Skip to main content

Biomaterials in Ophthalmology

  • Chapter

Abstract

Biomaterials are synthetic polymers or modified biopolymers, as well as metals, glasses, and ceramics used for implants or other medical devices. In ophthalmology, surgical implants, such as intraocular lenses and implants for retinal detachment surgery, are widely used. Other important applications of biomaterials in ophthalmology are drainage implants in terminal glaucoma, keratoprosthesis, and those used in ophthalmic plastic surgery.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Szycher M, ed. High Performance Biomaterials: A Comprehensive Guide to Medical and Pharmaceutical Applications 1991; Techonic Publishing Co.

    Google Scholar 

  2. Refojo MR. Current status of biomaterials in ophthalmology. Sury Ophthalmol 1982; 26: 257–265.

    Article  CAS  Google Scholar 

  3. Yu-Chin L. The role of bulky polysiloxanylalkyl methacrylates in oxygen permeable hydrogel materials. Proc Am Chem Soc, Div Polym Mat Sci Eng 1993; vol 69: 228, Chicago, IL.

    Google Scholar 

  4. Yu-Chin L. Surface wettability enhancement of silicone hydrogel lenses by processing with polar plastic molds. Proc Am Chem Soc Div Polym Mat Sci Eng 1993; vol 69: 231, Chicago, IL.

    Google Scholar 

  5. Ricci R, Pecorella I, Ciardi A, Della Rocca C, DiTondo V, and Marchi V. Strampelli’s osteoodonto-keratoprosthesis. Clinical and histopathological long term features of three prosthesis. Br J Ophthalmol 1992; 76: 232–234.

    Article  CAS  Google Scholar 

  6. Cardona H and DeVoe A. Prosthokeratoplasty. Trans AmAcad Ophthalmol Otolaryngol 1977; 83: 271–280.

    CAS  Google Scholar 

  7. Landers MB III, Foulks GN, Landers DM, Hickingbotham RT, and Hamilton RC. Temporary keratoprosthesis for use during pars plana vitrectomy. Am JOphthalmol 1981; 91: 615–619.

    Google Scholar 

  8. Gelender H, Vaiser A, Snyder WB, Fuller DG, and Hutton WL. Temporary keratoprosthesis for combined penetrating keratoplasty, pars plana vitrectomy and repair of retinal detachment. Ophthalmology 1988; 95: 897–901.

    CAS  Google Scholar 

  9. Eckardt C. A new temporary keratoprosthesis for pars plana vitrectomy. Retina 1987; 7: 34–37.

    CAS  Google Scholar 

  10. Lane SL, Cameron DJ, Lindstrom RL, Thomas RH, Mindrup EA, and Waring GO. Polysulfone corneal lenses. J Cat Ref Surg 1986; 12: 50–60.

    CAS  Google Scholar 

  11. Burris TE, Ayer CT, Evansen DA, and Davenport JM. Effect of intrastromal ring size and thickness on corneal flattening in human eyes. Refract Corneal Surg 1991; 7: 46–50.

    CAS  Google Scholar 

  12. Drew RC, Smith ME, and Okun N. Scanning electron microscopy of intraocular lenses. Ophthalmology 1978; 85: 415–424.

    Google Scholar 

  13. Galin MA, Turkish L, and Chowichuvech E. Detection, removal and effect of unpolymerized methylmethacrylate in intraocular lenses. Am J Ophthalmol 1977; 84: 153–159.

    CAS  Google Scholar 

  14. Kaufman HE, Katz J, Valenti J, Sheets W, and Goldberg EP. Corneal endothelium damage with intraocular lenses: contact adhesion between surgical materials and tissue. Science 1977; 198: 525–527.

    Article  CAS  Google Scholar 

  15. Versura P, Maltarello MC, Fontana L, and Caramazza R. Ultrastructural investigation demonstrating reduced cell adhesion on heparinsurface-modified intraocular lenses. Ophthal Res 1991; 23: 1–11.

    Article  CAS  Google Scholar 

  16. Lundgren B, Selen G, Spangberg M, and Harfstrand A. Fibrinous reaction on implanted intraocular lenses. A comparison of conventional PMMA and heparin surface modified lenses. J Cat Ref Surg 1992; 18: 236–239.

    CAS  Google Scholar 

  17. Hettlich H, Kaufman R, Harmeyer H, Imkampi E, Kirkpatrick CJ, and Mittermayer C. In vitro and in vivo evaluation of a hydrophilized silicone intraocular lens. J Cat Ref Surg 1992; 18: 140–146.

    CAS  Google Scholar 

  18. Barrett G and Constable U. Corneal endothelial loss with new intraocular lenses. Am J Ophthalmol 1984; 98: 157–165.

    CAS  Google Scholar 

  19. Amon M and Menapace R. Cellular invasion on hydrogel and poly(methylmethacrylate). An in vivo study. J Cat Ref Surg 1991; 17: 774–779.

    CAS  Google Scholar 

  20. Lowe KJ and Easty DL. A comparison of 141 polymacon (logel) and 140 poly(methyl methacrylate) intraocular lens implants. Br J Ophthalmol 1992; 76: 88–90.

    Article  CAS  Google Scholar 

  21. Colvin M. A foldable acrylic polymer for intraocular applications. Proc Am Chem Soc Div Polym Mat Sci Eng 1993; vol 69: 419, Chicago, IL.

    Google Scholar 

  22. Chirila TV, Barrett GD, Fletcher WA, Russo AV, and Constable U. Further studies on ultraviolet absorbing hydrogels for intraocular lenses: relationship between concentration of a polymerizable benzophenone, absorption and extractability. JCat Ref Surg 1991; 17: 596–603.

    CAS  Google Scholar 

  23. Balazs EA. Vitreous implants in retina surgery, in Importance of the Vitreous Body in Retina Surgery with Special Emphasis on Reoperations 1960; (Schepens CL, ed), Mosby, St. Louis, MO, pp 144–146.

    Google Scholar 

  24. Liesegang TJ. Viscoelastic substances in ophthal- mology. Sury Ophthalmol 1990; 34: 268–293.

    Article  CAS  Google Scholar 

  25. Liesegang TJ, Bowrne WM, and Ilstrup DM. The 40 use of hydroxymethylcellulose in extracapsular extraction with intraocular lens implantation. Am J 41 Ophthalmol 1986; 102: 723–726.

    CAS  Google Scholar 

  26. Berson FG, Patterson MM, and Epstein DL. Obstruction of aqueous outflow by sodium 42 hyaluronate in enucleated human eyes. Am J Ophthalmol 1983; 95: 668–672.

    Article  CAS  Google Scholar 

  27. Quigiey HA, Pollack IP, and Harbin JS Jr. Pilocarpine ocuserts. Long term clinical trials and selected pharmacodynamics. Arch Ophthalmol 43 1975; 93: 668–672.

    Google Scholar 

  28. Navea A, Martos MJ, Vila AO, Puertas FJ, Romero FJ, and Llopis MD. Intravitreal injection of liposomally-entrapped vs. free gancyclovir. Experi- 44 mental pharmacokinetics and retinal toxicity. Inv Ophthalmol Vis Sci 1992; 33: 1104.

    Google Scholar 

  29. Ogura Y, Guran T, Shahidi M, Mori MT, and Zeimer RC. Feasibility of targeted drug delivery to selective areas of the retina. Inv Ophthalmol Vis Sci 1991; 32: 2351–2356.

    CAS  Google Scholar 

  30. Yolles S, Elrige JE, and Woodland JHR. Sustained 46 delivery of drugs from polymer/drug mixtures. Polym News 1970; 1: 9–18.

    Google Scholar 

  31. Moriteira T, Ogura Y, Honda Y, Wada R, Hyon SH, and Ikada Y. Microspheres of biodegradable polymers as a drug delivery system in the vitreous. Invest Ophthalmol Vis Sci 1991; 32: 1785–1790. 48

    Google Scholar 

  32. Giordano GG, Refojo MF, and Arroyo M. Sustained delivery of retinoic acid from microspheres of biodegradable polynner in PVR. Invest Ophthalmol Vis Sci 1993; 34: 2743–2751.

    CAS  Google Scholar 

  33. Giordano GG, Refojo MF, Chevez-Barrios P, and Garcia CA. Tissue response to intravitreal biodegradable polymer microspheres. Invest Ophthalmol Vis Sci 1993; 34: 1493. 50

    Google Scholar 

  34. Refojo MF, Dohlman CH, Ahmad B, Carroll JM, and Allen JC. Evaluation of adhesives for corneal surgery. Arch Ophthalmol 1968; 80: 645–656. 51

    Google Scholar 

  35. Leahley AB, Gottsch JD, and Stark WJ. Clinical experience with N-butyl cyanoacrylate (Nexacryl) tissue adhesives. Ophthalmology 100: 173–180. 52

    Google Scholar 

  36. Calabria GA, Pruett RC, and Refojo MF. Further experience with sutureless scleral buckling materials. II: cyanoacrylate tissue adhesives. Arch Oph-thalmol 1971; 86: 82–86.

    Article  CAS  Google Scholar 

  37. Folk JC and Dreyer RF. Cyanoacrylate adhesive in retinal detachment surgery. Am J Ophthalmol 1986; 11: 486–487.

    Google Scholar 

  38. Zalta AH and Wieder RH. Closure ofleaking filtering blebs with cyanoacrylate tissue adhesive. Br J Ophthalmol 1991; 75: 170–173.

    Article  CAS  Google Scholar 

  39. Sheta SM, Hida T, and McCuen BW. Cyanoacrylate tissue adhesive in the management of recurrent retinal detachment caused by macular hole. Am J Ophthalmol 1990; 109: 28–32.

    CAS  Google Scholar 

  40. Molteno ACB. A new implant for glaucoma-clinical trial. Br J Ophthalmol 1969; 53: 606–615.

    Article  CAS  Google Scholar 

  41. Molteno ACB. The optimal design of drainage implant for glaucoma. Trans Ophthalmol Soc NZ 1981; 33: 39–41.

    CAS  Google Scholar 

  42. Schocket SS, Nirankari VS, Lakhanpal V, Richards RC, and Lerner BC. Anterior chamber tube shunt to an encircling band in the treatment of neovascular glaucoma and other refractory glaucomas. Ophthalmology 1985; 12: 553–562.

    Google Scholar 

  43. Smith MF, Sherwood MB, and McGorray SP. Comparison of the double-plate Molteno drainage implant with the Schocket procedure. Arch Ophthalmol 1992; 110: 1246–1250.

    Article  CAS  Google Scholar 

  44. Hitchings RA. One piece tube and plate implant for glaucoma drainage surgery. Ophthalmol Clin NAm 1988; 11: 233–237.

    Google Scholar 

  45. Krupin T, Ritch R, Camras CB, Brucker AJ, Muldon TO, and Serle T. A long Krupin-Denver valve implant attached to a 180 degrees scleral explant for glaucoma surgery. Ophthalmology 1988; 95: 1174–1180.

    CAS  Google Scholar 

  46. Cameron JD and White TC. Clinico-histopathologic correlation of a successful glaucoma pump-shunt implant. Ophthalmology 1988; 95: 1189–1194.

    CAS  Google Scholar 

  47. Smith SL, Starita RJ, Fellman RL, and Lynn JR. Early clinical experience with the Baerveldt 350 mm2 glaucoma implant and associated extraocular muscle imbalance. Ophthalmology 1993; 100: 914–918.

    CAS  Google Scholar 

  48. Lloyd MA, Sedlak T, Heuer DK, Minckler DS, Baerveldt G, and Lee MB. Clinical experience with the single plate Molteno implant in complicated glaucomas. Update of a pilot study. Ophthalmology 1992; 99: 679–687.

    CAS  Google Scholar 

  49. Minning CA Jr and Havener VH. Host tolerance of homologous fascia lata in retinal detachment surgery. Arch Ophthalmol 1983; 101: 475–478.

    Article  Google Scholar 

  50. King LM, Margherio RR, and Schepens CL. Gelatin implants in scleral buckling procedures. Arch Ophthalmol 1975; 93: 807–811.

    Article  Google Scholar 

  51. Refojo MF, Natchiar G, Liu HS, Lahav M, and Tolentino FI. New hydrophilic implant for scleral buckling. Ann Ophthalmol 1980; 12: 88–92.

    Google Scholar 

  52. Ho PC, Chan IM, Refojo MF, and Tolentino FI. The MAI hydrophilic implant for scleral buckling: a review. Ophthalmic Surg 1984; 15: 511–515.

    CAS  Google Scholar 

  53. Marin JF, Tolentino FI, Refojo MF, and Schepens CL. Long term complications of the MAI hydrogel intrascleral buckling implant. Arch Ophthalmol 1992; 110: 86–88.

    Article  CAS  Google Scholar 

  54. Laroche L, Pavlakis C, Saraux H, and Orcel L. Ocular findings following intravitreal silicone injection. Arch Ophthalmo 1983; 101: 1422–1425.

    Article  CAS  Google Scholar 

  55. Chang S. Low viscosity liquid perfluorochemicals in vitreous surgery. Am J Ophthalmol 1987; 103: 38–43 (1987).

    Google Scholar 

  56. Miyamoto K, Refojo MF, Tolentino FI, Fournier GA, and Albert DM. Perfluoroether liquid as a long-term vitreous substitute: an experimental 59 study. Retina 1984; 4: 264–268.

    Article  CAS  Google Scholar 

  57. Delle Noci N, Mininni F, and Iaculli C. Irradiated bovine cartilage in orbital reconstructive surgery, in 60 Biomaterials in Ophthalmology 1990; (Caramaza R and Versura P, eds), Studio ER, Bologna (Italy), pp 21–24.

    Google Scholar 

  58. Shields CL, Shields JA, Eagle RC Jr, and DePotter P. Histopathologic evidence of fibrovascular ingrowth four weeks after placement ofthe hydroxy-apatite orbital implant. Am J Ophthalmol 1991; 111: 363–366.

    CAS  Google Scholar 

  59. Anderson RL and Stasior OG. Self curing methylmethacrylate: is it safe? Ophth Surg 1976; 7: 26–30.

    Google Scholar 

  60. Refojo MF. Overview on materials for adnexa and orbit surgery, in Biomaterials in Ophthalmology 1990; (Caramaza R and Versura P, eds), Studio ER, Bologna (Italy), pp 13–17.

    Google Scholar 

  61. Downes RN and Collin JRO. The mersilene meshing, a new concept in ptosis surgery. BrJ Ophthalmol 1989; 73: 498–501.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Giordano, G.G., Refojo, M.E. (1996). Biomaterials in Ophthalmology. In: Wise, D.L., Trantolo, D.J., Altobelli, D.E., Yaszemski, M.J., Gresser, J.D. (eds) Human Biomaterials Applications. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4757-2487-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2487-5_13

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-012-0

  • Online ISBN: 978-1-4757-2487-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics