Skip to main content

Regulation of Vascular Graft Healing by Induction of Tissue Incorporation

  • Chapter
Human Biomaterials Applications

Abstract

The phrase vascular graft healing implies the encapsulation of prosthetic material by host tissue. Healing occurs at the external surface, interstitium, and luminal surface of the graft, and results in the presence of living cells and acellular stroma in and around the prostheses. Investigators have characterized the end results of this process in response to numerous prosthetic materials over the course of four decades. Until recently, the guiding premise has been that biomaterials should be biologically inert. No truly inert material has yet been developed. Clinical results using currently available biomaterials have been disappointing, especially in the arena of small diameter vascular grafts. An alternative philosophical approach, which has been the topic of recent investigation, involves optimization of the tissue—biomaterial interaction to enlist the natural healing process to cooperate in the formation of the ideal vascular conduit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vromen L. What time does the next protein arrive? Trans Soc Biomater 1986; 9: 59.

    Google Scholar 

  2. Vromen L. Methods of investigating protein interaction on artificial and natural surfaces. Ann Nyacad Sci 1987; 516: 300–305.

    Article  Google Scholar 

  3. Roohk HV, Pick J, Hill R, Hung E, and Bartlett RH. Kinetics of fibrinogen and platelet adherence to biomaterials. Trans ASAIO 1976; 22: 1–7.

    CAS  Google Scholar 

  4. Ito RK, Rosenblatt MS, Contreras MA, Brophy CM, and LoGerfo FW. Monitoring platelet interactions with prosthetic graft implants in a canine model. Trans ASAIO 1990; 36: M175 — M178.

    CAS  Google Scholar 

  5. McCollum CN, Kester RC, Rajah SM, Learoyd P, and Pepper M. Arterial graft maturation: the duration of thrombotic activity in Dacron aortobifemoral grafts measured by platelet and fibrinogen kinetics. BrJSurg 1981; 68: 61–64.

    CAS  Google Scholar 

  6. Goldman M, Norcott HC, Hawker RJ, Drolc Z, and McCollum CN. Platelet accumulation on mature Dacron grafts in man. Br J Surg 1982; 69 (Suppl): S38 — S40.

    Article  Google Scholar 

  7. Stratton JR, Thiele BL, and Ritchie JL. Platelet deposition on Dacron aortic bifurcation grafts in man: quantitation with indium-111 platelet imaging. Circulation 1982; 66: 1287–1293.

    Article  CAS  Google Scholar 

  8. Stratton JR, Thiele BL, and Ritchie JL. Natural history of platelet deposition on Dacron aortic bifurcation grafts in the first year after implantation. Am J Cardiol 1983; 52: 371–374.

    Article  CAS  Google Scholar 

  9. Chenoweth DE. Complement activation in extracorporeal circuits. Ann NYAcad Sci 1987; 516: 306–313.

    Article  CAS  Google Scholar 

  10. Shepard AD, Gelfand JA, Callow AD, and O’Donnell TF Jr. Complement activation by synthetic vascular prostheses. J Vasc Surg 1984; 1: 829–838.

    CAS  Google Scholar 

  11. Lackle JM and DeBono D. Interactions of neutrophil granulocytes and endothelium in vitro. Microvasc Res 1977; 13: 107–112.

    Article  Google Scholar 

  12. Tonnesin MG, Smedly LA, and Henson PM. Neutrophil-endothelial cell interactions: modulation of neutrophil adhesiveness induced by complement fragments C5a and C5a des arg and formymethionyl-leucyl-phenylalanine in vitro. J Clin Invest 1984; 74: 1581–1592.

    Article  Google Scholar 

  13. Bevilacqua MP, Pober JS, Wheeler ME, Cotran RS, and Gimbrone JA Jr. Interleukin-1 acts on cultured human vascular endothelium to increase the adhesion of polymorphonuclear leukocytes, monocytes and related leukocyte cell lines. J Clin Invest 1985; 76: 2003–2011.

    Article  CAS  Google Scholar 

  14. Gamble JR, Harlan JM, Lebanoff SJ, and Vadas MA. Stimulation of the adherence of neutrophils to umbilical vein endothelium by human recombinant tumor necrosis factor. Proc Natl Acad Sci USA 1985; 82: 8667–8671.

    Article  CAS  Google Scholar 

  15. Greisler HP. Interactions at the blood/material interface. Ann Vasc Surg 1990; 4: 98–103.

    Article  CAS  Google Scholar 

  16. Deuel TF, Senior RM, Huang JS, and Griffin GL. Chemotaxis of monocytes and neutrophils to platlet-derived growth factor. J Clin Invest 1982; 69: 1046–1049.

    Article  CAS  Google Scholar 

  17. Fox PL and DiCorleto PE. Regulation of production of a platelet-derived growth factor-like protein by cultured bovine aortic endothelial cells. J Cell Physiol 1984; 121: 298–308.

    Article  CAS  Google Scholar 

  18. Clowes AW, Kirkman TR, and Clowes MM. Mechanisms of arterial graft failure. II. Chronic endothelial and smooth muscle cell proliferation in healing polytetrafluoroethylene prostheses. J Vasc Surg 1986; 3: 877–884.

    CAS  Google Scholar 

  19. DiCorleto PE and De La Motte CA. Characterization of the adhesion of the human monocytic cell line U-937 to cultured endothelial cells. J Clin Invest 1985; 75: 1153–1161.

    Article  CAS  Google Scholar 

  20. Margiotta MS, Robertson FS, and Greco RS. The adherence of endothelial cells to Dacron induces the expression of the intercellular adhesion molecule (ICAM-1). Ann Surg 1992; 216: 600–604.

    Article  CAS  Google Scholar 

  21. Ford-Hutchinson AW, Bray MA, Doig MV, Shipley ME, and Smith MJ. Leukotriene B, a potent chemokinetic and aggregating substance released from polymorphonuclear leukocytes. Nature (Lond) 1980; 286: 264–265.

    Google Scholar 

  22. Deuel TF, Senior RM, Chang D, Griffin GL, Heinrikson RL, and Kaiser ET. Platelet factor 4 is chemotactic for neutrophils and monocytes. Proc Natl Acad Sci USA 1981; 78: 4584–4587.

    Article  CAS  Google Scholar 

  23. Marder SR, Chenoweth DE, Goldstein IM, and Perez HD. Chemotactic responses of human peripheral blood monocytes to the complement-derived peptides c5a and c5a des arg. Jlmmunol 1985; 134: 3325–3331.

    CAS  Google Scholar 

  24. Kay AB, Pepper DS, and Ewart MR. Generation of chemotactic activity for leukocytes by the action of thrombin of human fibrinogen. Nature (Lond) 1973; 243: 56, 57.

    Google Scholar 

  25. Bar-Shavit R, Kahn A, Fenton JW, and Wilner GD. Chemotactic response of monocytes to thrombin. J Cell Biol 1983; 96: 282–285.

    Article  CAS  Google Scholar 

  26. Postlethwaite AE, Sayer JM, and Kang AH. Collagen-and collagen peptide-induced chemotaxis of human blood monocytes. JExp Med 1976; 143: 1299–1307.

    Article  CAS  Google Scholar 

  27. Senior RM, Griffin GL, and Mecham RP. Chemotactic activity of elastin-derived peptides. J Clin Invest 1980; 66: 859–862.

    Article  CAS  Google Scholar 

  28. Norris DA, Clark RAF, Swigart LM, Huff JC, Weston WL, and Howell SE. Fibronectin fragment(s) are chemotactic for human peripheral blood monocytes. J Immunol 1982; 129: 1612–1618.

    CAS  Google Scholar 

  29. Greisler HP, Dennis JW, Endean ED, Ellinger J, Friesel R, and Burgess WH. Macrophage/biomaterial interaction: the stimulation of endothelialization. J Vasc Surg 1989; 9: 588–593.

    CAS  Google Scholar 

  30. Greisler HP. Small diameter vascular prostheses:macrophage-biomaterial interactions with bioresorbable vascular prostheses. Trans ASAIO 1988; 34: 1051–1059.

    CAS  Google Scholar 

  31. Greisler HP. Pharmacology of the arterial wall, in Atherosclerosis: Human Pathology dnd Experimental Methods and Models 1989; (White RA, ed), CRC, Boca Raton, FL, pp 111–150.

    Google Scholar 

  32. Clowes AW, Gown AM, Hanson SR, and Reidy MA. Mechanisms of arterial graft failure: I. Role of cellular proliferation in early healing of PTFE prostheses. Am JPath 1985; 118: 43–54.

    CAS  Google Scholar 

  33. Reidy MA, Clowes AW, and Schwartz SM. Endothelial regeneration V. Inhibition of endothelial regrowth in arteries of rat and rabbit. Lab Invest 1983; 49: 569–575.

    CAS  Google Scholar 

  34. Reidy MA. Biology of disease: a reassessment of endothelial injury and arterial lesion formation. Lab Invest 1985; 53: 513–520.

    CAS  Google Scholar 

  35. Clowes AW, Kirieman TR, and Reidy MA. Mechanisms of arterial graft healing. Am J Path 1986; 123: 220–230.

    CAS  Google Scholar 

  36. Davies PF. Vascular cell interactions with special reference to the pathogenesis of atherosclerosis. Lab Invest 1986; 55: 5–24.

    CAS  Google Scholar 

  37. Bowen-Pope DF and Ross R. Platelet-derived growth factor. II. Specific binding to cultured cells. JBiol Chem 1982; 257: 5161–5168.

    CAS  Google Scholar 

  38. Grotendorst GR, Chang T, Seppa HEJ, Kleinman HK, and Martin GR. Platelet-derived growth factor is a chemoattractant for vascular smooth muscle cells. JCell Physiol 1982; 113: 261–266.

    Article  CAS  Google Scholar 

  39. Heldin C-H and Ronnstrand L. Characterization of the receptor for platelet-derived growth factor on human fibroblasts: demonstration of an intimate relationship with a 185,000-dalton substrate for the platelet-derived growth factor-stimulated kinase. JBiol Chem 1983; 258: 10,054–10,061.

    Google Scholar 

  40. Habenicht AJR, Glomset JA, King WC, Nist C, Mitchell CD, and Ross R. Early changes in phosphatidylinositol and arachidonic acid metabolism in quiescent swiss 3t3 cells stimulated to divide by platelet-derived growth factor. J Biol Chem 1981; 256: 12, 329–12, 335.

    Google Scholar 

  41. Hahenicht AJR, Goerig M, Grulich J, Rothe D, Gronwald R, Luth U, Human platelet-derived growth factor stimulates prostaglandin synthesis by activation and by rapid de novo synthesis of cyclooxygenase.JClinInvest 1985; 75: 1381–1387.

    Google Scholar 

  42. Chait A, Ross R, Albers J, and Bierman E. Platelet-derived growth factor stimulates activity of low density lipoprotein receptors. Proc Natl Acad Sci USA 1980; 77: 4084–4088.

    Article  CAS  Google Scholar 

  43. Berk BC, Alexander RW, Brock TA, Gimbrone MA Jr and Webb RC. Vasoconstriction: a new activity for platelet-derived growth factor. Science 1986; 932: 87–90.

    Article  Google Scholar 

  44. Gospodarowicz D, Mescher AL, and Birdwell CR. Stimulation of corneal endothelial cell proliferation in vitro by fibroblast and epidermal growth factors. Exp Eye Res 1977; 25: 75–89.

    Article  CAS  Google Scholar 

  45. Gospodarowicz D, Hirabayaski K, Giguere L, and Taliber J-P. Factors controlling the proliferative rate, final cell density, and life span of bovine vascular smooth muscle cells in culture. J Cell Biol 1981; 89: 568–578.

    Article  CAS  Google Scholar 

  46. Berk BC, Brock TA, Webb C, Taubman MB, Atkinson WJ, Gimbrone MA Jr, et al. Epidermal growth factor, a vascular smooth muscle mitogen, induces rat aortic contraction. J Clin Invest 1985; 75: 1083–1086.

    Article  CAS  Google Scholar 

  47. Petsikas D, Cziperle DJ, Lam TM, Murchan P, Henderson SC, and Greisler HP. Dacron-induced TGF-ĂŸ release from macrophages: effects on graft healing. Surg For 1991; 42: 326–328.

    Google Scholar 

  48. Anzano MA, Roberts AB, and Sporn MB. Anchorage-independent growth of primary rat embryo cells is induced by platelet-derived growth factor and inhibited by type-beta transforming growth factor. J Cell Physiol 1986; 126: 317–318.

    Article  Google Scholar 

  49. Leibovich SJ and Ross R. The role of the macrophage in wound repair. Am J Pathol 1975; 78: 71–100.

    CAS  Google Scholar 

  50. Shimokado K, Raines EW, Madtes DK, Burrett TB, Benditt EP, and Ross R. A significant part of macrophage-derived growth factor consists of at least two forms of PDGF. Cell1985; 43: 277–286.

    Google Scholar 

  51. Bevilacqua MP, Pober JS, Majeau GR, Cotran RS, and Gimbrone MA Jr. Interleukin I- (IL-1) induces biosynthesis and cell surface expression of procoagulant activity in human vascular endothelial cells. JExp Med 1984; 160: 618–623.

    Article  CAS  Google Scholar 

  52. Reidy MA, Fingerle J, and Lindner V: Factors controlling the development of arterial lesions after injury. Circulation 1992; 86(Suppl): I1I43—III46

    Google Scholar 

  53. Greisler HP, Ellinger J, Schwarcz TH, Golan J, Raymond RM, and Kim DU. Arterial regeneration over polydioxanone prostheses in the rabbit. Arch Surg 1987; 199: 715–721.

    Article  Google Scholar 

  54. Greisler HP. Arterial regeneration over resorbable prostheses. Arch Surg 1982; 117: 1425–1431.

    Article  CAS  Google Scholar 

  55. Greisler HP, Kim DU, Price JB, and Voorhees AB. Arterial regenerative activity after prosthetic implantation. Arch Surg 1985; 120: 315–323.

    Article  CAS  Google Scholar 

  56. Greisler HP and Kim DU. Aspects of biodegradable vascular grafts, in Vascular Graft Update: Safety and Performance 1986; (Kambic HE, Kantrowitz A, and Sung P), ASTM, pp 197–218.

    Google Scholar 

  57. Greisler HP, Kim DU, Dennis JW, Klosak JJ, Widerborg KA, Endean ED, et al. Compound polyglactin 910/polypropylene small vessel prostheses. J Vasc Surg 1987; 5: 572–583.

    CAS  Google Scholar 

  58. Greisler HP and Kim DU. Vascular grafting in the management of thrombotic disorders. Sem Thromb Haemostasis 1989; 15: 206–214.

    Article  CAS  Google Scholar 

  59. Greisler HP, Endean ED, Klosak JJ, Ellinger J, Dennis JW, Buttle K, et al. Polyglactin 910/ polydioxanone bicompent totally resorbable vascular prostheses. J Vasc Surg 1988; 7: 697–705.

    CAS  Google Scholar 

  60. Gajdusek CM, DiCorleto PE, Ross R, and Schwartz SM. An endothelial cell derived growth factor. J Cell Biol 1980; 85: 467–472.

    Article  CAS  Google Scholar 

  61. DiCorleto PE, Gajdusek CM, Schwartz SM, and Ross R. Biochemical properties of the endothelium-derived growth factor: comparison to other growth factors. JCell Physiol 1983; 114: 339–345.

    Google Scholar 

  62. DiCorleto PE and Bowen-Pope DF. Cultured endothelial cells produce a platelet-derived growth factor-like protein. Proc Natl Acad Sci USA 1983; 80: 1919–1923.

    Article  CAS  Google Scholar 

  63. Fox PL and DiCorleto PE. Acetylated low density lipoprotein suppresses production of platelet-derived growth factor by cultured endothelial cells. J Cell Biol 1985; 101: 107a.

    Google Scholar 

  64. Fox PL and DiCorleto PE. Modified low density lipoproteins suppress production of a platelet-derived growth factor-like protein by cultured endothelial cells. Proc Natl Acad Sci USA 1986; 83: 4774–4778.

    Article  CAS  Google Scholar 

  65. Harlan JM, Bowen-Pope D, Thompson PJ, and Ross R. Alpha-thrombin induces secretion of platelet-derived growth factor-like molecules from cultured human endothelial cells. Thromb Haemostasis 1985; 54: 168.

    Google Scholar 

  66. Gajdusek C, Carbon S, Ross R, Nawroth P, and Stern D. Activation of coagulation releases endothelial cell mitogens. J Cell Biol 1986; 102: 419–428.

    Article  Google Scholar 

  67. Greisler HP, Schwarcz TH, Ellinger J, and Kim DU. Dacron inhibition of arterial regenerative activity. J Vasc Surg 1986; 3: 747–756.

    CAS  Google Scholar 

  68. Greisler HP, Dennis JW, Endean ED, and Kim DU. Derivation of neointima in vascular grafts. Circulation 1988; 78 (suppl I): 16–112.

    Google Scholar 

  69. Hasson JE, MegermanJ, and Abott WM. Increased compliance near vascular anastomoses. J Vasc Surg 1985; 2: 419–423.

    CAS  Google Scholar 

  70. Sumpio BE, Banes AJ, Levin LG, and Johnson G Jr. Mechanical stress stimulates aortic endothelial cells to proliferate. J Vasc Surg 1987; 6: 252–256.

    CAS  Google Scholar 

  71. Sumpio BE, Banes AJ, and Buckley M. Alterations in aortic endothelial cell morphology and cytosketetal protein synthesis during cyclic tensional deformation. J Vasc Surg 1988; 7: 130–138.

    CAS  Google Scholar 

  72. Sumpio BE, Banes AJ, and Johnson G. Enhanced collagen production by smooth muscle cells during mechanical stretching. Arch Surg 1988; 123: 1233–1236.

    Article  CAS  Google Scholar 

  73. Iba T, Mills I, and Sumpio BE. Intracellular cyclic AMP levels in endothelial cells subjected to cyclic strain in vitro. Jsurgres 1992; 52: 625–630.

    CAS  Google Scholar 

  74. Endean ED, Kim DU, Ellinger J, Henderson S, and Greisler HP. Effects of polypropylene’s mechanical properties on histological and functional reactions to polyglactin 910/polypropylene vascular prostheses. Surg For 1987; 38: 323–325.

    Google Scholar 

  75. Zenni GC, Gray JL, Appelgren LEO, Kim DU, Berceli S, Liguish J, Modulation of myofibroblast proliferation by vascular prosthesis biomechanics. ASAIO J 1993; M496 — M500.

    Google Scholar 

  76. Cambria RP and Abbott WM. Translocated autogenous vein grafts, in Vascular Surgery 1989; (Rutherford RB, ed), Saunders, Philadelphia, pp 425–434.

    Google Scholar 

  77. Greisler HP, Pham SM, Endean ED, Durham SJ, Kim DU, Mehta SM, Relationship between changes in biomechanical properties and cellular ingrowth in resorbable vascular prostheses. Am Soc ArtifInter Organs (ASAIO)Abs 1987; 16: 25.

    Google Scholar 

  78. Pham S, Durham S, Johnson R, Showalter D, Endean ED, Vorp DA, et al. Compliance changes in bioresorbable vascular prostheses following implantation. Surg For 1988; 39: 440–443.

    Google Scholar 

  79. Greisler HP. Macrophage activation in bioresorbable vascular grafts, in Vascular Endothelium: Physiological Basis of Clinical Problems. 1991; (Catravas JD, Callow AD, Gillis CN, and Ryan U), Plenum, New York, pp 253, 254.

    Google Scholar 

  80. Cabusao EB, Lam TM, Ellinger J, and Greisler HP. Kinetics of collagen deposition within bioresorbable and nonresorbable vascular prostheses. Trans Am Soc Artif Int Organs (ASAIO) 1991; 37: M472 — M475.

    Google Scholar 

  81. Tattersall CW, Klosak JJ, Cabusao EA, Kim DU, and Greisler HP. Partially bioresorbable arterial prostheses in the dog. Surgery 1991; 110: 645–655.

    Google Scholar 

  82. Greisler HP, Klosak JJ, Endean ED, McGurrin JF, and Kim DU. Effects ofhypercholesterolemia on healing of vascular grafts. JInvest Surg 1991; 4: 299–312.

    Article  CAS  Google Scholar 

  83. Lommen E, Gogolewski S, Pennings AJ, Wilde-burr CRH, and Nieuwenhuis P. Development of a neo-artery induced by a biodegradable polymeric vascular prosthesis. Trans Am Soc Artif Intern Organs 1983; 29: 255–259.

    CAS  Google Scholar 

  84. van der Lei B. Blaau EH, Dijk F, Bartels H, Wildevuur CRH, Nieuwenhusi P, Micro-porous compliant biodegradable graft materials: a new concept for microvascular surgery, in Recent Advances in Vascular Grafting 1984; (Skotnicki SH, Buskens FGM, and Reinaerts HHM), Nijmegan, The Netherlands, pp 19–23.

    Google Scholar 

  85. van der Lei B, Darius H, Schror K, Molenaar I, Nieuwenhuis P, and Wildevuur CRH. Improved neo-endothelialization of small caliber vascular grafts. ESAO Proc 1984; 2 (suppl 1): 332–334.

    Google Scholar 

  86. van der Lei B, Wildevuur CRH, Nieuwenhuis P, Blaauw EH, Dijk F, Hulstaert CE, et al. Regeneration of the arterial wall in microporous, compliant, biodegradable vascular grafts after implantation into the rat abdominal aorta. Cell Tissue Res 1985; 242: 569–578.

    Article  Google Scholar 

  87. van der Lei B, Darius H, Schror K, Nieuwenhuis P, Molenaar I, and Wildevuur CRH. Arterial wall regeneration in small-caliber vascular grafts in rats. J Thorac Cardiovasc Surg 1985; 90 (3): 378–386.

    Google Scholar 

  88. van der Lei B, Bartels HL, Nieuwenhuis P, and Wildevuur CRH. Microporous, compliant, biodegradable vascular grafts for the regeneration of the arterial wall in rat abdominal aorta. Surgery 1985; 98: 955–963.

    Google Scholar 

  89. van der Lei B, Wildevuur CRH, and Nieuwenhuis P. Compliance and biodegradation of vascular grafts stimulate the regeneration of elastic laminae in neoarterial tissue: an experimental study in rats. Surgery 1986; 99 (1): 45–52.

    Google Scholar 

  90. van der Lei B, Wildevuur CRH, Dijk F, Blaauw EH, Molenaar I, and Nieuwenhuis P. Sequential studies of arterial wall regeneration in micro-porous, compliant, biodegradable small-caliber vascular grafts in rats. J Thorac Cardiovasc Surg 1987; 93: 695–707.

    Google Scholar 

  91. van der Lei B, Nieuwenhuis P, Molenaar I, and Wildevuur CRH. Long-term biologic fate of neoarteries regenerated in microporous, compliant, biodegradable, small-caliber vascular grafts in rats. Surgery 1987; 101: 459—.467.

    Google Scholar 

  92. Yue X, van der Lei B, Schakenraad JM, van Oene GH, Juit JH, Feijen J, et al. Smooth muscle cell seeding in biodegradable grafts in rats: a new method to enhance the process of arterial wall regeneration. Surgery 1988; 103: 206–212.

    CAS  Google Scholar 

  93. Galletti PM, Ip TK, Chiu T-H, Nyilas E, Trudell LA, and Sasken H. Extending the functional life of bioresorbable yarns for vascular grafts. Trans Am Soc Artif Intern Organs 1984; 30: 399, 400.

    Google Scholar 

  94. Galletti PM, Trudell LA, Chiu TH, Sasken H, Richardson PD, Parhizgar A, et al. Coated bioresorbable mesh as vascular graft material. Trans Am Soc Artif Intern Organs 1985; 31: 257–263.

    CAS  Google Scholar 

  95. Galletti PM, Aebischer P, Sasken HF, Goddard MB, and Chiu T-H. Experience with fully bioresorbable aortic grafts in the dog. Surgery 1988; 103: 231–141.

    CAS  Google Scholar 

  96. Greisler HP, Ellinger J, Henderson SC, Shaheen AM, Burgess WH, and Lam TM. The effects of an atherogenic diet on macrophage/biomaterial interactions. J Vasc Surg 1991; 14: 10–23.

    Article  CAS  Google Scholar 

  97. Greisler HP, Dennis JW, Endean ED, Ellinger J, Friesel R, and Burgess WH. Macrophage/ biomaterial interactions-the stimulation of endothelialization. J Vasc Surg 1989; 9: 588–593.

    CAS  Google Scholar 

  98. Greisler HP. The role of the macrophages in intimai hyperplasia. J Vasc Surg 1989; 10: 566–568.

    Article  Google Scholar 

  99. Greisler HP, Cziperle DJ, Kim DU, Garfield JD, Petsikas D, Murchan PM, et al. Enhanced endothelialization of expanded polytetrafluoroethylene grafts by fibroblast growth factor type 1 pretreatment. Surgery 1992; 112: 244–255.

    CAS  Google Scholar 

  100. Gray JL, Kang SS, Zenni GC, Kim DU, Kim PI, Burgess WH, et al. FGF-1 affixation stimulates ePTFE endothelialization without intimai hyperplasia. J Surg Res 1994; 57: 596–612.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Greisler, H.P. (1996). Regulation of Vascular Graft Healing by Induction of Tissue Incorporation. In: Wise, D.L., Trantolo, D.J., Altobelli, D.E., Yaszemski, M.J., Gresser, J.D. (eds) Human Biomaterials Applications. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4757-2487-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2487-5_17

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-012-0

  • Online ISBN: 978-1-4757-2487-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics