Plastic Materials for External Prostheses and Orthoses

  • Allan G. A. Coombes
  • Christopher D. Greenwood
  • John J. Shorter


The comfort and function of prostheses for the upper and lower extremity have improved dramatically since the early 1980s because of advances in clinical evaluation techniques, prosthesis design, and manufacturing technology. The substitution of traditional prosthetic and orthotic materials, such as wood, aluminum, and leather by modern materials, such as thermoplastics and advanced composites, has fostered design innovation and resulted in major improvements in function and durability of modern prostheses and orthoses. The rapid progress in materials technology is inextricably linked to the increased incidence of successful patient rehabilitation.


Carbon Fiber Reinforce Thermosetting Plastic Plaster Cast Silicone Elastomer Residual Limb Ethylene Vinyl Acetate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    ISO 8548, Prosthetics and orthotics. International Organisation for Standards, 1993.Google Scholar
  2. 2.
    Murphy EF. Sockets, linings and interfaces. Clin Orthot Prosthet 1984; 8: 4–10.Google Scholar
  3. 3.
    Radcliffe CW and Fort J. The patellar tendon-bearing below-knee prosthesis. Biomechanics Lab., University of California, Berkley, 1961.Google Scholar
  4. 4.
    Radcliffe CW. Biomechanics of above-knee prostheses, in Prosthetic and Orthotic Practice 1970; ( Murdoch G, ed ), Edward Arnold, London.Google Scholar
  5. 5.
    McCollough N and Sinclair W. Some considerations in management of the above-knee geriatric amputee. Artif Limbs 1968; 12: 28–35.Google Scholar
  6. 6.
    Kristinsson O. Flexible above knee socket made from low density polyethylene suspended by a weight transmitting frame. OrthotProsthet 1983; 37: 25–27.Google Scholar
  7. 7.
    Pritham CH, Fillauer C, and Fillauer K. Experience with the scandinavian flexible socket. Orthot Prosthet 1985; 39: 17–31.Google Scholar
  8. 8.
    Lehneis HR, Chu DS, and Adelglass H. Flexible prosthetic socket techniques. Clin Prosthet Orthot 1983; 8: 6–8.Google Scholar
  9. 9.
    Sabolich J. Trochantaric controlled alignment method (CAT-CAM): introduction and basic principles. Clin Prosthet Orthot 1985; 9: 15–26.Google Scholar
  10. 10.
    Fishman S, Rubin G, Berger N, and Krebs D. ISNY below-knee flexible socket. Rehab Res Dev Prog Rep 1986; 24: 17.Google Scholar
  11. 11.
    Supan Ti. Transparent preparatory prostheses for upper limb amputations. Clin Prosthet Orthot 1987; 11: 45–48.Google Scholar
  12. 12.
    Abrahamson MA, Vinnecour KE, and Cooney DFM. Technical note: improved techniques in alginated check sockets. Orthot Prosthet 1987; 40: 63–66.Google Scholar
  13. 13.
    Rovick JS. A new CAM technique for the direct automated fabrication of sockets. Proceedings of the American Academy of Orthotists and Prosthetists 19th Annual Meeting and Scientific Symposium, Las Vegas, CA; 1993.Google Scholar
  14. 14.
    Mooney V and Snelson R. Fabrication and application of transparent polycarbonate sockets. Orthot Prosthet 1972; 26: 1–13.Google Scholar
  15. 15.
    Davies RM, Lawrence RB, Routledge PE, and Knox W. The Rapidform process for automated thermoplastic socket production. Prosthet Orthot Int 1985; 9: 27–30.Google Scholar
  16. 16.
    Pike AC and Black LK. The orthoglas transparent test socket-an old idea, a new technology. Orthot Prosthet 1982; 36: 40–43.Google Scholar
  17. 17.
    Haggland L. Method of manufacturing a prosthesis cuff to receive an amputated stump and a rough cuff performing method. UK Patent Application No. 2151536A; 1983.Google Scholar
  18. 18.
    Berteele A. Manufacturing method of the P.T.T. thermoplastic prosthesis. ISPO Conference Abstracts 1986; Copenhagen, p 206.Google Scholar
  19. 19.
    Coombes AGA and Greenwood CD. Memory plastics for prosthetic and orthotic applications. Prosthet Orthot Int 1988; 12: 143–151.Google Scholar
  20. 20.
    Davies RM and Russel D. Vacuum formed thermoplastic sockets for prostheses, in Disability 1979; (Kenedi RM, Paul JP, Hughes J, eds), Macmillan, London, pp 385–390.Google Scholar
  21. 21.
    Otto Bock Technical Information, Otto-BlockHabermann temporary fitting technique, Otto Bock Co., Duderstadt, Germany.Google Scholar
  22. 22.
    Davis CH. Improvements in or relating to socket members for artificial limbs. UK Patent No. 383229; 1932.Google Scholar
  23. 23.
    Appelt B, Nui L, and Porter RS. Ultra drawing of polystyrene by solid-state coextrusion: molecular weight dependence of properties and processing. JMat Sci 1981; 16: 1763–1768.CrossRefGoogle Scholar
  24. 24.
    Vincent PI. Short term strength and impact behaviour, in Thermoplastic Properties and Design 1974; (Ogorkiewicz RT, ed), Wiley, London, pp 68–83.Google Scholar
  25. 25.
    Fenner OH. Chemical and environmental properties of plastics and elastomers, in Handbook of Plastics and Elastomers 1975; (Harper CA, ed), McGraw-Hill, New York, 4–25, 4–27.Google Scholar
  26. 26.
    Harper CA (ed). Handbook of Plastics and Elastomers. McGraw-Hill, New York, 1975.Google Scholar
  27. 27.
    Waterman NA and Ashbey MF (eds). Elsevier Material Selector vol. 1–3, Elsevier Applied Science, London, 1991.Google Scholar
  28. 28.
    Coombes AGA, Lawrence RB, and Davies RM. The use of biocomponent fabrics for bonding polypropylene sockets in prostheses. Prosthet Orthot Int 1985; 9: 145–153.Google Scholar
  29. 29.
    Du Pont Technical Literature (E-39586). Surlyn: A Grade Selection Guide Du Pont UK Limited, UK.Google Scholar
  30. 30.
    McClellan BP, Knapp S, and Stills M. The application of ionomer resins in definitive below knee prosthesis: a limited study. Clin Prosthet Orthot 1984; 8: 18–21.Google Scholar
  31. 31.
    Hanak R and Hoffman ES. Specification and fabrication details for the ISNY above-knee socket system. Orthot Prosthet 1986; 40: 38–42.Google Scholar
  32. 32.
    Fahrer M, Van Lith M, Donnelly A, Overton M, and Angliss V. Transparent flexible sockets for above-knee prostheses. J Rehab Res Dev 1987; 24: 57–65.CrossRefGoogle Scholar
  33. 33.
    Bowen DH. Composite materials-part 4: manufacturing methods for composites. Met Mater 1986; pp 584–588.Google Scholar
  34. 34.
    Hull D. An Introduction to Composite Materials 1981; Cambridge University Press, Cambridge.Google Scholar
  35. 35.
    Faulkner V, Field M, Egan JW, and Gall N. Evaluation of high strength materials for prostheses. Orthot Prosthet 1987; 40: 44–58.Google Scholar
  36. 36.
    Berry DA. Composite materials for orthotics and prosthetics. Orthot Prosthet 1987; 40: 35–43.Google Scholar
  37. 37.
    Boot DA and Young NJ. A new directly moulded patellar-tendon bearing socket. Prosthet Orthot Int 1985; 9: 112–114.Google Scholar
  38. 38.
    Showers CD and Strunck ML. Sheet plastics and their applications in orthotics and prosthetics. Orthot Prosthet 1985; 38: 41–48.Google Scholar
  39. 39.
    Staats TB. Multiple durometer socket liners for P.T.B. prosthesis. Orthot Prosthet 1985; 38: 63–68.Google Scholar
  40. 40.
    Staats TB. Advanced prosthetic techniques for below knee amputations. Orthot Prosthet 1985; 38: 249–258.Google Scholar
  41. 41.
    Kelly A (ed) Concise Encyclopedia of Composite Materials 1994; Elsevier, Oxford, UK.Google Scholar
  42. 42.
    Parratt NJ. Fibre Reinforced Materials Technology. Van Nostrand Reinhold Co., London, 1972.Google Scholar
  43. 43.
    Pell FR, Mulvany SF, and Mathews F. Application of hybrid fibre-reinforced composites to load bearing orthoses and prostheses. Plast Rub Mat Appl 1980; 5: 183–186.Google Scholar
  44. 44.
    Hancox NL. Composite materials—part 1: principles of fibre reinforced composites. Met Mater 1986; 285–287.Google Scholar
  45. 45.
    Hughes JDH. Composite materials—part 2: fibre for reinforcement. Met Mater 1986; 365–368.Google Scholar
  46. 46.
    Hancox NL. Composite materials—part 3: matrices for composite materials. Met Mater 1986; 435–437.Google Scholar
  47. 47.
    Davidson R. Composite materials—part 5: performance characteristics of composite materials. Met Mater 1986; 651–655.Google Scholar
  48. 48.
    Bowen DH. Composite materials—part 6: applications ofpolymer matrix composites. Met Mater 1986; 7764–779.Google Scholar
  49. 49.
    Piggott MR and Harris B. Compression strength of carbon, glass and Kevlar-49 fibre reinforced polyester resins. JMat Sci 1980; 15: 2523–2538.CrossRefGoogle Scholar
  50. 50.
    Flex Foot Technical Literature, Plastic guide, Flex Foot Inc., Laguna Hills, CA.Google Scholar
  51. 51.
    Evans AJS. Manufacture of artificial limbs from modern materials, in 14th International European Chapter Conference of the Society for the Advancement of Materials and Processing Engineering 1993; ( Towers P, ed), Birmingham, England.Google Scholar
  52. 52.
    Kawamura I and Kawamura J. Some biomechanical principles of the ISNY flexible above knee system with quadrilaterial socket. Orthot Prosthet 1986; 40: 25–31.Google Scholar
  53. 53.
    A forum for innovation, Advanced Composite Engineering, 1987; pp 18–21.Google Scholar
  54. 54.
    Department of Health and Social Security. Lower limb modular prostheses. Report oflnternational Conference 1973; ( McKenzie DS, ed), Ascot, England, H.M.S.O., London.Google Scholar
  55. 55.
    Standards for lower limb prostheses. Report of International Society of Prosthetics and Orthotics Conference 1978; Philadelphia, PA.Google Scholar
  56. 56.
    Coombes AGA and MacCoughlan J. Development and testing of thermoplastic structural components for modular prostheses. Prosthet Orthot Int 1988; 12: 19–40.Google Scholar
  57. 57.
    Coombes AGA, Knox W, and Davies RM. Thermoplastic alignment couplings for prostheses. Prosthet Orthot Int 1985; 9: 37–45.Google Scholar
  58. 58.
    Faulkner V and Gall N. A new below-the-knee prosthesis: lightweight and adjustable. VA Pract 1987; 36–40.Google Scholar
  59. 59.
    Valenti TG. Experience with Endoflex: a monolithic, thermoplastic prosthesis for below knee amputees. JProsthet Orthot 1990; 3: 35–37.Google Scholar
  60. 60.
    M+IND Technical Literature, Plastic guide, M+IND Inc., Seattle, WA.Google Scholar
  61. 61.
    Fort J and Hobson DA. The wedge disc alignment unit, in Report of the Prosthetics and Orthotics Research and Development Unit,1964; Canada.Google Scholar
  62. 62.
    Solomonides S. Modular artificial limbs: first report on a continuing program of clinical and laboratory evaluation. Below knee systems. Scottish Home and Health Department, Edinburgh, HMSO, 1975.Google Scholar
  63. 63.
    Rothschild VR, Fox JR, Michael JW, Rothschild RJ, and Playfair G. Clinical experience with total thermoplastic lower limb prostheses. JProsthet Orthot 1990; 3: 51–54.Google Scholar
  64. 64.
    Coombes AGA, Lawrence RB, and Davies RM. Rotational moulding in the production of prostheses. Prosthet Orthot Int 1985; 9: 31–36.Google Scholar
  65. 65.
    Powell PC. Principles for using design data, in Thermoplastic Properties and Design 1974; (Ogorkiewicz RT, ed), Wiley, London, pp 211–242.Google Scholar
  66. 66.
    Lawrence RB, Knox W, Coombes AGA, and Davies RM. All-plastic tapered column B/K prosthesis, in Bioengineering Centre Report, University College London, England, 1982; pp 49–51.Google Scholar
  67. 67.
    Coombes AGA and Davies RM. Thermoplastic structural components for artificial limbs, in Bioengineering Centre Report, University College London, England, 1986; pp 59, 60.Google Scholar
  68. 68.
    Haines RC. Volume production with carbon reinforced thermoplastics. Plast Rub ProcAppl 1985; 5: 78–94.Google Scholar
  69. 69.
    Allan PS and Bevis MJ. Multicycle live-feed injection moulding. Plast Rub ProcAppl 1987; 7: 3–10.Google Scholar
  70. 70.
    Allan PS and Bevis MJ. Shear controlled orientation technology: a route to optimised polymer properties. Mat World 1994; 2: 7–9.Google Scholar
  71. 71.
    Convery P, Jones D, Hughes J, and Whitefield G. Potential problems of manufacture and fitting of polypropylene ultralightweight below-knee prostheses. Prosthet Orthot Int 1984; 8: 48–52.Google Scholar
  72. 72.
    Convery P, Hughes J, Jones D, and Whitefield G. A clinical evaluation of an ultralightweight polypropylene below-knee prostheses. Orthot Prosthet 1986; 40: 30–37.Google Scholar
  73. 73.
    Wollstein LV. Fabrication of a below-knee prostheses especially suitable in tropical countries. Prosthet Orthot Int 1972; 4: 5–8.Google Scholar
  74. 74.
    Leimkuehler JP. A lightweight laminated below knee prosthesis. Orthot Prosthet 1982; 33: 46–49.Google Scholar
  75. 75.
    Hittenberger D and Putzi R. A laminated light weight prosthesis. Orthot Prosthet 1985; 29: 41–46.Google Scholar
  76. 76.
    Vessa Limited Technical Literature, The Quantum System, Vessa Ltd., Alton, UK.Google Scholar
  77. 77.
    Du Pont Technical Literature (E-21595), Types, properties and uses of Hytrel. Du Pont UK Limited, UK.Google Scholar
  78. 78.
    Kleneman L. The Foot and Its Disorders 1976; Blackwell, London.Google Scholar
  79. 79.
    Michael J. Energy storing feet: a clinical comparison. Clin Prosthet Orthot 1987; 11: 154–168.Google Scholar
  80. 80.
    Burgess EM, Poggi DL, Hittenberger DA, Zettl JH, Moeller DE, Carpenter KL, and Forsgren SM. Development and preliminary evaluation of the V.A. Seattle foot. JRehab Res Dev 1985; 22: 75–84.CrossRefGoogle Scholar
  81. 81.
    Reswick JB. Evaluation of the seattle foot. J Rehab Res Dev 1986; 23: 77–94.Google Scholar
  82. 82.
    Carlow WA and Almeda MJ. Plastics in lower limb orthotics. Orthot Prosthet 1978; 32: 25–31.Google Scholar
  83. 83.
    Stills M and Wilson AB Jr. A new material in orthotics and prosthetics. Orthot Prosthet 1980; 34: 29–37.Google Scholar
  84. 84.
    Yates G. A method for the provision of lightweight aesthetic orthopaedic appliances. Orthopaedics 1968; 1: 153–162.Google Scholar
  85. 85.
    Coombes AGA and Flack A. Unpublished results, Bioengineering Centre, University College London, England, 1986.Google Scholar
  86. 86.
    Rowley DI. Orthopaedic bandage form splinting materials. Clin Mat 1986; 1: 1–8.CrossRefGoogle Scholar
  87. 87.
    Schmidt VE, Somerset JH, and Porter RE. Mechanical properties of orthopaedic plaster bandages. JBiomechanics 1973; 6: 173–185.CrossRefGoogle Scholar
  88. 88.
    Gill JM and Bowker P. A comparative study of the properties of bandage-form splinting materials. Eng Med 1982; 11: 125–134.CrossRefGoogle Scholar
  89. 89.
    Pratt DJ, Powell ES, Rowley DI, Norris SH, and Duckworth T. Some comparative properties of splintage materials, in Biomechanical Measurements in Orthopaedic Practices (Whittle M and Harrris D, eds) 1985; Oxford University Press, Oxford, pp 63–71.Google Scholar
  90. 90.
    Rowley DI, Pratt DJ, Powell ES, Norris SH, and Duckworth T. The comparative properties of plaster of paris and plaster of paris substitutes. Arch Orthop Trauma Surg 1985; 103: 402–407.CrossRefGoogle Scholar
  91. 91.
    Wytch R, Mitchell CG, Wardlaw D, Ledingham W, and Ritche IK. Mechanical assessment of polyurethane impregnated fibreglass bandages for splinting. Prosthet Orthot Int 1987; 11: 128–134.Google Scholar
  92. 92.
    Nicholas JJ, Gruen H, Weiner G, Grawshaw C, and Taylor F. Splinting in rheumatoid arthritis. Evaluation of lightcast fibreglass polymer splints. Arch Phys Med Rehab 1982; 63: 95.Google Scholar
  93. 93.
    Wytch R, Ritche IK, Clayton R, Gregory DW, and Wardlaw D. Dust emission during cutting of polyurethane-impregnated bandages. Prosthet Orthot Int 1988; 12: 155–160.Google Scholar
  94. 94.
    Kuncir EJ, Wirta RW, and Golbranson FL. Load-bearing characteristics of polyethylene foam: an examination of structural and compression properties. Orthot Prosthet 1990; 27: 229–238.Google Scholar
  95. 95.
    Richardson MOW and Nandra DS. Load deflection analysis of shock mitigating polyurethane-silicone foams. Cell Polymer 1985; 4: 445–462.Google Scholar
  96. 96.
    Tsai JT. The compressive deformation of polymeric foams. Polymer Eng Sci 1982; 22: 545–548.CrossRefGoogle Scholar
  97. 97.
    Leber C and Evanski PM. A comparison of shoe insole materials in plantar pressure relief. Prosthet Orthot Int 1986; 10: 135–138.Google Scholar
  98. 98.
    Pratt DJ, Rees PH, and Butterworth H. Technical Note: RTV silicone insoles. Prosthet Orthot Int 1984; 8: 54, 55.Google Scholar
  99. 99.
    Campbell G, Newell E, and Mclure M. Compression testing of foamed plastic and rubbers for use as orthotic insoles. Prosthet Orthot Int 1982; 6: 48–52.Google Scholar
  100. 100.
    Campbell GJ, Mclure M, and Newell E. Compressive behaviour after simulated service conditions of some foamed materials intended as orthotic shoe insoles. JRehab Res Dev 1984; 21: 57–65.Google Scholar
  101. 101.
    Beach RB and Thompson DE. Selected soft tissue research. An overview from Corville. Phys Ther 1979; 59: 30–33.Google Scholar
  102. 102.
    Eastman Plastic Technical Literature (MB-80F/ June 1988 ), Kodar PETG Copolyester 6763, Eastman Chemical International, England.Google Scholar
  103. 103.
    Jones JA and Boyce GS. Replacement of metals with plastics. PERA Report 396, PERA, Melton Mowbray, England, 1984.Google Scholar
  104. 104.
    Wytch R, Mitchell C, Ritche IK, Wardlaw D, and Ledingham W. New splinting materials. Prosthet Orthot Int 1987; 11: 42–45.Google Scholar
  105. 105.
    ICI Technical Literature, Ref. G201.Google Scholar
  106. 106.
    ICI Technical Literature, Modar Resins.Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Allan G. A. Coombes
  • Christopher D. Greenwood
  • John J. Shorter

There are no affiliations available

Personalised recommendations