Skip to main content

Abstract

Baseband data transmission is often hampered by linear intersymbol interference (ISI) and noise (see Chapters 2 and 3). In the present chapter we deal with the oldest technique to counter these two disturbances, namely linear equalization. The linear equalizer (LE) is just a linear filter that suppresses ISI at the periodic instants at which decisions are taken. The name of the technique originates from the fact that the filter must essentially equalize the transfer characteristics of the channel across a band that ranges from DC up to about the Nyquist frequency. A roll-off beyond this band serves to suppress out-of-band noise. The LE can be analog, digital or a mixture of the two. The digital portion of the LE is called T-spaced when the sampling rate coincides with the symbol rate 1/T, and fractionally-spaced when it is oversampled with respect to symbol rate. If the channel characteristics are a priori known then the LE can be a fixed filter. More often than not, however, channel characteristics are uncertain and the LE is adaptive. In the present chapter we are mainly concerned with the desired transfer characteristics of the LE, and to a lesser extent with the problem of achieving or approximating these desired characteristics with a practical equalizer implementation. That problem is inherent in adaptive equalization as discussed in Chapter 8.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.R. Aaron and D.W. Tufts, ‘Intersymbol Interference and Error Probability’, IEEE Trans. Inform. Theory, Vol. IT-12, No. 1, pp. 26–34, Jan. 1966.

    Google Scholar 

  2. A.N. D’Andrea, F. Guglielmi, U. Mengali and A. Spalvieri, ‘Design of Transmit and Receive Digital Filters for Data Communications’, IEEE Trans. Commun., Vol. 42, No. 2/3/4, pp. 357–359, Feb./March/Apr. 1994.

    Google Scholar 

  3. H. Baher and J. Beneat, ‘Design of Analog and Digital Data Transmission Filters’, IEEE Trans. Circuits Syst., Vol. 40, No. 7, pp. 449–460, 1993.

    Google Scholar 

  4. W.R. Bennett and J.R. Davey, Data Transmission. New York: McGraw-Hill, 1965.

    Google Scholar 

  5. J.W.M. Bergmans and A.J.E.M. Janssen, ‘Robust Data Equalization, Fractional Tap Spacing and the Zak Transform’, Philips J. Res., Vol. 42, No. 4, pp. 351–398, 1987.

    MathSciNet  Google Scholar 

  6. J.W.M. Bergmans, ‘SNR Merits of Binary Modulation Codes in Equalized Digital Recording Systems’, IEEE J. Selected Areas Commun., Vol. SAC-10, No. 1, pp. 157–167, Jan. 1992.

    Google Scholar 

  7. P.R. Chevillat and G. Ungerboeck, ‘Optimum FIR Transmitter and Receiver Filters for Data Transmission over Band-Limited Channels’, IEEE Trans. Commun., Vol. COM-30, No. 8, pp. 1909–1915, Aug. 1982.

    Google Scholar 

  8. J.M. Cioffi, G.P. Dudevoir, M.V. Eyuboglu, and G.D. Forney, Jr., ‘MMSE Decision-Feedback Equalizers and Coding–Part I: Equalization Results’, IEEE Trans. Commun., Vol. 43, No. 10, pp. 2582–2594, Oct. 1995.

    MATH  Google Scholar 

  9. A. Duel-Hallen, ‘Equalizers for Multiple Input/Multiple Output Channels and PAM Systems with Cyclostationary Input Sequences’, IEEE J. Selected Areas Commun., Vol. SAC-10, No. 3, pp. 630–639, Apr. 1992.

    Google Scholar 

  10. W. van Etten, ‘An Optimum Linear Receiver for Multiple Channel Digital Transmission Systems’, IEEE Trans. Commun., Vol. COM-23, No. 8, pp. 828–834, 1975.

    Google Scholar 

  11. R.A. Gibby and J.W. Smith, ‘Some Extensions of Nyquist’s Telegraph Transmission Theory’, Bell Syst. Tech. J., Vol. 44, pp. 1487–1510, Sept. 1965.

    Google Scholar 

  12. R.D. Gitlin and S.B. Weinstein, ‘Fractionally-Spaced Equalization: An Improved Digital Transversal Equalizer’, Bell Syst. Tech. J., Vol. 60, No. 2, pp. 275–296, Feb. 1981.

    Google Scholar 

  13. L. Guidoux, ‘Egalisateur Autoadaptif â Double Èchantillonage’, L’Onde Èlectronique, Vol. 55, No. 1, pp. 9–13, 1975.

    Google Scholar 

  14. M.L. Honig, P. Crespo and K. Steiglitz, ‘Suppression of Near-End and Far-End Crosstalk by Linear Pre-and Post-Filtering’ IEEE J. Selected Areas Commun., Vol. SAC-10, No. 3, pp. 614–629, Apr. 1992.

    Google Scholar 

  15. G.E. Jacoby, ‘Signal Equalization in Digital Magnetic Recording’, IEEE Trans. Magn., Vol. MAG-4, No. 3, pp. 302–305, Sept. 1968.

    Google Scholar 

  16. J. Jess and H.W. Schüssler, ‘A Class of Pulse-Forming Networks’, IEEE Trans. Circuit Theory, Vol. CT-12, pp. 393–400, Sept. 1965.

    Google Scholar 

  17. A.R. Kaye and D.A. George, ‘Transmission of Multiplexed PAM Signals Over Multiple Channel and Diversity Systems’, IEEE Trans. Commun. Technol., Vol. COM-18, pp. 520526, Oct. 1970.

    Google Scholar 

  18. M. Kavehrad, ‘Timing-Jitter-Suppressed Partial-Response Signals’, Electronic Circuits and Systems, Vol. 3, No. 5, pp. 201–207, Sept. 1979.

    Article  Google Scholar 

  19. K. Küpfmüller, ‘Transient Phenomena in Wave Filters’, Elek. Nachr.-Techn., Vol. 1, p. 141, 1924.

    Google Scholar 

  20. E.A. Lee and D.G. Messerschmitt, Digital Communication. Boston: Kluwer Academic Publishers, 1988.

    Book  Google Scholar 

  21. R.W. Lucky, J. Salz and E.J. Weldon, Jr., Principles of Data Communication. New York: McGraw-Hill, 1968.

    Google Scholar 

  22. S.E. Nader and L.F. Lind, ‘Optimal Data Transmission Filters’, IEEE Trans. Circuits Syst., Vol. CAS-26, pp. 36–45, Jan. 1979.

    Google Scholar 

  23. H. Nyquist, ‘Certain Factors Affecting Telegraph Speed’, Bell Syst. Tech. J., Vol. 3, No. 2, pp. 324–346, 1924.

    Google Scholar 

  24. H. Nyquist, ‘Certain Topics in Telegraph Transmission Theory’, Trans. AIEE (Commun. and Electronics), Vol. 47, pp. 617–644, 1928.

    Google Scholar 

  25. P.K.D. Pai, A.A. Abidi and R.A. Gomez, ‘A Simple Continuous-Time Equalizer for Use in Magnetic Storage Read Channels’, IEEE J. Selected Areas Commun., Vol. SAC-10, No. 1, pp. 289–299, 1992.

    Google Scholar 

  26. J.G. Proakis, Digital Communications. New York: McGraw-Hill, 1983 (2nd ed. 1989 ).

    Google Scholar 

  27. S.U.H. Qureshi, ‘daptive Equalization’, Proc. IEEE, Vol. 73, No. 9, pp. 1349–1387, Sept. 1985.

    Article  Google Scholar 

  28. J. Salz, ‘igital Transmission over Cross-Coupled Linear Channels’, ATandT Technical Journal, Vol. 64, No. 6, pp. 1147–1159, July-Aug. 1985.

    Google Scholar 

  29. D. Shnidman, ‘ Generalized Nyquist Criterion and an Optimum Linear Receiver for a Pulse Modulation System’, Bell Syst. Tech. J., Vol. 46, pp. 2163–2177, Nov. 1967.

    Google Scholar 

  30. D.A. Spauling, ‘ynthesis of Pulse-Shaping Networks in the Time Domain’, Bell Syst. Tech. J., Vol. 48, pp. 2425–2444, Sept. 1969.

    Google Scholar 

  31. Y.P. Tsividis and J.O. Voorman (Eds.), Integrated Continuous-Time Filters. New York: IEEE Press, 1993.

    Google Scholar 

  32. D.W. Tufts, ‘yquist’s Problem–The Joint Optimization of Transmitter and Receiver in Pulse Amplitude Modulation’, Proc. IEEE, Vol. 53, pp. 248–259, March 1965.

    Article  Google Scholar 

  33. D.W. Tufts and T. Berger, ‘ptimum Pulse Amplitude Modulation–Part I: Transmitter-Receiver Design and Bounds from Information Theory’, IEEE Trans. Inform. Theory, Vol. IT-13, No. 2, pp. 196–208, Apr. 1967.

    Google Scholar 

  34. D.W. Tufts and T. Berger, ‘ptimum Pulse Amplitude Modulation–Part II: Inclusion of Timing Jitter’, IEEE Trans. Inform. Theory, Vol. IT-13, No. 2, pp. 209–216, Apr. 1967.

    Google Scholar 

  35. G. Ungerboeck, ‘Fractional Tap-Spacing Equalizer and Consequences for Clock Recovery in Data Modems’, IEEE Trans. Commun., Vol. COM-24, No. 8, pp 856–864, Aug. 1976.

    Google Scholar 

  36. P. Vandamme, ‘On the Synthesis of Digital Transmit Filters’, IEEE Trans. Commun., Vol. COM-39, No. 4, pp. 485–487, Apr. 1991.

    Google Scholar 

  37. R.W. Wood, ‘New Detector for 1,k Codes Equalized to Class II Partial Response’, Proc. INTERMAG’89, March 28–31, 1989, Washington, D.C., U.S.A.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bergmans, J.W.M. (1996). Linear Equalization. In: Digital Baseband Transmission and Recording. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2471-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2471-4_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5164-9

  • Online ISBN: 978-1-4757-2471-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics