Biomaterials and Their Biocompatibilities

  • Luigi Ambrosio
  • Gianfranco Peluso
  • Patricia A. Davis


Biomedical implants are used to resolve pathologies that cannot be corrected either by the natural healing process or traditional surgical intervention. Successful use of implants requires materials exhibiting specific characteristics particular to the application. Prosthetic implants must fulfill two criteria. The first is biocompatibility. That is, the material from which we construct the implant must not elicit an adverse response once inside the body. The second is demonstration of appropriate functional characteristics. The implant must perform as the tissue for which it substitutes. Efforts to satisfy the latter criterion in terms of mechanical properties led to the investigation of structural biomaterial composites. Since portions of the human body are composite structures, a progression toward the use of composite materials for application in the human body is natural.


Calcium Salt Biomed Mater Monomer Mixture Tissue Ingrowth Subcutaneous Implantation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nicolais L. Polym Eng Sci 1975; 15: 137.CrossRefGoogle Scholar
  2. 2.
    Halpin JC, et al. Processing of Thermosets 1984; ( Astarita G and Nicolais L, eds), Plenum, New York (1984).Google Scholar
  3. 3.
    Ambrosio L, et al. Composite Materials for Bone Fixation,vol. 2 1987; (Marshall I, ed), New York, p. 337.Google Scholar
  4. 4.
    Peluso G. et al. J Biom Mat Res 1991; 15: 637.Google Scholar
  5. 5.
    Anderson JM. JAmer Coll Toxicol 1988; 7: 469.CrossRefGoogle Scholar
  6. 6.
    Anderson JM. Am Soc Artif Int Organs 1988; 11: 101.CrossRefGoogle Scholar
  7. 7.
    ZiatsNA, Miller RM, and Anderson JM.Biomaterials 1988; 5: 13.Google Scholar
  8. 8.
    Wichterle 0 and Lim D. Nature 1960; 185: 117.CrossRefGoogle Scholar
  9. 9.
    Barvic M. JBiomed Mater Res 1971; 5: 225.CrossRefGoogle Scholar
  10. 10.
    Refojo M. JAppl Polym Sci 1965; 9: 3417.CrossRefGoogle Scholar
  11. 11.
    Sprincl L, et al. JBiomed Mater Res 1971; 4: 447.CrossRefGoogle Scholar
  12. 12.
    Sprincl L, et al. JBiomed Mater Res 1973; 7: 123.CrossRefGoogle Scholar
  13. 13.
    Imai Y and Masuhara E. JBiomed Mater Res 1982; 16: 609.CrossRefGoogle Scholar
  14. 14.
    Lyndon M. Br Polym J 1986; 18: 22.CrossRefGoogle Scholar
  15. 15.
    Seifert L and Greer R., JBiomed Mater Res 1985; 19: 1043.CrossRefGoogle Scholar
  16. 16.
    Kamei S, et al. Colloid Polym Sci 1986; 264: 743.CrossRefGoogle Scholar
  17. 17.
    Hogt, A, et al. JBiomed Mater Res 1986; 20: 533.CrossRefGoogle Scholar
  18. 18.
    Shimada M, et al. Eur Polym J 1983; 19: 929.Google Scholar
  19. 19.
    Okano T, et al. JBiomed Mater Res 1986; 20: 919.CrossRefGoogle Scholar
  20. 20.
    Okano T, et al. JBiomed Mater Res 1986; 20: 1035.CrossRefGoogle Scholar
  21. 21.
    Maruyama A, et al. Biomaterials 1988; 9: 471.CrossRefGoogle Scholar
  22. 22.
    Davis P, et al. JMater Sci 1992; 3 (5): 359.Google Scholar
  23. 23.
    Smetana K Jr, et al. J Biomed Mater Res 1987; 21: 1247.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Luigi Ambrosio
  • Gianfranco Peluso
  • Patricia A. Davis

There are no affiliations available

Personalised recommendations