Adaptive Reception

  • Jan W. M. Bergmans


The use of adaptation techniques enables a data receiver to deal with variations of the channel parameters. These come in two types:
  1. 1.

    Piece-wise variations: here an ensemble of fixed channels is available and it is a priori unknown to which one the receiver will be connected. Examples include narrowband ISDN, where subscribers are located at different distances from the local telephone exchange, and digital recording channels with piece-wise differences as a result of mechanical tolerances, different bias currents or use of different brands of recording media. Variations of this type are all quasi-static, and in principle adaptation needs to occur only once.

  2. 2.

    Temporal variations: These occur when a single channel varies in time. The rate of variation can be slow, such as for thermal changes of an ISDN connection. Conversely, very rapid variations arise, for example, in high-density digital magnetic recording due to fluctuations of head-to-media spacing.



Adaptive Filter Automatic Gain Control Loop Gain Decision Feedback Equalizer Symbol Interval 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    O. Agazzi, D.G. Messerschmitt and D.A. Hodges, Nonlinear Echo Cancellation of Data Signals, IEEE Trans. Commun., Vol. COM-30, pp. 2421–2433, Nov. 1982.CrossRefGoogle Scholar
  2. [2]
    S.T. Alexander, Adaptive Signal Processing, Theory and Applications. Vienna: Springer Verlag, 1986.zbMATHCrossRefGoogle Scholar
  3. [3]
    C.T. Beare, `The Choice of the Desired Impulse Response in Combined Linear-Viterbi Algorithm Equalizers’, IEEE Trans. Commun., Vol. 26, No. 8, pp. 1301–1307, Aug. 1978.CrossRefGoogle Scholar
  4. [4]
    M.G. Bellanger, Adaptive Digital Filters and Signal Analysis. New York and Basel: Marcel Dekker, Inc., 1987.Google Scholar
  5. [5]
    J.W.M. Bergmans, S.A. Rajput and F.A.M. van de Laar, ‘On the Use of Decision Feedback for Simplifying the Viterbi Detector’, Philips J. Res., Vol. 42, No. 4, pp. 399–428, 1987.Google Scholar
  6. [6]
    J.W.M. Bergmans, S. Mita and M. Izumita, `Characterization of Digital Recording Channels’, Philips J. Res., Vol. 44, No. 1, pp. 57–96, 1989.Google Scholar
  7. [7]
    N.J. Bershad, `Analysis of the Normalized LMS Algorithm with Gaussian Inputs’, IEEE Trans. Acoust., Speech, Signal Process, Vol. 34, pp. 793–806, Aug. 1986.Google Scholar
  8. [8]
    C. Caraiscos and B. Liu, `A Roundoff Error Analysis of the LMS Adaptive Algorithm’, IEEE Trans. Acoust., Speech, Signal Process, Vol. 32, pp. 34–41, Feb. 1984.zbMATHGoogle Scholar
  9. [9]
    J.K. Chamberlain, F.M. Clayton, H. Sari and P. Vandamme, `Receiver Techniques for Microwave Digital Radio’, IEEE Communications Magazine, Vol. 24, No. 11, pp. 43–54, Nov. 1986.CrossRefGoogle Scholar
  10. [10]
    R.W. Chang, ‘A New Equalizer Structure for Fast Start-Up Digital Communication’, Bell Syst. Tech. J., Vol. 50, pp. 1969–2014, July-Aug. 1971.Google Scholar
  11. [11]
    G. Cherubini, `Nonlinear Self-Training Adaptive Equalization for Partial-Response Systems’, IEEE Trans. Commun., Vol. COM-42, No. 2/3/4, pp. 367–376, Feb./March/Apr. 1994.Google Scholar
  12. [12]
    G. Cherubini, S. Ölçer, and G. Ungerboeck, `Adaptive Analog Equalization and Receiver Front-End Control for Multilevel Partial-Response Transmission over Metallic Cables’, IEEE Trans. Commun., Vol. 44, No. 6, pp. 675–685, June 1996.CrossRefGoogle Scholar
  13. [13]
    R.D. Cideciyan, E Dolivo, R. Hermann, W. Hirt and W. Schott, `A PRML System for Digital Magnetic Recording’, IEEE J. Selected Areas Commun., Vol. 10, No. 1, pp. 3856, Jan. 1992.CrossRefGoogle Scholar
  14. [14]
    J.M. Cioffi, `Limited-Precision Effects in Adaptive Filtering’, IEEE Trans. Circuits Syst., Vol. 34, No. 7, pp. 821–833, July 1987.CrossRefGoogle Scholar
  15. [15]
    T.A.C.M. Claasen and W.F.G. Mecklenbräuker, `Comparison of the Convergence of Two Algorithms for Adaptive FIR Digital Filters’, IEEE Trans. Circuits Syst., Vol. 28, No. 6, pp. 510–518, June 1981.CrossRefGoogle Scholar
  16. [16]
    T.A.C.M. Claasen and W.F.G. Mecklenbräuker, `Adaptive Techniques for Signal Processing in Communications’, IEEE Communications Magazine, Vol. 23, No. 11, pp. 8–19, Nov. 1985.CrossRefGoogle Scholar
  17. [17]
    G. Clark, S.K. Mitra and S.R. Parker, `A Unified Approach to Time-and Frequency-Domain Realization of FIR Adaptive Digital Filters’, IEEE Trans. Acoust., Speech, Signal Proces, Vol. 31, No. 5, pp. 1073–1083, Oct. 1983.Google Scholar
  18. [18]
    C.F.N. Cowan, S.G. Smith and J.H. Elliott, `A Digital Adaptive Filter Using a Memory-Accumulator Architecture: Theory and Realization’, IEEE Trans. Acoust., Speech, Signal Process, Vol. 31, No. 3, pp. 541–549, June 1983.Google Scholar
  19. [19]
    C.F.N. Cowan and P.M. Grant, Adaptive Filters. Englewood Cliffs, New Jersey: Prentice-Hall, 1985.Google Scholar
  20. [20]
    D.L. Duttweiler, `Adaptive Filter Performance with Nonlinearities in the Correlation Multiplier’, IEEE Trans. Acoust., Speech, Signal Proces, Vol. 30, pp. 578–586, Aug. 1982.Google Scholar
  21. [21]
    A.W.M. van den Enden and N.A.M. Verhoeckx, Discrete-Time Signal Processing-An Introduction. Hemel Hempstead, Hertfordshire ( UK ): Prentice-Hall, 1989.Google Scholar
  22. [22]
    D.D. Falconer and F.R. Magee, Jr., `Adaptive Channel Memory Truncation for Maximum-Likelihood Sequence Estimation’, Bell Syst. Tech. J., Vol. 52, pp. 1541–1562, Nov. 1973.zbMATHGoogle Scholar
  23. [23]
    D.D. Falconer and L. Ljung, `Application of Fast Kalman Estimation to Adaptive Equalization’, IEEE Trans. Commun., Vol. 26, pp. 1439–1446, Oct. 1978.CrossRefGoogle Scholar
  24. [24]
    S.A. Fredricksson, `Joint Optimization of Transmitter and Receiver Filters in Digital PAM Systems with a Viterbi Detector’, IEEE Trans. Inform. Theory, Vol. 18, No. 2, pp. 200–210, Mar. 1976.CrossRefGoogle Scholar
  25. [25]
    B. Friedlander, `Lattice Filtes for Adaptive Processing’, Proc. IEEE, Vol. 70, No. 8, pp. 829–867, Aug. 1982.CrossRefGoogle Scholar
  26. [26]
    D.A. George, R.R. Bowen and J.R. Storey, `An Adaptive Decision Feedback Equalizer’, IEEE Trans. Commun. Technol., Vol. 19, pp. 281–293, June 1971.CrossRefGoogle Scholar
  27. [27]
    A. Gersho, `Adaptive Equalization of Highly Dispersive Channels’, Bell Syst. Tech. J., Vol. 48, pp. 55–70, Jan. 1969.zbMATHGoogle Scholar
  28. [28]
    P.J. van Gerwen, N.A.M. Verhoeckx and T.A.C.M. Claasen, `Design Considerations for a 144 kbit/s Digital Transmission Unit for the Local Telephone Network’, IEEE J. Select. Areas Commun., Vol. 2, No. 2, pp. 314–323, Mar. 1984.CrossRefGoogle Scholar
  29. [29]
    R.D. Gitlin, J.E. Mazo and M.G. Taylor, `On the Design of Gradient Algorithms for Digitally Implemented Adaptive Filters’, IEEE Trans. Circuit Theory, Vol. 20, pp. 125–136, Mar. 1973.Google Scholar
  30. [30]
    R.D. Gitlin and F.R. Magee, Jr., `Self-Orthogonalizing Algorithms for Accelerated Convergence of Adaptive Equalizers’, IEEE Trans. Commun., Vol. 25, pp. 666–672, July 1977.CrossRefGoogle Scholar
  31. [31]
    R.D. Gitlin and S.B. Weinstein, `On the Required Tap-Weight Precision for Digitally-Implemented Adaptive Mean-Squared Equalizers’, Bell Syst. Tech. J., Vol. 58, pp. 301321, Feb. 1979.Google Scholar
  32. [32]
    R.D. Gitlin, H.C. Meadors, Jr., and S.B. Weinstein, `The Tap-Leakage Algorithm: An Algorithm for the Stable Operation of a Digitally Implemented, Fractionally-Spaced Adaptive Equalizer’, Bell Syst. Techn. J., Vol. 61, pp. 1817–1939, Oct. 1982.Google Scholar
  33. [33]
    R.D. Gitlin and H.C. Meadors, Jr., `Center-Tap Tracking Algorithms for Timing Recovery’, ATT Techn. J., Vol. 66, pp. 63–78, Nov./Dec. 1987.Google Scholar
  34. [34]
    D.N. Godard, `Channel Equalization Using a Kalman Filter for Fast Data Transmission’, IBM J. Res. Develop., Vol. 18, pp. 267–273, May 1974.zbMATHGoogle Scholar
  35. [35]
    D.N. Godard, `Self-Recovering Equalization and Carrier Tracking in Two-Dimensional Data Communication Systems’, IEEE Trans. Commun., Vol. 28, pp. 1867–1875, Nov. 1980.CrossRefGoogle Scholar
  36. [36]
    L.J. Griffiths and P.E. Mantey, `Iterative Least-Squares Algorithm for Signal Extraction’, in Proc. Second Hawaii Int. Conf System Sciences, Western Periodicals Co., pp. 767–770, 1969.Google Scholar
  37. [37]
    L. Guidoux, ‘Egalisateur Autoadaptif a Double Echantillonage’, L’onde Electronique, Vol. 55, pp. 9–13, Jan. 1975.Google Scholar
  38. [38]
    S. Haykin, Adaptive Filter Theory. Englewood Cliffs, New Jersey: Prentice-Hall, 1986.Google Scholar
  39. [39]
    R.W. Harris, D.M. Chabries and F.A. Bishop, ‘A Variable Step Adaptive Filter Algorithm’, IEEE Trans. Acoust. Speech, Signal Proces, Vol. 34, No. 2, pp. 309–316, Apr. 1986.Google Scholar
  40. [40]
    N. Holte and S. Stueflotten, `A New Digital Echo Canceller for Two-Wire Subscriber Lines’, IEEE Trans. Commun., Vol. 29, No. 11, pp. 1573–1581, 1981.CrossRefGoogle Scholar
  41. [41]
    M.L. Honig and D.G. Messerschmitt, Adaptive Filters: Structures, Algorithms, and Applications. Boston: Kluwer Academic Publishers, 1984.zbMATHGoogle Scholar
  42. [42]
    C.R. Johnson, `Adaptive IIR Filtering: Current Results and Open Issues’, IEEE Trans. Inform. Theory, Vol. 30, No. 2, pp. 237–250, March 1984.MathSciNetCrossRefGoogle Scholar
  43. [43]
    P. Kabal, `The Stability of Adaptive Minimum Mean Square Error Equalizers Using Delayed Adjustment’, IEEE Trans. Commun., Vol. 31, pp. 430–432, Mar. 1983.zbMATHCrossRefGoogle Scholar
  44. [44]
    T. Kameyama, S. Takanami and R. Arai, `Improvement of Recording Density by Means of Cosine Equalizer’, IEEE Trans. Magn., Vol. 12, No. 6, pp. 746–748, Nov. 1976.CrossRefGoogle Scholar
  45. [45]
    H. Kobayashi, `Application of Probabilistic Decoding to Digital Magnetic Recording Systems’, IBM J. Res. Develop., pp. 64–74, Jan. 1971.Google Scholar
  46. [46]
    C.P. Kwong, `Dual Sign Algorithm for Adaptive Filtering’, IEEE Trans. Commun., Vol. 34, No. 12, pp. 272–1275, Dec. 1986.CrossRefGoogle Scholar
  47. [47]
    R.H. Kwong and E.W. Johnston, `A Variable Step Size LMS Algorithm’, IEEE Trans. on Signal Processing, Vol. 40, No. 7, pp. 1633–1642, July 1992.zbMATHCrossRefGoogle Scholar
  48. [48]
    R.W. Lucky, `Automatic Equalization for Digital Communications’, Bell Syst. Tech. J., Vol. 44, pp. 547–588, April 1965.MathSciNetGoogle Scholar
  49. [49]
    R.W. Lucky, J. Salz and E.J.Weldon, Jr., Principles of Data Communication. New York: McGraw-Hill, 1968.Google Scholar
  50. [50]
    O. Macchi and E. Eweda, `Convergence Characteristics of Self-Adaptive Equalizers’, IEEE Trans. Inform. Theory, Vol. TT-30, pp. 161–176, Mar. 1984.Google Scholar
  51. [51]
    V. J. Mathews, `Performance Analysis of Adaptive Filters Equipped with the Dual Sign Algorithm’, IEEE Trans. on Signal Processing, Vol. 39, No. 1, pp. 85–91, Jan. 1991.MathSciNetzbMATHCrossRefGoogle Scholar
  52. [52]
    J.E. Mazo, `On the Independence Theory of Equalizer Convergence’, Bell Syst. Tech. J., Vol. 58, No. 5, pp. 963–993, May-June 1979.zbMATHGoogle Scholar
  53. [53]
    J.E. Mazo, `Analysis of Decision-Directed Equalizer Convergence’, Bell Syst. Tech. J., Vol. 59, No. 10, pp. 1857–1876, Dec. 1980.MathSciNetGoogle Scholar
  54. [54]
    J.G. McWhirter, `RLS Minimization Using a Systolic Array’, Proc. SPIE, Vol. 43, pp. 415–431, 1983.Google Scholar
  55. [55]
    D.V. Mercy, `A Review of Automatic Gain Control Theory’, The Radio and Electronic Engineer, Vol. 51, No. 11 /12, pp. 579–590, Nov/Dec. 1981.Google Scholar
  56. [56]
    D.G. Messerschmitt, `Design of a Finite Impulse Response for the Viterbi Algorithm and Decision Feedback Equalizer’, in Proc. IEEE Int. Conf. Communications, ICC-74 (Minneapolis, MN, June 17–19, 1974 ).Google Scholar
  57. [57]
    H. Meyr and G. Ascheid, Synchronization in Digital Communications-Volume I. New York: Wiley, 1990.Google Scholar
  58. [58]
    A. Milewski, `Periodic Sequences with Optimal Properties for Channel Estimation and Fast Start-Up Equalization’, IBM J. Res. Develop., Vol. 27, pp. 426–431, Sept. 1983.CrossRefGoogle Scholar
  59. [59]
    S. Mita, H. Ide and Y. Inagaki, `A Simplified Automatic Equalizer for Digital VTR’, Journal of the Institute of Television Engineers of Japan, Vol. 44, No. 6, pp. 728–735, June 1990.CrossRefGoogle Scholar
  60. [60]
    K.H. Mueller, `A New, Fast-Converging Mean-Square Algorithm for Adaptive Equalizers with Partial-Response Signaling’, Bell Syst. Tech. J., Vol. 54, No. 1, pp. 143–153, Jan. 1975.MathSciNetGoogle Scholar
  61. [61]
    K.H. Mueller and D.A. Spaulding, `Cyclic Equalization-A New Rapidly Converging Equalization Technique for Synchronous Data Communication’, Bell Syst. Tech. J., Vol. 54, pp. 369–406, Feb. 1975.MathSciNetGoogle Scholar
  62. [62]
    J.I. Naguno and A. Noda, `A Learning Method for System Identification’, IEEE Trans. Autom. Contr., Vol. 12, pp. 282–287, June 1967.CrossRefGoogle Scholar
  63. [63]
    J.E. Ohlson, `Exact Dynamics of Automatic Gain Control’, IEEE Trans. Commun., Vol. 22, No. 1, pp. 72–75, Jan. 1974.CrossRefGoogle Scholar
  64. [64]
    B.M. Oliver, `Automatic Volume Control as a Feedback Problem’, Proc. IRE, Vol. 36, pp. 466–473, Apr. 1948.CrossRefGoogle Scholar
  65. [65]
    J.G. Proakis and J.H. Miller, `An Adaptive Receiver for Digital Signaling through Channels with Intersymbol Interference’, IEEE Trans. Inform. Theory, Vol. 15, pp. 484–497, July 1969.CrossRefGoogle Scholar
  66. [66]
    J.G. Proakis, Digital Communications. New York: McGraw-Hill, 1983 (2nd ed. 1989 ).Google Scholar
  67. [67]
    S.U.H. Qureshi and E.E. Newhall, `An Adaptive Receiver for Data Transmission Over Time-Dispersive Channels’, IEEE Trans. Inform. Theory, Vol. 19, pp. 448–457, July 1973.zbMATHCrossRefGoogle Scholar
  68. [68]
    S.U.H. Qureshi, `Adjustment of the Position of the Reference Tap of an Adaptive Equalizer’, IEEE Trans. Commun., Vol. 21, pp. 1046–1052, Sept. 1973.CrossRefGoogle Scholar
  69. [69]
    S.U.H. Qureshi, `Timing Recovery for Equalized Partial-Response Systems’, IEEE Trans. Commun., Vol. 24, pp. 1326–1331, Dec. 1976.CrossRefGoogle Scholar
  70. [70]
    S.U.H. Qureshi, `Fast Start-Up Equalization With Periodic Training Sequences’, IEEE Trans. Inform. Theory, Vol. 23, pp. 553–563, Sept. 1977.CrossRefGoogle Scholar
  71. [71]
    S.U.H. Qureshi, `Adaptive Equalization’, Proc. IEEE, Vol. 73, No. 9, pp. 1349–1387, Sep. 1985.CrossRefGoogle Scholar
  72. [72]
    Y. Sato, ‘A Method of Self-Recovering Equalization for Multi-Level Amplitude Modulation’, IEEE Trans. Commun., Vol. 23, pp. 679–682, June 1975.CrossRefGoogle Scholar
  73. [73]
    E.H. Satorius and S.T. Alexander, `Channel Equalization Using Adaptive Lattice Algorithms’, IEEE Trans. Commun. (Concise Paper), Vol. 27, pp. 899–905, June 1979.zbMATHGoogle Scholar
  74. [74]
    R.C. Schneider, ‘An Improved Pulse-Slimming Method for Magnetic Recording’, IEEE Trans. Magn., Vol. 11, No. 5, pp. 1240–1241, Sept. 1975.CrossRefGoogle Scholar
  75. [75]
    C.A. Siller, Jr., and W. Debus, `Decision-Directed Fractionally-Spaced Equalizer Control Using Time-Domain Interpolation’, IEEE Trans. Commun., Vol. 39, No. 2, pp. 182186, Feb. 1991.Google Scholar
  76. [76]
    G. Strang, Linear Algebra and its Applications,1976, p. 107, p. 221, p. 224.Google Scholar
  77. [77]
    R.A. Tarbox, `An Automatic Equalizer for Digital Repeatered Lines’, Proc. IEEE, Vol. 57, pp. 363–364, March 1969.CrossRefGoogle Scholar
  78. [78]
    J.K. Tugnait, `Blind Estimation of Digital Communication Channel Impulse Response’, IEEE Trans. Commun., Vol. COM-42, No. 2/3/4, pp. 1606–1616, Feb./March/Apr. 1994.Google Scholar
  79. [79]
    G. Ungerboeck, `Theory on the Speed of Convergence in Adaptive Equalizers for Digital Communication’, IBM J. Res. Develop., Vol. 16, pp. 546–555, Nov. 1972.zbMATHCrossRefGoogle Scholar
  80. [80]
    G. Ungerboeck, `Adaptive Maximum-Likelihood Receiver for Carrier-Modulated Data-Transmission Systems’, IEEE Trans. Commun., Vol. 22, pp. 624–636, May 1974.CrossRefGoogle Scholar
  81. [81]
    G. Ungerboeck, `Fractional Tap Spacing and Consequences for Clock Recovery in Data Modems’, IEEE Trans. Commun., Vol. 24, pp. 856–864, Aug. 1976.CrossRefGoogle Scholar
  82. [82]
    N.A.M. Verhoeckx, H.C. Elzen, F.A.M. Snijders and P.J. van Gerwen, `Digital Echo Cancellation for Baseband Data Transmission’, IEEE Trans. Acoust., Speech, Signal Process, Vol. 27, No. 6, pp. 768–781, Dec. 1979.Google Scholar
  83. [83]
    N.A.M. Verhoeckx and T.A.C.M. Claasen, `Some Considerations on the Design of Adaptive Filters Equipped with the Sign Algorithm’, IEEE Trans. Commun., Vol. 32, No. 3, pp. 258–266, March 1984.CrossRefGoogle Scholar
  84. [84]
    W.K. Victor and M.H. Brockmann, `The Application of Linear Servo Theory to the Design of AGC Loops’, Proc. IRE, Vol. 48, pp. 234–238, Feb. 1960.CrossRefGoogle Scholar
  85. [85]
    J.O. Voorman, P.J. Snijder, P.J. Barth, and J.S. Vromans, `A One-Chip Automatic Equalizer for Echo-Reduction in Teletext’, IEEE Trans. Cons. Elects, Vol. 27, No. 3, pp. 512–529, 1981.CrossRefGoogle Scholar
  86. [86]
    F.D. Waldhauer, `Quantized Feedback in an Experimental 280-Mb/s Digital Receiver for Coaxial Transmission’, IEEE Trans. Commun., Vol. 22, Jan. 1974.Google Scholar
  87. [87]
    B. Widrow and M.E. Hoff, Jr., `Adaptive Switching Circuits’, in IRE WESCON Conf. Rec., pt. 4, pp. 96–104, Aug. 1960.Google Scholar
  88. [88]
    B. Widrow, J.M. McCool, M.G. Larimore and R. Johnson, Jr., `Stationary and Nonstationary Learning Characteristics of the LMS Adaptive Filter’, Proc. IEEE, Vol. 64, No. 8, pp. 1151–1162, Aug. 1976.MathSciNetCrossRefGoogle Scholar
  89. [89]
    B. Widrow and S.D. Stearns, Adaptive Signal Processing. Englewood Cliffs, New Jersey: Prentice-Hall, 1985.Google Scholar
  90. H.W. Wong-Lam, J.W.M. Bergmans and K.D. Fisher, `Analysis of Zero-Forcing Adaptation Algorithms’, submitted to IEEE Trans. Commun.,1995.Google Scholar
  91. [91]
    R.W. Wood and D.A. Peterson, `Viterbi Detection of Class IV Partial Response on a Magnetic Recording Channel’, IEEE Trans. Commun., Vol. 34, No. 5, pp. 454–461, May 1986.CrossRefGoogle Scholar
  92. [92]
    P. Xue and B. Liu, `Adaptive Equalizer Using Finite-Bit Power-of-Two Quantization’, IEEE Trans. Acoust., Speech, Signal Process, Vol. 34, No. 6, pp. 1603–1611, Dec. 1986.Google Scholar
  93. [93]
    C.L. Zahm, `Applications of Adaptive Arrays to Suppress Strong Jammers in the Presence of Weak Signals’, IEEE Trans. Aerosp. Electron. Syst., Vol. 9, pp. 260–271, Mar. 1973.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1996

Authors and Affiliations

  • Jan W. M. Bergmans
    • 1
  1. 1.Philips ResearchEindhovenThe Netherlands

Personalised recommendations