing biomedical polyetherurethanes. Chin JBiomed Eng 77 1993; 12 (2): 79–88.Google Scholar
  67. 64.
    Marvel CS, Bailey CF, and Sparberg MS. A synthesis oftaurine. JAm Chem Soc 1927; 49: 1833–1837.CrossRefGoogle Scholar
  68. 65.
    Fujii A and Cook ES. Probiotics antistaphylococcal and antifibrinolytic activities of to-amino-and w-guanidinoalkane-sulfonic acid. J Med Chem 1975; 18 (5): 502–506.CrossRefGoogle Scholar
  69. 66.
    Coleman MM, Lee KH, Skrovanek DJ, and Painter PC. Hydrogen bonding in polymers. 4. Infrared temperature studies of a simple polyurethane. Macromolecules 1986; 19 (8): 2149–2157.CrossRefGoogle Scholar
  70. 67.
    Koutsky JA, Hien NV, and Cooper SL. Some results on electron microscope investigations of polyetherurethane and polyester-urethane block copolymer. JPolym Sci B 1970; 8 (5): 353–359.CrossRefGoogle Scholar
  71. 68.
    Wilkes GL and Samuels L. Scanning and transmission electron microscopy studies on a model series of spherulitic segmented polyurethanes. JMacromol Sci B 1974; 10 (2): 203–229.CrossRefGoogle Scholar
  72. 69.
    Chen HY, Su JJ, and Zhu Y. Transmitted electron microscopy study of ion-containing biomedical segmented polyetherurethane fine structures. Chin Chem Letts 1993; 4 (3): 259–262.Google Scholar
  73. 70.
    Tian N, Zhang GL, Li LS, and Feng XD. Studies on the morphology and structure of segmented polyetherurethane. Polym Comm 1983; (3): 161–166.Google Scholar
  74. 71.
    Shanghai First Medical University (ed) Biochemistry 1979; People’s Health Press, Beijing, China, p 41.Google Scholar
  75. 72.
    Merrill EW. The behavior of blood at their surfaces. Ann NYAcad Sci 1977; 283: 6–16.CrossRefGoogle Scholar
  76. 73.
    Reichert WM, Filisko FE, and Barenberg SA. Polyphosphazenes: effect of molecular motions on thrombogenesis. J Biomed Mater Res 1982; 16: 301–312.CrossRefGoogle Scholar
  77. 74.
    Barenberg SA, Reichert WM, and Mauritz KA. Thrombogenesis: effect of molecular motions, surface order, and hydrophobicity of the polymer interface. Ann NYAcad Sci 1983; 416: 538–560.CrossRefGoogle Scholar
  78. 75.
    Andrade JD, ed. Polymer Surface Dynamics 1988; Plenum, NY.Google Scholar
  79. 76.
    Brier-Russell D, Salzman, EW, Lindon J, Handin R, Merrill EW, Dinger AK, et al. In vitro assessment of interaction of blood with model surfaces: acrylates and methacrylates. J Colloid Interf Sci 1981; 81 (2): 311–318.CrossRefGoogle Scholar
  80. 77.
    Riddle EH. Monomeric Acrylic Esters 1954; Reinhold, New York, pp 59–62.Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Huiying Chen
  • Yuankang He
  • Di Qiang

There are no affiliations available

Personalised recommendations