Physiology of Fruit Set, Growth, Development, Ripening, Premature Drop, and Abscission

  • Richard N. Arteca


Regulation of fruit set, growth, development, ripening, premature fruit drop, and subsequent abscission is very important in agriculture. Prior to discussing the regulation of these processes background information starting with pollination, which is the transfer of pollen from the anther to the stigma, will be provided. Once pollination has occurred the pollen tube grows down the style into the ovary until it reaches the embryo sac within the ovule. Two male gametes from the pollen tube are inserted into the embryo sac, one of which unites with the female gamete, a process known as fertilization, to produce a zygote which divides to become the embryo. The other unites with two polar nuclei to produce the endosperm. The ovary gives rise to the fruit, which may be defined as the structure which results from the development of tissues which support the ovules of the plant (Nitsch 1965) and the ovule leads to the seed (Figure 10.1).


Pollen Tube Tomato Fruit Fruit Size Fruit Growth Full Bloom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abeles, F. B., Morgan, P. W., and Saltveit Jr., M. E. (1992). Ethylene in Plant Biology. Second Edition, Academic Press, Inc., San Diego, C.A.Google Scholar
  2. Auchter, E. C. and Roberts, J. W. (1934). “Experiments in spraying apples for the prevention of fruit set”. Proc. Amer. Soc. Hort. Sci. 30: 22–25.Google Scholar
  3. Batjer, L. P. (1964). “Apple thinning with chemical sprays”. WA Agr. Exptl. Sta. Bull. 1: 651.Google Scholar
  4. Batjer, L. P. (1965). “Fruit thinning with chemicals”. USDA Res. Ser. Ag. Information Bull. 289.Google Scholar
  5. Batjer, L. P. and Thompson, B. J. (1961). “Effects of 1-naphthyl N-methylcarbamate (Sevin) on thinning apples”. Proc. Amer. Soc. Hort. Sci. 77: 1–8.Google Scholar
  6. Bukovac, M. J. and Nakagawa, S. (1967). “Comparative potency of gibberellins in inducing parthenocarpic fruit growth in Malus sylvestris Mill”. Experientia 23: 865.PubMedCrossRefGoogle Scholar
  7. Bukovac, M. J. and Nakagawa, S. (1968). “Gibberellin-induced asymmetric growth of apple fruits”. HortScience 3: 172–173.Google Scholar
  8. Bukovac, M. J., Zucconi, F., Larsen, R. P. and Kesner, C. D. (1969). “Chemical promotion of fruit abscission in cherries and plums with special reference to 2chloroethylphosphonic acid”. J. Amer. Soc. Hort. Sci. 94: 226–230.Google Scholar
  9. Christodoulou, A., Weaver, R. J. and Pool, R. M. (1968). “Relation of gibberellin treatment to fruit-set, berry development, and cluster compactness in Vitis vinifera grapes”. Proc. Amer. Soc. Hort. Sci. 92: 301–310.Google Scholar
  10. Coggins, Jr., C. W., Hield, H. Z., Burns, R. M., Eaks, I. L. and Lewis, L. N. (1966). “Gibberellin research with citrus”. Calif Agr. 20: 12–13.Google Scholar
  11. Crane, J. C. (1965). “The chemical induction of parthenocarpy in the Calimyrna fig and its physiological significance”. Plant Physiol. 40: 606–610.PubMedCrossRefGoogle Scholar
  12. Crane, J. C., Primer, P. E. and Campbell, R. C. (1960). “Gibberellin-induced parthenocarpy in Prunus”. Proc. Amer. Soc. Hort. Sci. 75: 129–137.Google Scholar
  13. Crane, J. C., Rebeiz, C. A. and Campbell, R. C. (1961). “Gibberellin-induced parthenocarpy in the J. H. Hale peach and the probably cause of Button production”. Proc. Amer. Soc. Hort. Sci. 78: 111–118.Google Scholar
  14. Dennis, Jr. F. G., and Nitsch, J. P. (1966). “Identification of gibberellin A4 and A7 in immature apple seeds”. Nature 211: 781–782.CrossRefGoogle Scholar
  15. Dreher, T. W. and Poovaiah, B. W. (1982). “Changes in auxin content during development in strawberry fruits”. J. Plant Growth Reg. 1: 267–276.Google Scholar
  16. Gardner, F. E., Marth, P. C., and Batjer, L. P. (1939). “Spraying with plant-growth substances for control of the pre-harvest drop of apples”. Proc. Amer. Soc. Hort. Sci. 37: 415–428.Google Scholar
  17. Gray, J., Pictor, S., Shabbeer, J., Schuch, W. and Grierson, D. (1992). “Molecular biology of fruit ripening and its manipulation with antisense genes”. Plant Google Scholar
  18. Guo, L., Arteca, R. N., Phillips, A. T., and Liu, Y. (1992). “Purification and characterization of 1-aminocyclopropane-1-carboxylate N-malonyltransferase from etiolated mung bean hypocotyls”. Plant Physiol. 100: 2041–2045.PubMedCrossRefGoogle Scholar
  19. Guo, L. G., Phillips, A. T., and Arteca, R. N. (1993). “Amino acid N-malonyltransferases in mung beans: Action on 1-aminocyclopropane-1-carboxylic acid and Dphenylalanine”. J. Biol. Chem. 268:25,389–25,394.Google Scholar
  20. Hamilton, A. J., Lycett, G. W., and Grierson, D. (1990). “Antisense gene that inhibits synthesis of the hormone ethylene in transgenic plants”. Nature 346: 284–287.Google Scholar
  21. Iwahori, S., Weaver, R. J. and Pool, R. M. (1968). “Gibberellin-like activity in berries of seeded and seedless Tokay grapes”. Plant Physiol. 43: 333–337.PubMedCrossRefGoogle Scholar
  22. Jackson, D. I. (1968). “Gibberellin and the growth of peach and apricot fruits”. Australian J. Biol. Sci. 21: 209–215.Google Scholar
  23. Jackson, D. I. and Coombe, B. G. (1966). “Gibberellin-like substances in the developing apricot fruit”. Science 154: 277–278.PubMedCrossRefGoogle Scholar
  24. Jones, C. M. (1965). “Effects of benzyladenine on fruit set in muskmelon”. Proc. Amer. Soc. Hort. Sci. 87: 335–340.Google Scholar
  25. Kaminek, M., Mok, D. W. S., and Zazimalova, E. (1992). Physiology and Biochemistry of Cytokinins in Plants, SPB Academic Publishing, Hague, The Netherlands.Google Scholar
  26. Klee, H. J., Hayford, M. B., Kretzmer, K. A., Barry, G. F. and Kishmore, G. M. (1991). “Control of ethylene synthesis by expression of a bacterial enzyme in transgenic tomato plants”. Plant Cell 3: 1187–1193.PubMedGoogle Scholar
  27. Letham, D. S. (1967). “Chemistry and physiology of kinetin-like compounds”. Ann. Rev. Plant Physiol. 18: 349–364.CrossRefGoogle Scholar
  28. Letham, D. S. (1968). “A new cytokinin bioassay and the naturally occurring cytokinin complex. In Biochemistry and Physiology of Plant Growth Substances, eds., F. Wight-man and G. Setterfield. Runge Press, Ottawa, pp. 19–31.Google Scholar
  29. Luckwill, L. C. (1959). “Fruit growth in relation to internal and external chemical stimuli. In Cell, Organism, and Milieu, ed., D. Rudnick. Ronald Press, New York, pp. 223–251.Google Scholar
  30. Luckwill, L. C. (1957). “Hormonal aspects of fruit development in higher plants.” In The Biological Action of Growth Substances, ed., H. K. Porter. Cambridge University Press, Cambridge, pp. 63–85.Google Scholar
  31. Luckwill, L. C., Weaver, P. and MacMillan, J. (1969). “Gibberellins and other growth hormones in apple seeds”. J. Hort. Sci. 44: 413–424.Google Scholar
  32. McKee, M. W. and Forshey, C. G. (1966). “Effects of chemical thinning on repeat bloom of McIntosh apple trees”. Proc. Amer. Soc. Hort. Sci. 88: 25–32.Google Scholar
  33. Mudge, K. W., Narayanan, K. R. and Poovaiah, B. W. (1981). “Control of strawberry fruit set and development with auxins”. J. Amer. Soc. Hort. Sci. 106: 80–84.Google Scholar
  34. Müller-Thurgau, H. (1898). “Abhängigkeit der ausbildung der traubenbeeren und einiger anderer Früchte von der entwicklung der samen.” Landw. Jahrb. Schweiz 12: 135–205.Google Scholar
  35. Nakagawa, S., Bukovac, M. J., Hirata, N. and Kurooka, H. (1968). “Morphological studies of gibberellin-induced parthenocarpic and asymetric growth in apple and Japanese pear fruits”. J. Jap. Soc. Hort. Sci. 37: 9–19.CrossRefGoogle Scholar
  36. Nitsch, J. P. (1965). Physiology of flower and fruit development. In Encyclopedia of plant physiology, ed., W. Ruhland. Springer-Verlag, Berlin, pp. 1537–1647.Google Scholar
  37. Nitsch, J. P. (1952). “Plant hormones in the development of fruits”. Quarterly Rev. Biol. 27: 33–57.CrossRefGoogle Scholar
  38. Nitsch, J. P. (1950). “Growth and morphogenesis of the strawberry as related to auxin”. Amer. J. Botany 37: 211–215.CrossRefGoogle Scholar
  39. Oeller, P. W., Min-Wong, L., Taylor, L. P., Pike, D. A. and Theologis, A. (1991). “Reversible inhibition of tomato fruit senescence by antisense RNA”. Science 254: 437–439.PubMedCrossRefGoogle Scholar
  40. Olson, D. C., White, J. A., Edelman, L., Harkins, R. N. and Kende, H. (1991). “Differential expression of two genes for 1-aminocyclopropane-1-carboxylate synthase in tomato fruits”. Proc. Natl. Acad. Sci. USA 88: 5340–5344.PubMedCrossRefGoogle Scholar
  41. Plant growth regulator handbook,(1981). Plant Growth Regulators Society of America, Lake Alfred, FL.Google Scholar
  42. Reddy, A. S. N. and Poovaiah, B. W. (1990). “Molecular cloning and sequencing of a cDNA for an auxin-repressed mRNA: correlation between fruit growth and repression of the auxin-regulated gene”. Plant Mol. Biol. 14: 127–136.PubMedCrossRefGoogle Scholar
  43. Rottman, W. E., Peter, G. F., Oeller, P. W., Keller, J. A., Shen, N. F., Nagy, B. P., Taylor, L. P., Campbell, A. D. and Theologis, A. (1991). “1-Aminocyclopropane-1carboxylate synthase in tomato is encoded by a multigene family whose transcription is induced during fruit and floral senescence”. J. Mol. Biol. 222: 937–961.CrossRefGoogle Scholar
  44. Sastry, K. K. S. and Muir, R. M. (1963). “Gibberellin: effect of diffusible auxin in fruit development”. Science 140: 494–495.PubMedCrossRefGoogle Scholar
  45. Sheehy, R. E., Kramer, M., and Hiatt, W. R. (1988). “Reduction of polygalacturonase activity in tomato fruit by antisense RNA”. Proc. Natl. Acad. Sci. USA 85: 8805–8809.PubMedCrossRefGoogle Scholar
  46. Smith, C. J. S., Watson, C. F., Ray, J., Bird, C. R., Morris, P. C., Schuch, W., and Grierson, D. (1988). “Antisense RNA inhibition of polygalacturonase gene expression in transgenic tomatoes ”. Nature 334: 724–726.CrossRefGoogle Scholar
  47. Southwick, S. M. and Poovaiah, B. W. (1987). “Auxin movement in strawberry fruit corresponds to its growth-promoting activity”. J. Am. Soc. Hort. Sci. 112: 139–142.Google Scholar
  48. Southwick, F. W., Weeks, W. D., and Olanyk, G. W. (1964). “The effect of naphthaleneacetic acid type materials and 1-naphthyl N-methylcarbamate (Sevin) on the fruiting, flowering, and keeping quality of apples”. Proc. Amer. Soc. Hort. Sci. 84: 14–24.Google Scholar
  49. Theologis, A. (1992). “One rotten apple spoils the whole bushel: The role of ethylene in fruit ripening” Cell 70: 181–184.PubMedCrossRefGoogle Scholar
  50. Unrath, C. R. (1974). “The commercial implication of gibberellin A4A7 plus benzyladenine for improving shape and yield of Delicious apples”. J. Amer. Soc. Hort. Sci. 99: 381–384.Google Scholar
  51. Weaver, R. J. (1972). Plant Growth Substances in Agriculture, W. H. Freeman and Company, San Francisco.Google Scholar
  52. Weaver, R. J. and McCune, S. B. (1960). “Further studies with gibberellin on Vitis vinifera grapes”. Bot. Gaz. 121: 151–162.CrossRefGoogle Scholar
  53. Weaver, R. J. and van Overbeek, J. (1963). “Kinins stimulate grape growth”. Calif Agr. 17: 12.Google Scholar
  54. Weaver, R. J., van Overbeek, J., and Pool, R. M. (1966). “Effect of kinins on fruit set and development in Vitis vinifera”. Hilgardia 37: 181–201.Google Scholar
  55. Westwood, M. N. and Bjomstad, H. O. (1968). “Effects of gibberellin A3 on fruit shape and subsequent seed dormancy”. HortScience 3: 19–20.Google Scholar
  56. Williams, W. M. and Stahly, E. A. (1969). “Effect of cytokinins and gibberellins on shape of Delicious apple fruits”. J. Amer. Soc. Hort. Sci. 94: 17–19.Google Scholar
  57. Zuluaga, E. M., Lumelli, J., and Christensen, J. H. (1968). “Influence of growth regulators on the characteristics of berries of Vitis vinifera L.”. Phyton 25: 35–48.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1996

Authors and Affiliations

  • Richard N. Arteca
    • 1
  1. 1.The Pennsylvania State UniversityUSA

Personalised recommendations