Baseband Modulation Codes

  • Jan W. M. Bergmans
Chapter

Abstract

Baseband modulation codes are widely applied in such diverse fields as digital line transmission [21, 28, 18, 116], digital optical transmission [111, 16], and digital magnetic and optical storage [ 105, 100, 106]. They act to translate the source data sequence d n into a sequence a k that is transmitted across the channel (Fig. 4.1; see also Chapter 3). The principal goal is to enable the receiver to produce reliable decisions \({\hat d_n}\) about d n . Code design should, therefore, account for the characteristics of both channel and receiver. (Because modulation coding is the only type of coding that we consider in this chapter, we shall usually say ‘coding’ where we mean ‘modulation coding’.)

Keywords

Power Spectral Density Code Word Modulation Code Nyquist Frequency Linear Feedback Shift Register 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M.R. Aaron, ‘PCM Transmission in the Exchange Plant’, Bell Syst. Tech. J., Vol. 41, pp. 99–141, Jan. 1962.Google Scholar
  2. [2]
    I.L. Adams, ‘An Improved Pseudo-Random Digital Sequence Error-Detector’, POEEJ (Electrical Engineering Journal of the British Post Office), Vol. 73, pp. 186–187, Oct. 1980.Google Scholar
  3. [3]
    R.L. Adler, D. Coppersmith and M. Hassner, ‘Algorithms for Sliding Block Codes. An Application of Symbolic Dynamics to Information Theory’, IEEE Trans. Inform. Theory, Vol. IT-29, No. 1, pp. 5–22, Jan. 1983.MathSciNetGoogle Scholar
  4. [4]
    R. Adler, M. Hassner, and J. Moussouris, ‘Method and apparatus for Generating a Noiseless Sliding Block Code fora (1, 7) Channel with Rate 2/3, U.S. Pat. 4 413 251, 1982.Google Scholar
  5. [5]
    R.H. Barker, B.P. Patent No. 706,687, issued April 7, 1954.Google Scholar
  6. [6]
    J.W.M. Bergmans, Discrete-Time Models for Digital Magnetic Recording’, Philips J. Res., Vol. 41, pp. 531–558, 1986.Google Scholar
  7. [7]
    J.W.M. Bergmans and S. Mita, ‘Two New Equalisation Schemes for High-Density Digital Magnetic Recording Systems with Quad-Phase Modulation Code’, Electron. Lett., Vol. 26, No. 1, pp. 13–14, Jan. 4, 1990.Google Scholar
  8. [8]
    J.W.M. Bergmans, S. Mita, M. Izumita and N. Doi, Partial-Response Decoding of Rate 1/2 Modulation Codes for Digital Storage’, IEEE Trans. Commun., Vol. COM-39, pp. 1569–1581, Nov. 1991.Google Scholar
  9. [9]
    J.W.M. Bergmans, `SNR Merits of Binary Modulation Codes in Equalized Digital Recording Systems’, IEEE J. Selected Areas Commun., Vol. SAC-10, No. 10, pp. 157–167, Jan. 1992.Google Scholar
  10. [10]
    J.W.M. Bergmans, `Effect of Binary Modulation Codes with Rate R = 1/N on Equivalent Discrete-Time Models for Channels with Intersymbol Interference’, IEEE Trans. Inform. Theory, Vol. 38, No. 5, pp. 1587–1592, Sept. 1992.MATHCrossRefGoogle Scholar
  11. l] J.W.M. Bergmans, H.D.M. Hollmann and J.O. Voorman, `Anti-Whistle Codes’, submitted to IEEE Trans. Commun.,1996.Google Scholar
  12. [12]
    J.A. Bixby and R.A. Ketcham, `Q.P., An Improved Code for High-Density Digital Recording’, IEEE Trans. Magn., Vol. MAG-15, pp. 1465–1467, Nov. 1979.Google Scholar
  13. [13]
    R. Blahut, Theory and Practice of Error Control Codes. Menlo Park, CA: Addison-Wesley, 1983.MATHGoogle Scholar
  14. [14]
    R. Blahut, Digital Transmission of Information. Reading, MA: Addison-Wesley, 1990.Google Scholar
  15. [15]
    F.K. Bowers, `Pulse Code Transmission System’, U.S. Patent 2,967,947, Oct. 25, 1960.Google Scholar
  16. [16]
    R.M. Brooks and A. Jessop, `Line Coding for Optical Fibre Systems’, Int. J. Electron., Vol. 55, No. 1, pp. 81–120, July 1983.CrossRefGoogle Scholar
  17. [17]
    R. Brush, `Design Considerations for the D-2 PAL Composite DVTR’, in Proc. 4th Int. Conf Video, Audio and Data Recording, ( York, England ), Mar. 1988, pp. 141–148.Google Scholar
  18. [18]
    J.B. Buchner, `Ternary Line Codes’, Philips Telecommun. Review, Vol. 34, No. 2, pp. 7285, June 1976.Google Scholar
  19. [19]
    G.L. Cariolaro, G.L. Pierobon and G.P. Tronca, `Analysis of Codes and Spectra Calculations’, Int. J. Electron., Vol. 55, No. 1, pp. 35–79, 1983.MathSciNetGoogle Scholar
  20. [20]
    R.O. Carter, `Low-Disparity Binary Coding System’, Electron. Lett., Vol. 1, pp. 67–69, May 1965.CrossRefGoogle Scholar
  21. [21]
    K.W. Cattermole, `Low-Disparity Codes and Coding for PCM’, IEE Conf. on Transmission Aspects of Commun. Networks, London, Feb. 1964.Google Scholar
  22. [22]
    K.W. Cattermole, Principles of Pulse Code Modulation. London: Iliffe Books, 1969.Google Scholar
  23. [23]
    K.W. Cattermole, `Principles of Digital Line Coding’, Int. J. Electron., Vol. 55, pp. 3–33, July 1983.CrossRefGoogle Scholar
  24. [24]
    T.M. Chien, `Upper Bound on the Efficiency of DC-Constrained Codes’, Bell Syst. Tech. J, Vol. 49, pp. 2267–2287, Nov. 1970.MathSciNetMATHGoogle Scholar
  25. [25]
    R.D. Cideciyan, F. Dolivo, R. Hermann, W. Hirt, and W. Schott, `A PRML System for Digital Magnetic Recording’, IEEE J. Selected Areas Commun., Vol. SAC-10, No. 1, pp. 38–56, Jan. 1992.Google Scholar
  26. [26]
    M. Cohn, G. Jacoby, and A. Bates, III, `Data Encoding Method and System Employing Two-Thirds Code Rate with Full Word Look-Ahead’, U.S. Pat. 4 337 458, 1982.Google Scholar
  27. [27]
    A. Croisier, `Introduction to Pseudoternary Transmission Codes’, IBM J. Res. Develop, Vol. 14, pp. 354–367, July 1970.CrossRefGoogle Scholar
  28. [28]
    N.Q. Duc, `Line Coding Techniques for Baseband Digital Transmission’, Austral. Tele-commun. Res., Vol. 9, pp. 3–17, May 1975.Google Scholar
  29. [29]
    N.Q. Duc and B.M. Smith, `Line Coding for Digital Data Transmission’, Austral. Tele-commun. Res., Vol. 11, No. 2, pp. 14–27, 1977.Google Scholar
  30. [30]
    J.S. Eggenberger and P. Hodges, `Sequential Encoding and Decoding of Variable Word Length, Fixed Rate Data Rate Codes’, U.S. Patent 4,115, 768, 1978.Google Scholar
  31. [31]
    J. Eggenberger and A.M. Patel, `Method and Apparatus for Implementing Optimum PRML Codes’, U.S. Patent 4,707,681, issued Nov. 17, 1987.Google Scholar
  32. [32]
    I.J. Fair, W.D. Grover, W.A. Krzymien, and R.I. MacDonald, `Guided Scrambling: A New Line Coding Technique for High Bit Rate Fiber Optic Transmission Systems’, IEEE Trans. Commun., Vol. 39, No. 2, pp. 289–297, Feb. 1991.CrossRefGoogle Scholar
  33. [33]
    P.A. Franaszek, `Sequence-State Coding for Digital Transmission’, Bell Syst. Tech. J., Vol. 46, pp. 143–157, Dec. 1967.Google Scholar
  34. [34]
    P.A. Franaszek, `Sequence State Methods of Run-Length-Limited Coding’, IBM J. Res. Develop., Vol. 14, No. 4, pp. 375–383, July 1970.MathSciNetCrossRefGoogle Scholar
  35. [35]
    P.A. Franaszek, `Run-Length-Limited Variable Length Coding with Error Propagation Limitation’, U.S. Patent 3,689, 899, 1972.Google Scholar
  36. [36]
    P.A. Franaszek, `On Future-Dependent Block-Coding for Input-Restricted Channels’, IBM J. Res. Develop., Vol. 23, pp. 75–81, Jan. 1979.MathSciNetMATHCrossRefGoogle Scholar
  37. [37]
    P.A. Franaszek, `Synchronous Bounded Delay Coding for Input-Restricted Channels’, IBM J. Res. Develop., Vol. 24, pp. 43–48, Jan. 1980.MathSciNetMATHCrossRefGoogle Scholar
  38. [38]
    P.A. Franaszek, ‘A General Method for Channel Coding’, IBM J. Res. Develop., Vol. 24, pp. 638–641, Sept. 1980.MathSciNetMATHCrossRefGoogle Scholar
  39. [39]
    P.A. Franaszek, `Construction of Bounded Delay Codes for Discrete Noiseless Channels’, IBM J. Res. Develop., Vol. 26, pp. 506–514, July 1982.MathSciNetMATHCrossRefGoogle Scholar
  40. [40]
    J.N. Franklin and J.R. Pierce, `Spectra and Efficiency of Binary Codes Without DC’, IEEE Trans. Commun., Vol. COM-20, No. 6, pp. 1182–1184, Dec. 1972.Google Scholar
  41. [41]
    L.J. Fredrickson, `On the Shannon Capacity of DC- and Nyquist-Free Codes’, IEEE Trans. Inform. Theory, Vol. IT-37, No. 3, pp. 918–923, May 1991.Google Scholar
  42. [42]
    L.J. Fredrickson, R. Karabed, J.W. Rae, P.H. Siegel, H. Thapar and R.W. Wood. Siegel, H. Thapar and R.W. Wood, ‘Improved Trellis Coding for Partial-Response Channels’, IEEE Trans. Magn., Vol. 31, No. 2, pp. 1141–1148, March 1995.CrossRefGoogle Scholar
  43. [43]
    S. Fukuda, Y. Kojima, Y. Shimpuku and K. Odaka, `8/10 Modulation Codes for Digital Magnetic Recording’, IEEE Trans. Magn., Vol. MAG-22, pp. 1194–1197, Sept. 1986.Google Scholar
  44. [44]
    A. Gabor, `Digital Signals at High Density on Magnetic Tape’, Electronics, Vol. 32, pp. 72–75, Oct. 1959.Google Scholar
  45. [45]
    P. Galko and S. Pasupathy, `The Mean Power Spectral Density of Markov Chain Driven Signals’, IEEE Trans. Inform. Theory, Vol. IT-28, pp. 473–481, May 1982.Google Scholar
  46. [46]
    A. Gallopoulos, C. Heegard and P.H. Siegel, `The Power Spectrum of Run-LengthLimited Codes’, IEEE Trans. Commun., Vol. COM-37, No. 9, pp. 906–917, Sept. 1989.Google Scholar
  47. [47]
    P.J. van Gerwen, `On the Generation and Application of Pseudo-Ternary Codes in Pulse Transmission’, Philips Res. Rept., Vol. 20, pp. 469–484, Aug. 1965.Google Scholar
  48. [48]
    P.J. van Gerwen, W.A.M. Snijders and N.A.M. Verhoeckx, `Dual Digital Transmission System for Multipair Cables Based on `Crank-Shaft Coding“, Electron. Lett., Vol. 20, No. 15, pp. 619–621, Jul. 1984.CrossRefGoogle Scholar
  49. [49]
    S.W. Golomb, Shift Register Sequences. San-Fransisco: Holden-Day, 1967.MATHGoogle Scholar
  50. [50]
    L.J. Greenstein, `Spectrum of a Binary Signal Block Coded for DC Suppression’, Bell Syst. Tech. J., Vol. BSTJ-53, No. 6, pp. 1103–1126, July-Aug. 1974.Google Scholar
  51. [51.
    J.M. Griffiths, `Binary Code Suitable for Line Transmission’, Electronics Letters, Vol. 5, pp. 79–81, 1969.CrossRefGoogle Scholar
  52. [52]
    R. Haeb and R.T. Lynch, Jr., `Trellis Codes for Partial-Response Magnetooptical Direct Overwrite Recording’, IEEE J. Selected Areas Commun., Vol. SAC-10, No. 1, pp. 182190, Jan. 1992.Google Scholar
  53. [53]
    M. Hecht and A. Guida, `Delay Modulation’, Proc. IEEE, Vol. 57, pp. 1314–1316, July 1969.CrossRefGoogle Scholar
  54. [54]
    H.D.L. Hollmann, `The General Solution of Write-Equalization for RLL (d, k) Codes’, IEEE Trans. Inform. Theory, Vol. IT-37, No. 3, May 1991.Google Scholar
  55. [55]
    H.D.L. Hollmann, `On the Construction of Bounded-Delay Encodable Codes for Constrained Systems’, IEEE Trans. Inform. Theory, Vol. 41, No. 5, pp. 1354–1378, Sept. 1995.MathSciNetCrossRefGoogle Scholar
  56. [56]
    G. Jacoby, `A New Look-Ahead Code for Increased Data Density’, IEEE Trans. Magn., Vol. MAG-13, No. 5, pp. 1202–1204, Sept. 1977.Google Scholar
  57. [57]
    G. Jacoby and R. Kost, `Binary Two-Thirds Rate Code with Full Word Look-Ahead’, IEEE Trans. Magn., Vol. MAG-20, No. 5, pp. 709–714, Sept. 1984.Google Scholar
  58. [58]
    E Jorgensen, The Complete Handbook of Magnetic Recording. Blue Ridge Summit, Pennsylvania: TAB Books, July 1980.Google Scholar
  59. [59]
    P. Kabal and S. Pasupathy, `Partial-Response Signaling’, IEEE Trans. Commun., Vol. COM-23, No. 9, pp. 921–934, Sept. 1975.Google Scholar
  60. [60]
    J.A.H. Kahlman and K.A Schouhamer Immink, `Channel Code with Embedded Pilot Tracking Tones for DVR’, IEEE Trans. Consumer Electr., Vol. CE-41, No. 1, pp. 180185, Feb. 1995.Google Scholar
  61. [61]
    R. Karabed and P.H. Siegel, `Matched Spectral-Null Codes for Partial-Response Channels’, IEEE Trans. Inform. Theory, Vol. IT-37, No. 3, pp. 818–855, May 1991.MathSciNetGoogle Scholar
  62. [62]
    K.J. Kerpez, `The Power Spectral Density of Maximum Entropy Charge Constrained Codes’, IEEE Trans. Inform. Theory, Vol. 35, No. 3, pp. 692–695, May 1989.MathSciNetCrossRefGoogle Scholar
  63. [63]
    K.J. Kerpez, A. Gallopoulos and C. Heegard, Maximum Entropy Charge-Constrained Run-Length Codes, IEEE J. Selected Areas Commun., Vol. SAC-10, No. 1, pp. 242–253, Jan. 1992.Google Scholar
  64. [64]
    A. Knoll, `Spectrum Analysis of Digital Magnetic Recording Waveforms’ IEEE Trans. on Electronic Computers, Vol. EC-16, No. 6, pp. 732–743, Dec. 1967.Google Scholar
  65. [65]
    H. Kobayashi, `A Survey of Coding Schemes for Transmission and Recording of Digital Data’, IEEE Trans. Commun. Technol., Vol. COM-19, No. 6, pp. 1087–1100, Dec. 1971.Google Scholar
  66. [66]
    E.R. Kretzmer, `Generalization of a Technique for Binary Data Communication’, IEEE Trans. Commun. Technol., Vol. COM-14, pp. 67–68, Feb. 1966.Google Scholar
  67. [67]
    J.L. Lawson and G.E. Uhlenbeck, Threshold Signals. Boston Technical Publishers Inc., 1964.Google Scholar
  68. [68]
    E.A. Lee and D.G. Messerschmitt, Digital Communication. Boston: Kluwer Academic Publishers, 1988.CrossRefGoogle Scholar
  69. [69]
    A. Lempel and M. Cohn, `Lookahead Coding for Input Restricted Channels’, IEEE Trans. Inform. Theory, Vol. TT-28, pp. 933–937, Nov. 1982.Google Scholar
  70. [70]
    A. Lender, The Duobinary Technique for High-Speed Data Transmission’, IEEE Trans. Communication and Electronics, Vol. 82, pp. 214–218, May 1963.Google Scholar
  71. [71]
    D.A. Lindholm, `Power Spectra of Channel Codes for Digital Magnetic Recording’, IEEE Trans. Magn., Vol. MAG-14, No. 5, pp. 321–323, Sept. 1978.Google Scholar
  72. [72]
    R.T. Lynch, Jr., `Channels and Codes for Magnetooptical Recording’, IEEE J. Selected Areas in Commun., Vol. 10, No. 1, pp. 57–72, Jan. 1992.CrossRefGoogle Scholar
  73. [73]
    R.F. Lyon, `Two-Level Block Encoding for Digital Transmission’, IEEE Trans. Commun., Vol. COM-21, No. 12, pp. 1438–1441, Dec. 1973.Google Scholar
  74. [74]
    R.W. Lucky, J. Salz and E.J. Weldon, Jr., Principles of Data Communication. New York: McGraw-Hill, 1968.Google Scholar
  75. [75]
    B. Marcus, `Factors and Extensions of Full Shifts’, Monatshefte fur Math., Vol. 88, pp. 239–247, 1979.MATHCrossRefGoogle Scholar
  76. [76]
    B.H. Marcus, A.M. Patel and P.H. Siegel, `Method and Apparatus for Implementing a PRML Code’, U.S. Patent 4,786,890, issued Nov. 22, 1988.Google Scholar
  77. [77]
    B.H. Marcus and R. Roth, `Bounds on the Number of States in Encoder Graphs for Input-Constrained Channels’, IEEE Trans. Inform. Theory, Vol. TT-37, No. 3, pp. 742–758, May 1991.Google Scholar
  78. [78]
    B. Marcus, P.H. Siegel and J.K. Wolf, `Finite-State Modulation Codes for Data Storage’, IEEE J. Selected Areas Commun., Vol. SAC-10, No. 1, pp. 5–37, Jan. 1992.Google Scholar
  79. [79]
    J.L. Massey, `Optimum Frame Synchronization’, IEEE Trans. Commun., Vol. COM-20, No. 2, pp. 115–119, Apr. 1972.Google Scholar
  80. [80]
    R.J. McEliece, Finite Fields for Computer Scientists and Engineers. Norwell, MA: Kluwer Academic Publishers, 1987.MATHCrossRefGoogle Scholar
  81. [81]
    L.A. Meacham, `Twinned Binary Transmission’, U.S. Patent No. 2,759,047, issued Aug. 14, 1956.Google Scholar
  82. [82]
    A. Miller, U.S. pat. 3 108 261 (Oct. 22, 1963 ).Google Scholar
  83. [83]
    J.W. Miller, US Patent 4,027,335 (May 31, 1977 ).Google Scholar
  84. Y. Nakagome, K. Amano and C. Ota, `A Multilevel Code Having Limited Digital Sum’, Electron. Commun. in Japan, Vol. 51-A, pp. 37–44, Jan. 1968.Google Scholar
  85. [85]
    K. Norris and D.S. Bloomberg, `Channel Capacity of Charge-Constrained Run-LengthLimited Codes’, IEEE Trans. Magn., Vol. MAG-17, pp. 3452–3455, 1981.Google Scholar
  86. [86]
    Y. Okamoto, H. Osawa, K. Takigawa and K. Ono, `Performance Improvement in Digital Magnetic Recording by Write and Read Equalization’, Electronics and Communications in Japan, Part 2, Vol. 76, No. 3, pp. 52–62, 1993.Google Scholar
  87. [87]
    A. Patel, `Zero-Modulation Encoding in Magnetic Recording’, IBM J. Res. Develop., Vol. 19, No. 4, pp. 366–378, July 1975.MathSciNetCrossRefGoogle Scholar
  88. [88]
    J.B.H. Peek, `Communications Aspects of the Compact Disc Digital Audio System’, IEEE Communications Magazine, pp. 7–15, Feb. 1985.Google Scholar
  89. [89]
    M.G. Pelchat and J.M. Geist, `Surprising Properties of Two-Level `Bandwidth Compaction’ Codes’, IEEE Trans. Commun., Vol. COM-23, No. 9, pp. 878–883, Sept. 1975.Google Scholar
  90. [90]
    W. Peterson and E. Weldon, Error-Correcting Codes, 2n d edition. Cambridge, MA: M.I.T. Press, 1972.Google Scholar
  91. [91]
    J.R. Pierce, `Some Practical Aspects of Digital Transmission’, IEEE Spectrum, Vol. 5, pp. 63–70, 1968.CrossRefGoogle Scholar
  92. [92]
    G. Pierobon, `Codes for Zero Spectral Density at Zero Frequency’, IEEE Trans. Inform. Theory, Vol. IT-30, No. 2, pp. 425–429, Mar. 1984.Google Scholar
  93. [93]
    J.W. Rae, G.S. Christiansen, EH. Siegel, R. Karabed, H. Thapar and S. Shih, `Design and Performance of a VLSI 120 Mb/s Trellis-Coded Partial Response Channel’, IEEE Trans. Magn., Vol. MAG-31, No. 2, pp. 1208–1214, March 1995.Google Scholar
  94. [94]
    J.E. Savage, `Some Simple Self-Synchronizing Digital Data Scramblers’, Bell Syst. Tech. J., Vol. 46, pp. 449–487, Feb. 1967.MATHGoogle Scholar
  95. [95]
    R.C. Schneider, `Write Equalization in High-Density Recording’, IBM J. Res. Develop., Vol. 29, No. 6, pp. 563–568, Nov. 1985.CrossRefGoogle Scholar
  96. [96]
    K.A. Schouhamer Immink, `Spectrum Shaping with Binary DC2-constrained Codes’, Philips J. Res., Vol. 40, pp. 40–53, 1985.MATHGoogle Scholar
  97. [97]
    K.A. Schouhamer Immink, `Signal-to-Noise Ratio of Pilot Tracking Tones Embedded in Binary Coded Signals’, IEEE Trans. Magn., Vol. 24, No. 2, pp. 2004–2009, March 1988.CrossRefGoogle Scholar
  98. [98]
    K.A. Schouhamer Immink, `Coding Techniques for Partial-Response Channels’, IEEE Trans. Commun., Vol. COM-36, pp. 1163–1165, Oct. 1988.Google Scholar
  99. [99]
    K.A. Schouhamer Immink, `Runlength-Limited Sequences’, Proc. IEEE, Vol. 78, No. 11, pp. 1745–1759, Nov. 1990.CrossRefGoogle Scholar
  100. [ 100]
    K.A. Schouhamer Immink, Coding Techniques for Digital Recorders. Englewood Cliffs, NJ: Prentice-Hall, 1991.Google Scholar
  101. [101]
    K.A. Schouhamer Immink and H.D.L. Hollmann, `Prefix-Synchronized Run-LengthLimited Sequences’, IEEE J. Selected Areas Commun., Vol. SAC-10, No. 1, pp. 214–222, Jan. 1992.Google Scholar
  102. [102]
    K.A. Schouhamer Immink, `Block-Decodable Runlength-Limited Codes via Look-Ahead Technique’, Philips J. Res., Vol. 46, pp. 293–3110, 1992.MATHGoogle Scholar
  103. [ 103]
    K.A. Schouhamer Immink, `EFMPLUS: The Coding Format of the Multimedia Compact Disc’, IEEE Trans. Consumer Electr., Vol. 41, No. 3, pp. 491–497, Aug. 1995.CrossRefGoogle Scholar
  104. [104]
    C.E. Shannon, `A Mathematical Theory of Communication’, Bell Syst. Tech. J., Vol. 27, pp. 379–423, 623–656, Oct. 1948.Google Scholar
  105. [105]
    P.H. Siegel, `Recording Codes for Digital Magnetic Storage’, IEEE Trans. Magn., Vol. MAG-21, No. 5, pp. 1344–1349, Sep. 1985.Google Scholar
  106. [106]
    P.H. Siegel and J.K. Wolf, `Modulation and Coding for Information Storage’, IEEE Communications Magazine, Vol. 29, No. 12, pp. 68–86, Dec. 1991.CrossRefGoogle Scholar
  107. [107]
    M.K. Simon, J.K. Omura and R.A. Scholtz, Spread Spectrum Communications. Rockville, MD: Computer Science, 1985.Google Scholar
  108. [108]
    J.M. Sipress, `A New Class of Selected Ternary Pulse Transmission Plans for Digital Transmission Lines’, IEEE Trans. Commun. Technol., Vol. COM-13, pp. 366–372, Sept. 1965.Google Scholar
  109. [109]
    J.J. Stiffler, Theory of Synchronous Communications. Englewood Cliffs, N.J: Prentice-Hall, 1971.Google Scholar
  110. [110]
    E.D. Sunde, `Theoretical Fundamentals of Pulse Transmission–I’, Bell Syst. Tech. J., Vol. 33, pp. 721–788, May 1984.Google Scholar
  111. [111]
    Y. Takasaki, M. Tanaka, N. Maeda, K. Yamashita and K. Nagano, `Optical Pulse Formats for Fibre Optic Digital Communications’, IEEE Trans. Commun., Vol. COM-24, pp. 404413, Apr. 1976.Google Scholar
  112. [112]
    D. Tang and L. Bahl, `Block Codes for a Class of Constrained Noiseless Channels’, Inform. Contr., Vol$117, pp. 436–461, 1970; and pp. 462–474, 1973.Google Scholar
  113. [113]
    S. Tazaki, F. Takeda, H. Osawa and Y. Yamada, `Performance Comparison of 8–10 Conversion Codes’, Proc. 5th Int. Conf. on Video and Data Recording, Southampton, U.K., pp. 79–84, 1984.Google Scholar
  114. [114]
    D.H. Veillard, `Compact Spectrum Recording, A New Binary Process Maximizing the Use of a Recording Channel’, IEEE Trans. Magn., Vol. MAG-20, pp. 891–893, Sept. 1984.Google Scholar
  115. [115]
    M.G. Vry and P.J. van Gerwen, `The Design of a 1 + 1 System for Digital Transmission to the Subscriber’, in Proc. ISSLS 80, NTG-Fachberichte 73, pp. 36–40.Google Scholar
  116. [116]
    D.B. Waters, `Line Codes for Metallic Cable Systems’, Int. J. Electron., Vol. 55, No. 1, pp. 159–169, July 1983.MathSciNetCrossRefGoogle Scholar
  117. [117]
    G.F. Watson, `Prolog to Runlength-Limited Sequences’, Proc. IEEE, Vol. 78, No. 11, p. 1744, Nov. 1990.Google Scholar
  118. [118]
    A. Weathers and J.K. Wolf, `A New Rate 2/3 Sliding-Block Code for the (1,7) Run-Length Constraint with the Minimal Number of Encoder States’, IEEE Trans. Inform. Theory, Vol. IT-37, No. 3, pt. II, pp. 908–913, May 1991.Google Scholar
  119. [119]
    J.K. Wolf and G. Ungerboeck, `Trellis Coding for Partial-Response Channels’, IEEE Trans. Commun., Vol. COM-34, No. 8, pp. 765–773, Aug. 1986.Google Scholar
  120. [120]
    H.-W. Wong-Lam and H.D.L. Hollmann, `A General Solution of Write Equalization for Digital Magnetic Tape Recording’, IEEE Trans. Magn., Vol. MAG-27, No. 5, pp. 43774381, Sept. 1991.Google Scholar
  121. [121]
    R. Wood, `Viterbi Reception of Miller-Squared Code on a Tape Channel’, Proc. 4th Int. Conf. Video and Data Recording, IERE Conf. Proc. 54, Southampton, England, Apr. 1982, pp. 333–343.Google Scholar
  122. [122]
    R.W. Wood, `Further Comments on the Characteristics of the Hedeman H-1, H-2 and H-3 Codes’, IEEE Trans. Commun., Vol. COM-31, No. 1, pp. 105–110, Jan. 1983.Google Scholar
  123. [123]
    D. Palmer, P. Ziperovich, R. Wood and T. Howell, `Identification of Nonlinear Write Effects Using Pseudorandom Sequences’, IEEE Trans. Magn., Vol. MAG-23, No. 5, pp. 2377–2379, Sept. 1987.Google Scholar
  124. [124]
    S. Yoshida and S. Yajima, `On the Relation Between an Encoding Automation and the Power Spectrum of Its Output Sequence’, Trans. IECE Japan, Vol. E59, No. 5, pp. 1–7, May 1976.Google Scholar
  125. [125]
    R. Ziemer and W. Peterson, Digital Communications and Spread Spectrum. New York: Macmillan, 1985.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1996

Authors and Affiliations

  • Jan W. M. Bergmans
    • 1
  1. 1.Philips ResearchEindhovenThe Netherlands

Personalised recommendations