Seed Germination and Seedling Growth

  • Richard N. Arteca


In order to understand factors regulating germination and subsequent growth of the seedling we should first be knowledgeable as to the processes involved during this period. Propagation by seeds is the major method of reproduction in nature and the most widely used method in agriculture due to its high efficiency. A seed is a ripened ovule which when shed from the parent plant consists of an embryo and a stored food supply both of which are enclosed in a seed coat or covering. Seed germination may be defined as a series of events which take place when dry quiescent seeds imbibe water resulting in an increase in metabolic activity and the initiation of a seedling from the embryo. In order for germination to be initiated the following criteria must be meet:
  1. 1.

    The seed must first be viable (the embryo is alive and capable of germination).

  2. 2.

    Appropriate environmental conditions such as available water, proper temperature, oxygen, and, in some cases, light must be supplied.

  3. 3.

    Primary dormancy in the seed must be overcome.



Seed Germination Seed Coat Seedling Growth Seed Dormancy Osmotic Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abeles, F. B. (1986). “Role of ethylene in Lactuca saliva cv Grand Rapids seed germination”. Plant Physiol. 81: 780–787.PubMedCrossRefGoogle Scholar
  2. Abeles, F. B., Moran, P. W., and Saltveit Jr., M. E. (1992). Ethylene in Plant Biology. Second Edition, Academic Press, San Diego.Google Scholar
  3. Addicott, F. T. (1983). Abscisic Acid, Praeger, New York.Google Scholar
  4. Adkins, S. W. and Ross, J. D. (1981). “Studies in wild oat dormancy. I. The role of ethylene in dormancy breakage and germination of wild oat seeds (Avena fatua L.)”. Plant Physiol. 67: 358–362.PubMedCrossRefGoogle Scholar
  5. Akers, S. W. and Holley, K. E. (1986). “SPS: A system for priming seeds using aerated polyethylene glycol or salt solutions”. HortScience 21: 529–531.Google Scholar
  6. Atwater, B. R. (1980). “Germination, dormancy and morphology of the seeds of herbaceous ornamental plants”. Seed Sci. Tech. 8: 523–573.Google Scholar
  7. Ayers, A. D. (1952). “Seed germination as affected by soil moisture and salinity”. Agron. J. 44: 82–84.CrossRefGoogle Scholar
  8. Berlyn, G. P. (1972). “Seed germination and morphogenesis”. In Seed biology, Volume 3, ed., T. T. Kozlowski, Academic Press, New York, pp. 223–312.Google Scholar
  9. Bernhardt, D., Trutwig, A., and Barkhold, A. (1993). “Synthesis of DNA and the development of amylase and phosphatase activities in cotyledons of germinating seeds of Vaccaria pyramidata”. J. Exp. Bot. 44: 695–699.CrossRefGoogle Scholar
  10. Bernier, A. M. and Ballance, G. M. (1993). “Induction and secretion of alpha-amylase, (1 -+ 3), (1–4)-beta-glucanase, and (1 3)-beta-glucanase activities in gibberellic acid and CaC12-treated half seeds and aleurones of wheat”. Cereal Chemistry 70: 127–132.Google Scholar
  11. Bewley, J. D. and Black, M. (1982). Physiology and Biochemistry of Seeds in Relation to Germination. Vol. 2. Viability, Dormancy, and Environmental Control, Springer-Verlag, Berlin.Google Scholar
  12. Bewley, J. D. and Black, M. (1985). Seeds: Physiology of Development and Germination, Plenum Press, New York.Google Scholar
  13. Bleecker, A. B., Estelle, M. A., Somerville, C., and Kende, H. (1988). “Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana”. Science 241: 1086–1089.Google Scholar
  14. Borthwick, H. A., Hendricks, S. B., Toole, E. H. and Toole, V. K. (1954). “Action of light on lettuce seed germination”. Bot. Gazette 115: 205–225CrossRefGoogle Scholar
  15. Bradford, K. J. (1986). “Manipulation of seed water relations via osmotic priming to improve germination under stress conditions”. HortScience 21: 1105–1112.Google Scholar
  16. Cantliffe, D. J., Shuler, K. D. and Guedes, A. C. (1981). “Overcoming seed thermodormancy in a heat sensitive romaine lettuce by seed priming”. HortScience 16: 196–198.Google Scholar
  17. Cardoso, V. J. M. and Felippe, G. M. (1987). “Endogenous ethylene and the germination of Cucumis anguria L. seeds”. Revista Brasileira de Botânica 10: 29–32.Google Scholar
  18. Cocucci, M. and Negrini, N. (1991). “Calcium-calmodulin in germination of Phacelia tanacetifolia seeds: Effects of light, temperature, fusicoccin and calcium-calmodulin antagonists”. PhysioL Plant. 82: 143–149.CrossRefGoogle Scholar
  19. Corbineau, F., Rudnicki, R. M. and Côme, D. (1989). “ACC conversion to ethylene by sunflower seeds in relation to maturation, germination and thermodormancy”. Plant Growth Reg. 8: 105–115.CrossRefGoogle Scholar
  20. Coronel, J. and Motes, J. E. (1982). “Effect of gibberellic acid and seed rates on pepper seed germination in aerated water columns”. J. Amer. Soc. Hort. Sci. 107: 290–295.Google Scholar
  21. Creelman, R. A. (1989). “Abscisic acid physiology and biosynthesis in higher plants”. Physiol. Plant. 75: 131–136.CrossRefGoogle Scholar
  22. Crocker, W. (1930). “Effect of the visible spectrum upon the germination of seeds and fruits”. In Biological Effects of Radiation, McGraw-Hill, New York, pp. 791–828.Google Scholar
  23. Davies, H. V. and Slack, P. T. (1981). “The control of food mobilization in seeds of dicotyledonous plants”. New Phytol. 88: 41–51.CrossRefGoogle Scholar
  24. Doneen, L. D. and MacGillivray, J. H. (1943). “Germination (emergence) of vegetable seed as affected by different soil conditions”. Plant Physiol. 18: 524–529.PubMedCrossRefGoogle Scholar
  25. Dunlap, J. R. and Morgan, P. W. (1977). “Characterization of ethylene-gibberellic acid control of germination in Lactuca sativa L.”. Plant Cell Physiol. 18: 561–568.Google Scholar
  26. Frett, J. J., Pill, W. G., and Momeau, D. C. (1991). “A comparison of priming agents for tomato and asparagus seeds”. HortScience 26: 1158–1159.Google Scholar
  27. Furatani, S. C., Zandstra, B. H., and Price, H. C. (1985). “Low temperature germination of celery seeds for fluid drilling”. J. Amer Soc. Hort. Sci. 110: 149–153.Google Scholar
  28. Gallego, P., Hernandez-Nistal, J., Martin, L., Nicolas, G., and Villalobos, N. (1991). “Cytokinin levels during the germination and seedling growth of Cicer arietinum L.: Effect of exogenous application of calcium and cytokinins” Plant Science 77: 207–221.CrossRefGoogle Scholar
  29. Gepstein, S. and Ilan, I. (1980). “Evidence for the involvement of cytokinins in the regulation of proteolytic activity in cotyledons of germinating beans”. Plant Cell Physiol. 21: 57–63.Google Scholar
  30. Ghate, S. R., Phatak, S. C., and Batal, K. M. (1984). “Pepper yields from fluid drilling with additives and transplanting”. HortScience 19: 281–283.Google Scholar
  31. Gray, D. (1981). “Fluid drilling of vegetable seeds”. Hort. Rev. 3: 1–27.Google Scholar
  32. Groot, S. P. C. and Karssen, C. M. (1987). “Gibberellins regulate seed germination in tomato by endosperm weakening: a study with gibberellin-deficient mutants”. Planta 171: 525–531.CrossRefGoogle Scholar
  33. Groot, S. P. C. and Karssen, C. M. (1992). “Dormancy and germination of abscisic acid-deficient tomato seeds. Studies with the sitiens mutant”. Plant Physiol. 99: 952–958.CrossRefGoogle Scholar
  34. Groot, S. P. C., Kieliszewska-Rockika, B., Vermeer, E. and Karssen, C. M. (1988). “Gibberellin-induced hydrolysis of endosperm cell walls in gibberellin-deficient tomato seeds prior to radicle protrusion”. Planta 174: 500–504.CrossRefGoogle Scholar
  35. Haber, A. H. and Luippold, H. J. (1960). “Separation of mechanisms initiating cell division and cell expansion in lettuce seed germination”. Plant Physiol. 35: 168–173.PubMedCrossRefGoogle Scholar
  36. Halmer, P. (1985). “The mobilization of storage carbohydrates in germinated seeds”. Physiologie Végétale 23: 107–125.Google Scholar
  37. Hanks, R. S. and Thorp, F. C. (1956). “Seedling emergence of wheat as related to soil moisture content, bulk density, oxygen diffusion rate, and crust strength”. Proc. Soil Sci. Soc. Am. 20:307–310.Google Scholar
  38. Hartmann, H. T., Kester, D. E. and Davies Jr., F. T. (1990). Plant Propagation: Principles and Practices. Fifth Edition, Prentice Hall, Englewood Cliffs, NJ.Google Scholar
  39. Heydeker, W. (1977). “Stress and seed germination: An agronomic view”. In The Physiology and Biochemistry of Seed Dormancy and Germination, ed., A. A. Khan. North-Holland Publishing Co., Amsterdam, pp. 237–282.Google Scholar
  40. Hoffman, N. E., Fu, J. R. and Yang, S. F. (1983). “Identification and metabolism of 1-(malonylamino)-cyclopropane-1-carboxylic acid in germinating peanut seeds”. Plant Physiol. 71: 197–199.PubMedCrossRefGoogle Scholar
  41. Karssen, C. M., Brinkhorst-van der Swan, D. L. C., Breekland, A. E., and Koomneef, M. (1983). “Induction of dormancy during seed development by endogenous abscisic acid: Studies on abscisic acid deficient genotypes of Arabidopsis thaliana”. Planta 157: 158–165.Google Scholar
  42. Karssen, C. M., Groot, S. P. C., and Koornneef, M. (1987). “Hormone mutants and seed dormancy in Arabidopsis and tomato”. In Developmental Mutants in Higher Plants,eds., H. Thomas and D. Grierson. Cambridge University Press, Cambridge, pp. 119–133.Google Scholar
  43. Katoh, H. and Esashi, Y. (1975). “Dormancy and impotency of cocklebur seeds. I. CO2, C2H4, 02 and high temperature”. Plant Cell Physiol. 16: 687–696.Google Scholar
  44. Katsumi, M., Tsuda, A., and Sakurai, H. (1987). “Brassinolide-induced stimulation of membrane permeability and ATPase activity in light grown cucumber hypocotyls”. Proc. Plant Growth Reg. Soc. Am. 14:215–220.Google Scholar
  45. Kepczynski, J. and Rudnicki, R. M. (1975). “Studies on ethylene in dormancy of seeds. I. Effect of exogenous ethylene on the afterripening and germination of apple seeds”. Fruit Science Reports (Poland) 2: 25–41.Google Scholar
  46. Kermode, A. R. (1990). “Regulatory mechanisms involved in the transition from seed development to germination”. Critical Reviews in Plant Sciences 9: 155–195.CrossRefGoogle Scholar
  47. Ketring, D. L. (1977). “Ethylene and seed germination”. In The Physiology and Biochemistry of Seed Dormancy and Germination, ed., A. A. Khan. North-Holland, Amsterdam, pp. 157–178.Google Scholar
  48. Ketring, D. L. and Morgan, P. W. (1972). “Physiology of oil seeds. IV. Role of endogenous ethylene and inhibitory regulators during natural and induced after-ripening of dormant Virginia-type peanut seeds”. Plant Physiol. 50: 382–387.PubMedCrossRefGoogle Scholar
  49. Khan, A. A. (1975). “Primary, preventive and permissive roles of hormones in plant systems”. The Botanical Review 41: 391–420.CrossRefGoogle Scholar
  50. Khan, A. A. (1977). “Preconditioning, germination and performance of seeds”. In The Physiology and Biochemistry of Seed Dormancy and Germination, ed., A. A. Khan. North-Holland Publishing Co., Amsterdam, pp. 283–316.Google Scholar
  51. Khan, A. A. (1978). “Incorporation of bioactive chemicals into seeds to alleviate environmental stress”. Acta Hort. 83: 225–34.Google Scholar
  52. Khan, A. A. and Huang, X. L. (1988). “Syngergistic promotion of ethylene production and germination with kinetin and 1-aminocyclopropane-1-carboxylic acid in lettuce seeds exposed to salinity stress”. Plant Physiol. 87: 847–852.PubMedCrossRefGoogle Scholar
  53. Khan, A. A. and Prusinski, J. (1989). “Kinetin enhanced 1-aminocyclopropane-1-carboxylic acid utilization during alleviation of high temperatures stress in lettuce seeds”. Plant Physiol 91: 733–737.PubMedCrossRefGoogle Scholar
  54. Kohno, A. and Nanmori, T. (1991). “Changes in a-and (3-amylase activities during germination of seeds of alfalfa (Medicago sativa L.)”. Plant Cell Physiol. 32: 459–466.Google Scholar
  55. Kovac, M., Horgan, R., and Meilan, R. (1993). “Cytokinins in Scotch pine seedling root exudates and their influence on seed germination”. Plant Physiol Biochem. 31: 35–40.Google Scholar
  56. Lalonde, S. and Saini, H. S. (1992). “Comparative requirement for endogenous ethylene during seed germination”. Ann. Botany 69: 423–428.Google Scholar
  57. Lewak, S. (1985). “Hormones in seed dormancy and germination”. In Hormonal Regulation of Plant Growth and Development, ed., S. S. Purohit. Martinus Nishoff, Dordrecht, pp. 95–144.Google Scholar
  58. Lin, Y. H., Moreau, R. A. and Huang, A. H. C. (1982). “Involvement of glyoxysomal lipase in the hydrolysis of storage triacylglycerols in the cotyledons of soybean seedlings”. Plant PhysioL 70: 100.Google Scholar
  59. MacIsaac, S. A., Sawhney, V. K., and Poherecky, Y. (1989). “Regulation of lateral root formation in lettuce (Lactuca saliva) seedling roots: Interacting effects of a-naphthaleneacetic acid and kinetin”. PhysioL Plant. 77: 287–293.CrossRefGoogle Scholar
  60. Martin, L., Diez, A., Nicolas, G., and Villalobos, N. (1987). “Variation of the levels and transport of cytokinins during germination of chick-pea seeds”. J. Plant Physiol. 128: 141–151.CrossRefGoogle Scholar
  61. Mayer, A. M. and Poljakoff-Mayber, A. (1989). The Germination of Seeds. Fourth Edition, Pergamon Press, London.Google Scholar
  62. Miller, C. 0. (1956). “Similarity of some kinetin and red light effects”. Plant Physiol. 31: 318.PubMedCrossRefGoogle Scholar
  63. Munoz, J. L., Martin, L., Nicolas, G., and Villalabos, N. (1990). “Influence of endogenous cytokinins on reserve mobilization in cotyledons of Cicer arietinum L.: Reproduction of endogenous levels of total cytokinins, zeatin, zeatin riboside and their corresponding glucosides”. Plant Physiol. 93: 1011–1016.PubMedCrossRefGoogle Scholar
  64. Ni, B. R. and Bradford, K. J. (1992). “Quantitative models describing the sensitivity of tomato seed germination to abscisic acid and osmoticum”. Plant Physiol. 98: 1057–1068.PubMedCrossRefGoogle Scholar
  65. Ni, B-R. and Bradford, K. J. (1993). “Germination and dormancy of abscisic acid-and gibberellin-deficient mutant tomato (Lycopersicon esculentum) seeds”. Plant Physiol. 101: 607–617.PubMedGoogle Scholar
  66. Norton, C. R. (1986). “Germination under flooding: Metabolic implications and alleviation of injury”. HortScience 21: 1123–1125.Google Scholar
  67. Nygren, M. (1987). “Germination characteristics of autumn collected Pinus sylvestris seeds”. Acta Forestalia Fennica 1–42.Google Scholar
  68. Parthier, P. (1979). “The role of phytohormones (cytokinins) in chloroplast development”. Biochemie Physiologie Pflanzen 174: 173–214.Google Scholar
  69. Pino, E., Martin, L., Guerra, H., Nicolas, G., and Villalobos, N. (1990). “The effect of dihydrozeatin on the mobilization of protein reserves in the cotyledons of chick-pea seeds”. J. Plant PhysioL 135: 698–702.CrossRefGoogle Scholar
  70. Pino, E., Martin, L., Guerra, H., Nicolas, G., and Villalobos, N. (1991). “Effect of dihydrozeatin on the mobilization of protein reserves in protein bodies during the germination of chick-pea seeds”. J. Plant Physiol. 137: 425–432.CrossRefGoogle Scholar
  71. Qamaruddin, M. (1991). “Appearance of the zeatin riboside type of cytokinin in Pinus sylvestris seeds after red light treatment”. Scand. J. For. Res. 6: 41–46.CrossRefGoogle Scholar
  72. Qamaruddin, M. and Tillberg, E. (1989). “Rapid effects of red light on the isopentenyladenosine content in Scotch pine seeds”. Plant PhysioL 91: 5–8.PubMedCrossRefGoogle Scholar
  73. Reddy, N. R., Sathe, S. K. and Salunkle, D. P. (1982). “Phytates in legumes and cereals”. Adv. Food Res. 28: 1.PubMedCrossRefGoogle Scholar
  74. Reid, J. B. (1990). “Phytohormone mutants in plant research”. J. Plant Growth Reg. 9: 97–111.CrossRefGoogle Scholar
  75. Saini, H. S., Consolacion, E. D., Bassi, P. K. and Spencer, M. S. (1986). “Requirement for ethylene synthesis and action during relief of thermoinhibition of lettuce seed germination by combinators of gibberellic acid, kinetin and carbon dioxide”. Plant Physiol. 81: 950–953.PubMedCrossRefGoogle Scholar
  76. Saini, S., Consolacion, E. D., Bassi, P. K. and Spencer, M. S. (1989). “Control processes in the induction and relief of thermoinhibition of lettuce seed germination: Action of phytochrome and endogenous ethylene”. Plant Physiol 90: 311–315.PubMedCrossRefGoogle Scholar
  77. Salter, P. J. (1978). “Techniques and prospects for `fluid’ drilling of vegetable crops”. Acta Hort. 72: 101–108.Google Scholar
  78. Satoh, S. and Esashi, Y. (1982). “Effects of a-aminoisobutyric acid and D- and L-amino acids on ethylene production and content of 1-aminocyclopropane-l-carboxylic acid in cotyledonary segments of cocklebur seeds”. Physiol Plant. 54: 147–152.CrossRefGoogle Scholar
  79. Satoh, S., Takeda, Y., and Esashi, Y. (1984). “Dormancy and impotency of cocklebur seeds. IX. Changes in ACC-ethylene conversion activity and ACC content of dormant and non-dormant seeds during soaking”. J. Exp. Botany 35: 1515–1524.CrossRefGoogle Scholar
  80. Sawhney, V. K. and Srivastava, L. M. (1974). “Gibberellic acid induced elongation of lettuce hypocotyl and its inhibition by colchicine”. Canadian J. Botany 52: 259–264.CrossRefGoogle Scholar
  81. Schopfer, P. and Plachy, C. (1985). “Control of seed germination by acsisic acid. II. Effect on embryo growth potential (minimum turgor pressure) and growth coefficient (cell wall extensibility) in Brassica napus L.”. Plant Physiol. 77: 676–686.PubMedCrossRefGoogle Scholar
  82. Sharma, S. S., Sharma, S. and Rai, V. K. (1992). “The effect of EGTA, calcium channel blockers (lanthanum chloride and nifedipine) and their interaction with abscisic acid on seed germination of Brassica juncea cv. RLM-198”. Ann. Botany 70: 295–299.Google Scholar
  83. Swain, R. R. and Dekker, E. E. (1966). “Seed germination studies. II. Pathways for starch degradation in germinating pea seedlings”. Biochim. Biophys. Acta 122: 87.PubMedCrossRefGoogle Scholar
  84. Takahashi, N., Phinney, B. O. and MacMillan, J. (1992). Gibberellins, Springer-Verlag, Berlin.Google Scholar
  85. Takeuchi, Y., Worsham, A. D., and Awad, A. E. (1991). “Effects of brassinolide on conditioning and germination of witchweed (Striga asiatica) seeds”. In Brassinosteroids: Chemistry, Bioactivity and Applications, eds., H. G. Cutler, T. Yokota and G. Adam. American Chemical Society, Washington, DC, pp. 298–305.Google Scholar
  86. Taylor, A. G. and Kenny, T. J. (1985). “Improvement of germinated seed quality by density separation”. J. Amer. Soc. Hort. Sci. 110: 347–349.Google Scholar
  87. Taylorson, R. B. (1979). “Response of weed seeds to ethylene and related hydrocarbons”. Weed Sci. 27: 7–10.Google Scholar
  88. Thomas, T. H. (1977). “Cytokinins, cytokinin-active compounds and seed germination”. In The Physiology and Biochemistry of Seed Dormancy and Germination, eds., A. A. Khan. North-Holland Publishing Co., Amsterdam, pp. 111–124.Google Scholar
  89. Torrey, J. G. (1962). “Auxin and purine interactions in lateral root initiation in isolated root segments”. Physiol. Plant. 15: 177–185.CrossRefGoogle Scholar
  90. Vacha, G. A. and Harvey, R. B. (1927). “The use of ethylene, propylene and similar compounds in breaking the rest period of tubers, bulb, cuttings and seeds”. Plant Physiol. 2: 187–193.PubMedCrossRefGoogle Scholar
  91. Walker, M. A., Roberts, D. A., Waite, J. L. and Dumbroff, E. B. (1989). “Relationships among cytokinin, ethylene and polyamines during the stratification-germination process in seeds of Acer saccharum”. Physiol. Plant. 76: 326–332.Google Scholar
  92. Washio, K. and Ishikawa, K. (1992). “Structure and expression during the germination of rice seeds of the gene for a carboxypeptidase”. Plant Mol. Biol. 19: 631–640.PubMedCrossRefGoogle Scholar
  93. Welbaum, G. E., Tissaoui, T., and Bradford, K. J. (1990). “Water relations of seed germination in muskmelon (Cucumis melo L.). III. Sensitivity of germination to water potential and abscisic acid during development”. Plant Physiol. 92: 1029–1037.PubMedCrossRefGoogle Scholar
  94. Whitehead, C. S. and Nelson, R. M. (1992). “Ethylene sensitivity in germinating peanut seeds: The effect of short-chain saturated fatty acids”. Plant Physiol. 139: 479–483.CrossRefGoogle Scholar
  95. Wightman, F., Schneider, E. A., and Thimann, K. V. (1980). “Hormonal factors controlling the initiation and development of lateral roots. II. Effects of exogenous growth regulators on lateral root formation in pea roots”. Physiol. Plant. 49: 304–314.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1996

Authors and Affiliations

  • Richard N. Arteca
    • 1
  1. 1.The Pennsylvania State UniversityUSA

Personalised recommendations