Biomaterial Considerations for Cardiac Prostheses

  • Yukihiko Nosé
  • Yukio Ohashi
  • Kimitaka Tasai
  • Michael E. DeBakey


One of the most important prerequisites in developing a clinically applicable cardiac prosthesis is making it blood compatible. Two factors must be considered to prevent blood clotting inside a device: design to eliminate blood-stagnant areas within the device, and use of blood-compatible materials for the device’s blood-contacting surfaces.


Centrifugal Pump Blood Pump Artificial Heart Rotary Blood Pump Centrifugal Blood Pump 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    DeBakey ME. A simple continuous-flow blood transfusion instrument. New Orieans Med Sci J 1934; 87: 386–389. 16Google Scholar
  2. 2.
    DeBakey ME. Left ventricular bypass pump for cardiac assistance. Am J Cardiol 1971; 27: 3–11.CrossRefGoogle Scholar
  3. 3.
    Golding LR, Groves LK, Peter M, Jacobs G, Sukalac R, Nosé Y, and Loop FD. Initial clinical experiment with a new temporary left ventricular 17 assist device. Ann Thorac Surg 1980; 29: 66–69.CrossRefGoogle Scholar
  4. 4.
    Ku DN and Allen RC. Vascular graft, in The Biomedical Engineering Hand Book 1995; (Bronzino JD, ed), CRC, Boca Raton, FL, pp 1871–1878.Google Scholar
  5. 5.
    Nosé Y. Blood clotting problems in the artificial heart devices. JBiomed Mater Res 1967; 1: 151–169. 18Google Scholar
  6. 6.
    Affeld K, Zartnack F, Mohnhaupt R, and Bucherl ES. New methods for the in vitro investigations of the flow patterns in artificial hearts. Trans Am Soc Artif Intern Org 1976; 22: 460–467. 19Google Scholar
  7. 7.
    Boretos JW, Pierce WS, Baier RE, Leroy AF, and Donachy HJ. Surface and bulk characteristics of a polyether urethane for artificial hearts. J Biomed 20 Mater Res 1975; 9: 327–340.Google Scholar
  8. 8.
    Boretos JW and Pierce WS. Segmented polyurethane: a new elastomer for biomedical applications. Science 1967; 158: 1481, 1482.Google Scholar
  9. 9.
    Lyman DJ, Metcalf LC, Albo D Jr, Richards KFGoogle Scholar
  10. and Lalmb J. The effect of chemical structure and 21 surface properties of synthetic polymers on the coagulation of blood. III. In vivo adsorption of proteins on polymer surfaces. Trans Am Soc Artif Intern Organs 1974; 20: 474–478.Google Scholar
  11. 10.
    Nosé Y, Kawahito K, and Nakazawa T. Can we develop a non-pulsatile permanent rotary blood pump? Yes, we can. Artif Organs,in press.Google Scholar
  12. 11.
    Schiessler A, Warnecke H, Friedel N, Hennig E, 23 and Hetzer R. Clinical use of the Berlin biventricular assist device as a bridge to transplantation. Trans Am Soc Artif Intern Org 1990; 36: M706–708.Google Scholar
  13. 12.
    Farrar DJ, Lawson JH, Litwak P, and Cederwall G. Thoratec VAD system as a bridge to heart transplantation. J Heart Transp 1990; 9: 415–423.Google Scholar
  14. 13.
    Takano H, Taenaka Y, Noda H, Kinoshita M, Yagura A, Tatsumi E, Sekii H, Sasaki E, Umezu M, Nakatani T, Kyo S, Omoto R, Akutsu T, and Manabe H. Multi-institutionals studies of the National Cardiovascular Center ventricular assist system: use in 92 patients. Trans Am Soc Artif Intern Org 1989; 35: 541–544.CrossRefGoogle Scholar
  15. 14.
    Hung TC, Butter DB, Kormos RL, Sun Z, Borovetz HS, Griffith BP, and Yie C. Characteristics ofblood rheology in patients during Novacor left ventricular assist system support. Trans Am Soc ArtifIntern Org 1989; 35: 611–613.Google Scholar
  16. 15.
    Jarvik RK, DeVries WC, Semb BKH, Koul B, Copeland JG, Levinson MM, Griffith BP, Joyce LD, Cooley DA, Frazier OH, Cabrol CL, and Keon WJ. Surgical positioning of the Jarvik-7 artificial heart. JHeart Transpl 1986; 5: 184–195.Google Scholar
  17. 16.
    Deleuze PH, Besnerais PL, Mazzucotelli JP, Abe Y, Miyama M, Mourtada A, Benvenuti C, and Loisance DY. Use of the Nippon-Zeon pneumatic ventricular assist device as a bridge to cardiac transplantation. ASAIO J 1994; 40: M325–328.CrossRefGoogle Scholar
  18. 17.
    Sato N, Mohri H, Fujimasa I, Imachi K, Atsumi K, Sezai Y, Koyanagi H, Nitta S, and Miura M. Multivariate analysis of risk factors for thrombus formation in University of Tokyo ventricular assist device. J Thorac Cardiovasc Surg 1993; 106: 520–527.Google Scholar
  19. 18.
    Chandran KB and Shalaby SW. Soft tissue replacement, in The Biomedical Engineering Hand Book 1995; (Bronzino JD, ed), CRC, Boca Raton, FL, pp 648–665.Google Scholar
  20. 19.
    Harasaki H, Kiraly R, and Nosé Y. Endothelialization in blood pumps. Trans Am Soc ArtifIntern Org 1978; 24: 415–424.Google Scholar
  21. 20.
    Harasaki H, Kambic H, Whalen R, Murray J, Snow J, Murabayashi S, Hillegass D, Ozawa K, Kiraly R, and Nosé Y. Comparative study of flocked vs biolized surface for long-term assist pumps. Trans Am Soc Artif Intern Org 1980; 26: 470–474.Google Scholar
  22. 21.
    Branson DF, Picha GJ, and Desprez J. Expanded polytetrafluoroethylene as a microvascular graft: a study of four fibril lengths. Plast Reconst Surg 1985; 76: 754–763.CrossRefGoogle Scholar
  23. 22.
    Jonas RA, Ziemer G, Schoen FJ, Britton L, and Castaneda AR. A new sealant for knitted Dacron prostheses: minimally cross-linked gelatin. J Vasc Surg 1988; 7: 414–419.Google Scholar
  24. 23.
    Emoto H, Murabayashi S, Kambic HE, Zimmerman M, Goldcamp J, Horiuchi T, Harasaki H, and Nosé Y. Plasma protein and gelatin surface interactions kinetics of protein adsorption. Trans Am Soc Artif Intern Org 1987; 33: 606–613.Google Scholar
  25. 24.
    Emoto H, Kambic H, Chen JF, and Nosé Y. Characterization of rehydrated gelatin gels. Artif Org 1991; 15: 29–34.CrossRefGoogle Scholar
  26. 25.
    Nosé Y. The thirteenth Hastings Lecture: my life with the National Institutes of Health artificial heart program. Artif Org 1990; 14: 174–190.CrossRefGoogle Scholar
  27. 26.
    Killen DA, Piehler JM, Borkon AM, and Reed WA. Bio-Medicus ventricular assist device for salvage of cardiac surgical patients. Ann Thorac Surg 1991; 52: 230–235.CrossRefGoogle Scholar
  28. 27.
    Curtis J, Wagner-Mann C, Mann F, Demmy T, Walls J, and Turk J. Sub-chronic use of the St. Jude centrifugal pump as a mechanical assist device in calves. The Third Congress of the International Society for Rotary Blood Pumps, 1995; Houston, TX, abstract.Google Scholar
  29. 28.
    Wagner-Mann C, Curtis J, Mann F, Turk J, Demmy T, and Turpin T. Centrifugal sub-chronic mechanical assist in an unheparinized calf model. The Third Congress of the International Society for Rotary Blood Pumps, 1995; Houston, TX, abstract.Google Scholar
  30. 29.
    Joyce LD, Kiser JC, Eales F, King RM, Toninato CJ, and Hansen J. Experience with the Sam centrifugal pump as a ventricular assist device. Trans Am Soc Artif Intern Org 1990; 36: M619–623.Google Scholar
  31. 30.
    Ohtsubo S, Naito K, Matsuura M, Kawahito K, Shimono T, Makinouchi K, Tasai K, Ohara Y, DammGoogle Scholar
  32. G, Glueck J, Raskin S, Takatani S, Benkowski R, Short DH, Schinen SA, Noon GP, and Nosé Y. Initial clinical experience with the Baylor- Nikkiso centrifugal pump. Artif Org 1995; 19: 769–773.CrossRefGoogle Scholar
  33. 31.
    Kijima T, Nojiri C, Oshiyama H, Horiuchi K, Nogawa A, Hamasaki H, Ogihara M, Katsuda HS, Amano N, Fukasawa H, and Akutsu T. The margin of safety in the use of a straight path centrifugal blood pump. Artif Org 1994; 18: 680–686.CrossRefGoogle Scholar
  34. 32.
    Nakazawa T, Makinouchi K, Ohara Y, Ohtsubo S, Kawahito K, Tasai K, Shimono T, Benkowski R, Damm G, Takami Y, Glueck J, Noon G, and Nosé Y. Development of a pivot bearing supported seal-less centrifugal pump for ventricular assist device. Artif Org,in press.Google Scholar
  35. 33.
    Mizuguchi K, Damm G, Benkowsky R, Aber G, Bacak J, Svjkovsky P, Glueck J, Takatani S, Nosé Y, Noon GP, and DeBakey ME. Development of an axial flow ventricular assist device: in vitro and in vivo evaluation. Artif Org 1995; 19: 653–659.CrossRefGoogle Scholar
  36. 34.
    Jarvik RK. System considerations favoring rotary artificial hearts with blood-immersed bearings. Artif Org 1995; 19: 565–570.CrossRefGoogle Scholar
  37. 35.
    Davidson JA, Daigle KP, Smith PK, and Richards N. Wear-resistant hemocompatible Ti-Nb-Zr and Zr-Nb alloys to improve blood pump design and performance. Artif Org,in press.Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Yukihiko Nosé
  • Yukio Ohashi
  • Kimitaka Tasai
  • Michael E. DeBakey

There are no affiliations available

Personalised recommendations