Skip to main content

Biomaterial Considerations for Cardiac Prostheses

  • Chapter
Human Biomaterials Applications
  • 275 Accesses

Abstract

One of the most important prerequisites in developing a clinically applicable cardiac prosthesis is making it blood compatible. Two factors must be considered to prevent blood clotting inside a device: design to eliminate blood-stagnant areas within the device, and use of blood-compatible materials for the device’s blood-contacting surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. DeBakey ME. A simple continuous-flow blood transfusion instrument. New Orieans Med Sci J 1934; 87: 386–389. 16

    Google Scholar 

  2. DeBakey ME. Left ventricular bypass pump for cardiac assistance. Am J Cardiol 1971; 27: 3–11.

    Article  CAS  Google Scholar 

  3. Golding LR, Groves LK, Peter M, Jacobs G, Sukalac R, Nosé Y, and Loop FD. Initial clinical experiment with a new temporary left ventricular 17 assist device. Ann Thorac Surg 1980; 29: 66–69.

    Article  CAS  Google Scholar 

  4. Ku DN and Allen RC. Vascular graft, in The Biomedical Engineering Hand Book 1995; (Bronzino JD, ed), CRC, Boca Raton, FL, pp 1871–1878.

    Google Scholar 

  5. Nosé Y. Blood clotting problems in the artificial heart devices. JBiomed Mater Res 1967; 1: 151–169. 18

    Google Scholar 

  6. Affeld K, Zartnack F, Mohnhaupt R, and Bucherl ES. New methods for the in vitro investigations of the flow patterns in artificial hearts. Trans Am Soc Artif Intern Org 1976; 22: 460–467. 19

    Google Scholar 

  7. Boretos JW, Pierce WS, Baier RE, Leroy AF, and Donachy HJ. Surface and bulk characteristics of a polyether urethane for artificial hearts. J Biomed 20 Mater Res 1975; 9: 327–340.

    CAS  Google Scholar 

  8. Boretos JW and Pierce WS. Segmented polyurethane: a new elastomer for biomedical applications. Science 1967; 158: 1481, 1482.

    Google Scholar 

  9. Lyman DJ, Metcalf LC, Albo D Jr, Richards KF

    Google Scholar 

  10. and Lalmb J. The effect of chemical structure and 21 surface properties of synthetic polymers on the coagulation of blood. III. In vivo adsorption of proteins on polymer surfaces. Trans Am Soc Artif Intern Organs 1974; 20: 474–478.

    Google Scholar 

  11. Nosé Y, Kawahito K, and Nakazawa T. Can we develop a non-pulsatile permanent rotary blood pump? Yes, we can. Artif Organs,in press.

    Google Scholar 

  12. Schiessler A, Warnecke H, Friedel N, Hennig E, 23 and Hetzer R. Clinical use of the Berlin biventricular assist device as a bridge to transplantation. Trans Am Soc Artif Intern Org 1990; 36: M706–708.

    CAS  Google Scholar 

  13. Farrar DJ, Lawson JH, Litwak P, and Cederwall G. Thoratec VAD system as a bridge to heart transplantation. J Heart Transp 1990; 9: 415–423.

    CAS  Google Scholar 

  14. Takano H, Taenaka Y, Noda H, Kinoshita M, Yagura A, Tatsumi E, Sekii H, Sasaki E, Umezu M, Nakatani T, Kyo S, Omoto R, Akutsu T, and Manabe H. Multi-institutionals studies of the National Cardiovascular Center ventricular assist system: use in 92 patients. Trans Am Soc Artif Intern Org 1989; 35: 541–544.

    Article  CAS  Google Scholar 

  15. Hung TC, Butter DB, Kormos RL, Sun Z, Borovetz HS, Griffith BP, and Yie C. Characteristics ofblood rheology in patients during Novacor left ventricular assist system support. Trans Am Soc ArtifIntern Org 1989; 35: 611–613.

    CAS  Google Scholar 

  16. Jarvik RK, DeVries WC, Semb BKH, Koul B, Copeland JG, Levinson MM, Griffith BP, Joyce LD, Cooley DA, Frazier OH, Cabrol CL, and Keon WJ. Surgical positioning of the Jarvik-7 artificial heart. JHeart Transpl 1986; 5: 184–195.

    CAS  Google Scholar 

  17. Deleuze PH, Besnerais PL, Mazzucotelli JP, Abe Y, Miyama M, Mourtada A, Benvenuti C, and Loisance DY. Use of the Nippon-Zeon pneumatic ventricular assist device as a bridge to cardiac transplantation. ASAIO J 1994; 40: M325–328.

    Article  CAS  Google Scholar 

  18. Sato N, Mohri H, Fujimasa I, Imachi K, Atsumi K, Sezai Y, Koyanagi H, Nitta S, and Miura M. Multivariate analysis of risk factors for thrombus formation in University of Tokyo ventricular assist device. J Thorac Cardiovasc Surg 1993; 106: 520–527.

    CAS  Google Scholar 

  19. Chandran KB and Shalaby SW. Soft tissue replacement, in The Biomedical Engineering Hand Book 1995; (Bronzino JD, ed), CRC, Boca Raton, FL, pp 648–665.

    Google Scholar 

  20. Harasaki H, Kiraly R, and Nosé Y. Endothelialization in blood pumps. Trans Am Soc ArtifIntern Org 1978; 24: 415–424.

    CAS  Google Scholar 

  21. Harasaki H, Kambic H, Whalen R, Murray J, Snow J, Murabayashi S, Hillegass D, Ozawa K, Kiraly R, and Nosé Y. Comparative study of flocked vs biolized surface for long-term assist pumps. Trans Am Soc Artif Intern Org 1980; 26: 470–474.

    CAS  Google Scholar 

  22. Branson DF, Picha GJ, and Desprez J. Expanded polytetrafluoroethylene as a microvascular graft: a study of four fibril lengths. Plast Reconst Surg 1985; 76: 754–763.

    Article  CAS  Google Scholar 

  23. Jonas RA, Ziemer G, Schoen FJ, Britton L, and Castaneda AR. A new sealant for knitted Dacron prostheses: minimally cross-linked gelatin. J Vasc Surg 1988; 7: 414–419.

    CAS  Google Scholar 

  24. Emoto H, Murabayashi S, Kambic HE, Zimmerman M, Goldcamp J, Horiuchi T, Harasaki H, and Nosé Y. Plasma protein and gelatin surface interactions kinetics of protein adsorption. Trans Am Soc Artif Intern Org 1987; 33: 606–613.

    CAS  Google Scholar 

  25. Emoto H, Kambic H, Chen JF, and Nosé Y. Characterization of rehydrated gelatin gels. Artif Org 1991; 15: 29–34.

    Article  CAS  Google Scholar 

  26. Nosé Y. The thirteenth Hastings Lecture: my life with the National Institutes of Health artificial heart program. Artif Org 1990; 14: 174–190.

    Article  Google Scholar 

  27. Killen DA, Piehler JM, Borkon AM, and Reed WA. Bio-Medicus ventricular assist device for salvage of cardiac surgical patients. Ann Thorac Surg 1991; 52: 230–235.

    Article  CAS  Google Scholar 

  28. Curtis J, Wagner-Mann C, Mann F, Demmy T, Walls J, and Turk J. Sub-chronic use of the St. Jude centrifugal pump as a mechanical assist device in calves. The Third Congress of the International Society for Rotary Blood Pumps, 1995; Houston, TX, abstract.

    Google Scholar 

  29. Wagner-Mann C, Curtis J, Mann F, Turk J, Demmy T, and Turpin T. Centrifugal sub-chronic mechanical assist in an unheparinized calf model. The Third Congress of the International Society for Rotary Blood Pumps, 1995; Houston, TX, abstract.

    Google Scholar 

  30. Joyce LD, Kiser JC, Eales F, King RM, Toninato CJ, and Hansen J. Experience with the Sam centrifugal pump as a ventricular assist device. Trans Am Soc Artif Intern Org 1990; 36: M619–623.

    CAS  Google Scholar 

  31. Ohtsubo S, Naito K, Matsuura M, Kawahito K, Shimono T, Makinouchi K, Tasai K, Ohara Y, Damm

    Google Scholar 

  32. G, Glueck J, Raskin S, Takatani S, Benkowski R, Short DH, Schinen SA, Noon GP, and Nosé Y. Initial clinical experience with the Baylor- Nikkiso centrifugal pump. Artif Org 1995; 19: 769–773.

    Article  Google Scholar 

  33. Kijima T, Nojiri C, Oshiyama H, Horiuchi K, Nogawa A, Hamasaki H, Ogihara M, Katsuda HS, Amano N, Fukasawa H, and Akutsu T. The margin of safety in the use of a straight path centrifugal blood pump. Artif Org 1994; 18: 680–686.

    Article  CAS  Google Scholar 

  34. Nakazawa T, Makinouchi K, Ohara Y, Ohtsubo S, Kawahito K, Tasai K, Shimono T, Benkowski R, Damm G, Takami Y, Glueck J, Noon G, and Nosé Y. Development of a pivot bearing supported seal-less centrifugal pump for ventricular assist device. Artif Org,in press.

    Google Scholar 

  35. Mizuguchi K, Damm G, Benkowsky R, Aber G, Bacak J, Svjkovsky P, Glueck J, Takatani S, Nosé Y, Noon GP, and DeBakey ME. Development of an axial flow ventricular assist device: in vitro and in vivo evaluation. Artif Org 1995; 19: 653–659.

    Article  CAS  Google Scholar 

  36. Jarvik RK. System considerations favoring rotary artificial hearts with blood-immersed bearings. Artif Org 1995; 19: 565–570.

    Article  CAS  Google Scholar 

  37. Davidson JA, Daigle KP, Smith PK, and Richards N. Wear-resistant hemocompatible Ti-Nb-Zr and Zr-Nb alloys to improve blood pump design and performance. Artif Org,in press.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nosé, Y., Ohashi, Y., Tasai, K., DeBakey, M.E. (1996). Biomaterial Considerations for Cardiac Prostheses. In: Wise, D.L., Trantolo, D.J., Altobelli, D.E., Yaszemski, M.J., Gresser, J.D. (eds) Human Biomaterials Applications. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4757-2487-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2487-5_10

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-012-0

  • Online ISBN: 978-1-4757-2487-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics