Historical Aspects and Fundamental Terms and Concepts

  • Richard N. Arteca


In the early 1900s F. W. Went made the profound statement “Ohne Wuchstoff, kein Wachstum”, translated, “without growth substances, no growth.” It is now generally accepted that plant growth substances have an important regulatory role throughout the plant kingdom. Since the pioneering work of Went, research in the area of plant growth substances has made considerable strides. At the present time plant growth substances are used in agriculture for purposes such as delaying or promoting ripening, induction of rooting, promotion of abscission, control of fruit development, weed control, size control and many other responses. Although they are currently used in agriculture, there are many questions which remain to be answered in order to maximize the true potential of plant growth substances.


Salicylic Acid Abscisic Acid Gibberellic Acid Jasmonic Acid Plant Kingdom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe, H. and Marumo, S. (1991). “Brassinosteroids in leaves of Distylium racemosum Sieb. et Zucc.: The beginning of brassinosterold research in Japan”. In Brassinosteroids. Chemistry, Bioactivity and Applications, eds., H. G. Cutler, T. Yokota, and G. Adam, American Chemical Society, Washington, DC, pp. 18–25.Google Scholar
  2. Addicott, F. T., Lyon, J. L., Ohkuma, K., Thiessen, W. E., Caris, H. R., Smith, O. E., Cornforth, J. W., Milborrow, B. V., Ryback, G., and Wareing, P. F. (1968), G., and Wareing, P. F. (1968). “Abscisic acid: A new naine for abscisin II (dormin)”. Science 159: 1493.Google Scholar
  3. Anderson, J. M. (1989). “Membrane derived fatty acids as precursors to second messengers”. In Second Messengers in Plant Growth and Development, eds., W. F. Boss and D. J. Morre, Alan R. Liss, New York, pp. 181–212.Google Scholar
  4. Bayliss, W. M. and Starling, E. (1904). “The chemical regulation of the secretory process”. Proc. Royal Soc. (Series B) 73: 310–322.CrossRefGoogle Scholar
  5. Beyerinck, M. W. (1888). “Uber das Cecidium von Nematus capreae auf Salix amygdalina”. Zeitschr. Bot. 46: 1–11.Google Scholar
  6. Biale, J. B., Young, R. E., and Olmstead, A. J. (1954). “Fruit respiration and ethylene production”. Plant Physiol. 29: 168–174.PubMedCrossRefGoogle Scholar
  7. Boysen-Jensen, P. (1913). “Uber die Leitung des phototropischen Reizes in der Avenakoleoptile”. Ber. Deut. Bot. Ges. 31:559–566.Google Scholar
  8. Brian, P. W., Elson, G. W., Hemming, H. G., and Radley, M. (1954). “The plant-growth promoting properties of gibberellic acid, a metabolic product of the fungus Gibberella fujikuroi”, J. Sci. Food. Agr. 5: 602–612.CrossRefGoogle Scholar
  9. Burg, S. P. and Stolwijk, J. A. A. (1959). “A highly sensitive katharometer and its application to the measurement of ethylene and other gases of biological importance”, J. Biochem. Microbiol.Technol. Eng. 1: 245–259.CrossRefGoogle Scholar
  10. Burg, S. P. and Thimann, K. V. (1959). “The physiology of ethylene formation in apples”, Proc. Natl. Acad. Sci. USA 45: 335–44.PubMedCrossRefGoogle Scholar
  11. Cornforth, J. W., Milborrow, B. V., Ryback, G., and Wareing, P. F. (1965a). “Identity of sycamore ‘ dormin’ with abscisin II”. Nature 205: 1269–1270.CrossRefGoogle Scholar
  12. Cornforth, J. W., Milborrow, B. V., and Ryback, G. (1965b). “Synthesis of (±)abscisin II”. Nature 206: 715.CrossRefGoogle Scholar
  13. Crocker, W., Hitchcock, A. E., and Zimmerman, P. W. (1935). “Similarities in the effects of ethylene and the plant auxins”. Contrib. Boyce Thompson Inst. 7: 231–48.Google Scholar
  14. Cutler, H. G., Yokota, T., and Adam, G. (1991). Brassinosteroids. Chemistry Bioactivity and Applications, American Chemical Society, Washington, DC.Google Scholar
  15. Darwin, C. R. (1880). The Power of Movement in Plants, Murray, London.Google Scholar
  16. Davies, P. J. (1987). Plant Hormones and Their Role in Plant Growth and Development, Martinus Nijhoff Publishers, Boston.CrossRefGoogle Scholar
  17. Demole, E., Lederer, E., and Mercier, D. (1962). “Isolement et determination de la structure du jasmonate de methyle, constitutuant odorant characteristique de l’essence de jasmin”. HeIv. Chim. Acta 45: 675–685.CrossRefGoogle Scholar
  18. Denny, F. E. (1923). “Method of coloring citrus fruits”. U.S. patent 1, 475, 938.Google Scholar
  19. Denny, F. E. (1924). “Hastening the coloration of lemons”. J. Agr. Res. 27: 757–769.Google Scholar
  20. Devlin, R. M. and Witham, F. H. (1983). Plant Physiology, Wadworth Publishing Co. Belmont, CA.Google Scholar
  21. Doubt, S. L. (1917). “The response of plants to illuminating gas”. Bot. Gaz. 63: 209–224.CrossRefGoogle Scholar
  22. du Monceau, D. (1758). La physique des arbres. Volume I.Google Scholar
  23. Eagles, C. F. and Wareing, P. F. (1963). “Experimental induction of dormancy in Betula pubescens”. Nature 199: 874.CrossRefGoogle Scholar
  24. Farmer, E. E. and Ryan, C. A. (1992). “Octadecanoid precursors of jasmonic acid activate the synthesis of wound-inducible proteinase inhibitors”. Plant Cell 4: 129–134.PubMedGoogle Scholar
  25. Fitting, H. (1910). “Weitere entwicklungsphysiologische Untersuchungen an Orchideen-bluten”. Zeitschr. Bot. 2: 225–267.Google Scholar
  26. Fitting, H. (1907). “Die Leitung tropistischer Reize in parallelotropen Pflanzenteilen”, Jahrb. Wiss. Bot. 44: 177–253.Google Scholar
  27. Gall J. (1968). “An ancient technique for ripening sycamore fruit in East-Mediterranean countries”. Econ. Bot. 22: 178–190.CrossRefGoogle Scholar
  28. Gane, R. (1934). “Production of ethylene by some ripening fruits”. Nature 134: 1008.CrossRefGoogle Scholar
  29. Girardin, J. P. L. (1864). “Einfluss des leuchtgases auf die promenaden und strassenbaume”. Jahreb. Fortschritte AgrikChemie 7:199–200.Google Scholar
  30. Grove, M. D., Spencer, F. G., Rohwedder, W. K., Mandava, N. B., and Worley, J. F. (1979). “A unique plant growth promoting steroid from Brassica napus pollen”. Nature 281:216–217.Google Scholar
  31. Haagen-Smit, A. J., Dandliker, W. B. Wittwer, S. H., and Mumeek, A. E. (1946). “Isolation of 3-indoleacetic acid from immature corn kernels”. Amer. J. Bot. 33:118–120.Google Scholar
  32. Haberlandt, G. (1913). “Zur Physiologie der Zellteilung”. Sitzber. K Preuss. Akad. Wiss. 318.Google Scholar
  33. Hall, R. H. and deRopp, R. S. (1955). “Formation of 6-furfurylaminopurine from DNA breakdown products”. J. Am. Chem. Soc. 77:6400.Google Scholar
  34. Hansen, E. (1943). “Relation of ethylene production to respiration and ripening of premature pears”. Proc. Am. Soc. Hort. Sci. 43:69–72.Google Scholar
  35. Hori, S. (1898). “Some observations on Bakanae’ disease of the rice plant”. Mem. Agric. Res. Sta. (Tokyo) 12:110–119.Google Scholar
  36. Ikekawa, N. and Zhao, Y.-J. (1991). “Application of 24-epibrassinolide in agriculture”. In Brassinosteroids. Chemistry, Bioactivity, and Applications, eds., H. G. Cutler, T. Yokota, and G. Adam, American Chemical Society, Washington, DC, pp. 280–291.Google Scholar
  37. Iwahori, S., Tominaga, S., and Higuchi, S. (1990). “Retardation of abscission of citrus leaf and fruitlet explants by brassinolide”. Plant Growth Reg. 9:119–125.Google Scholar
  38. Jablonski, J. R. and Skoog, F. (1954). “Cell enlargement and cell division in excised tobacco pith tissue”. Physiol. Plant. 7:16.Google Scholar
  39. Jacobs, W. P. (1959). “What substance normally controls a given biological process? I. Formulation of some rules”. Dev. Biol. 1:527–533.Google Scholar
  40. Kidd, F. and West, C. (1945). “Respiratory activity and duration of life of apples gathered at different stages of development and subsequently maintained at a constant temperature”. Plant Physiol. 20:467–504.Google Scholar
  41. Kim, S.-K. (1991). “Natural occurrences of brassinosteroids”. In Brassinosteroids. Chemistry, Bioactivity, and Applications, eds., H. G. Cutler, T. Yokota, and G. Adam, American Chemical Society, Washington, DC, pp. 26–35.Google Scholar
  42. Kögl, F. and Haagen-Smit, A. J. (1931). “Uber die Chemie des Wuchsstoffs K. Akad. Wetenschap. Amsterdam”. Proc. Sect. Sci. 34:1411–1416.Google Scholar
  43. Kögl, F. and Kostermans, D. G. F. R. (1934). “Heteroauxin als Stoffwechselprodukt niederer pflanzlicher Organismen, Isolierung aus Hefe”. Zeitschr. Physiol. Chem. 228:113–121.Google Scholar
  44. Kögl, F., Haagen-Smit, A. J., and Erxleben, H. (1934a). “Uber die Isolierung der Auxine a und b aus pflanzlichen Materialien, IX Mitteilung”. Zeitschr. Physiol. Chem. 225:215–229.Google Scholar
  45. Kraus, E. J. and Kraybill, H. R. (1918). “Vegetation and reproduction with special reference to the tomato”. Ore. Agr. Expt. Sta. Bull. 149:5.Google Scholar
  46. Kurosawa, E. (1926). “Experimental studies on the nature of the substance secreted by the bakanae’ fungus”. Nat. Hist. Soc. Formosa 16:213–227.Google Scholar
  47. Lang, A. (1970). “Gibberellins: Structure and metabolism”. Annu. Rev. Plant Physiol. 21:537–570.Google Scholar
  48. Letham, D. S. (1963). “Zeatin, a factor inducing cell division isolated from Zea mays”. Life Sci. 2: 569–573.CrossRefGoogle Scholar
  49. Letham, D. S., Shannon, J. S., and McDonald, I. R. (1964). “The structure of zeatin, a factor inducing cell division”. Proc. Chem. Soc. 230–231.Google Scholar
  50. Liu, W. C. and Cams, H. R. (1961). “Isolation of abscisin, an abscission accelerating substance”. Science 134:384.Google Scholar
  51. MacMillan, J. and Takahashi, N. (1968). “Proposed procedure for the allocation of trivial names to the gibberellins”. Nature 217:170–171.Google Scholar
  52. Matsubara, S. (1990). “Structure-activity relationships of cytokinins”. Plant Sci. 9:17–57.Google Scholar
  53. Meyer, A., Miersch, O., Buttner, C., Dathe, W., and Sembdner G. (1984). “Occurrence of the plant growth regulator jasmonic acid in plants”. J. Plant Growth Reg. 3:1–8.Google Scholar
  54. Milborrow, B. V. and Pryce, R. J. (1973). “The brassins” Nature 243:46.Google Scholar
  55. Miller, C. O. (1961). “A kinetin-like compound in maize”. Proc. Natl. Acad. Sci. USA 47: 170–174.Google Scholar
  56. Miller, C. O., Skoog, F., Okumura, F. S., von Saltza, M. H., and Strong, F. M. (1955a). “Structure and synthesis of kinetin”. J. Am. Chem. Soc. 77:2662–2663.Google Scholar
  57. Miller, C. O., Skoog, F., von Saltza, M. H., and Strong, F. M. (1955b). “Kinetin, a cell division factor from deoxyribonucleic acid”. J. Am. Chem. Soc. 77: 1392.Google Scholar
  58. Miller, E. V. (1947). “The story of ethylene”. Sci. Monthly 65: 335–342.Google Scholar
  59. Mitchell, J. W. and Gregory, L. E. (1972). “Enhancement of overall growth, a new response to brassins”. Nature 239:254.Google Scholar
  60. Molisch, H. (1884). “Sitzungsberitche der kaiserl”. Akademie der Wissenschaften (Wein) 90: 111–196.Google Scholar
  61. Neljubow, D. N. (1901). “’ber die horizontale nutation der stengel von Pisum sativum und einiger anderen”. Pflanzen Beitrage und Botanik Zentralblatt 10:128–139.Google Scholar
  62. Ohkuma, K. (1965). “Synthesis of some analogs of abscisin II”. Agr. Biol. Chem. 29: 962–964.Google Scholar
  63. Ohkuma, K., Addicott, F. T., Smith, O. E., and Thiessen, W. E. (1965). “The structure of abscisin II”. Tetrahedron Lett. 29:2529–2535.Google Scholar
  64. Ohkuma, K., Lyon, J. L., Addicott, F. T., and Smith, O. E. (1963). “Abscisin II, an abscission-accelerating substance from young cotton fruit”. Science 142:1592–1593.Google Scholar
  65. Paal, A. (1918). “’ber phototropische Reizleitung”. Jahrb. Wiss. Bot. 58: 406–458.Google Scholar
  66. Parthier, B. (1990). “Jasmonates: Hormonal regulators or stress factors in leaf senescence?” J. Plant Growth Reg. 9:57–63.Google Scholar
  67. Radley, M. (1956). “Occurrence of substances similar to gibberellic acid in higher plants”. Nature 178: 1070–1071.CrossRefGoogle Scholar
  68. Raskin, I. (1992a). “Role of salicylic acid in plants”. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43: 439–463.CrossRefGoogle Scholar
  69. Raskin, I. (1992b). “Salicylate, a new plant hormone”. Plant Physiol. 99: 799–803.PubMedCrossRefGoogle Scholar
  70. Rodaway, S. J., Gates, D. W. and Brindle, C. (1991). “Control of early seedling growth in varietal lines of hexaploid wheat (Triticum aestivum), durum wheat (Triticum durum), and barley (Hordeum vulgare) in response to the phthalimide growth regulant, AC 94,377”. Plant Growth Reg. 10: 243–259.CrossRefGoogle Scholar
  71. Rothert, W. (1894). “Uber heliotropismus”. Beitr. Biol. Pflanzen (Cohn) 7: 1–212.Google Scholar
  72. Salkowski, E. (1885). “Uber das verhalten der skatolcarbonsaure im organismus”. Zeitschr. Physiol. Chem. 9: 23–33.Google Scholar
  73. Sasse, J. M. (1991). “Brassinosteroids-Are they endogenous plant hormones?”. PGRSA Quarterly 19: 1–18.Google Scholar
  74. Sawada, K. (1912). “Disease of agricultural products in Japan”. Formosan Agr. Rev. 36: 10.Google Scholar
  75. Sembdner, G. and Gross, D. (1986). “Plant growth substances of plant and microbial origin”. In Plant Growth Substances, ed., M. Bopp, Springer, Berlin, pp. 139–147.CrossRefGoogle Scholar
  76. Sembdner, G. and Parthier, B. (1993). “The biochemistry and the physiological and molecular actions of jasmonates”. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44: 569–589.CrossRefGoogle Scholar
  77. Shaw, G. and Wilson, D. V. (1964). “Synthesis of zeatin”. Proc. Chem. Soc. 231: 1.Google Scholar
  78. Soding, H. (1925). “Zur kenntnis der wuchshormone in der haferkoleoptile”. Jahrb. Wiss. Bot. 64:587–6603.Google Scholar
  79. Staswick, P. E. (1990). “Novel regulation of vegetative storage protein genes”. Plant Cell 2: 1–6.PubMedGoogle Scholar
  80. Staswick, Paul E. (1992). “Jasmonate, genes, and fragrant signals”. Plant Physiol. 99: 804–807.PubMedCrossRefGoogle Scholar
  81. Stodola, F. H., Raper, K. B., Fennell, D. I., Conway, H. F., Sohns, V. E., Langford, C. T. and Jackson, R. W. (1955). “The microbiological production of gibberellins A and X”. Arch. Biochem. Biophys. 54: 240–245.Google Scholar
  82. Takahashi, N., Kitamura, H., Kawarada, A., Stea Y., Takai, M., Tamura, S., and Sumiki, Y. (1955). “Isolation of gibberellins and their properties”. Bull. Agric. Chem. Soc. Japan 19: 267–277.Google Scholar
  83. Takahashi, N., Phinney, B. O., and MacMillan J. (1991). Gibberellins, Springer-Verlag, New York.CrossRefGoogle Scholar
  84. Takahashi, N., Seta, Y., Kitamura, H. and Sumiki Y. (1957). “A new gibberellin, gibberellin A4 . Bull. Agric. Chem. Soc. Japan 21: 396–398.Google Scholar
  85. Thimann, K. V. (1935). “On the plant growth hormone produced by Rhizopus suinus”. J. Biol. Chem. 109: 279–291.Google Scholar
  86. Trewavas, A. (1981). “How do plant growth substances act? I”. Plant Cell Environment 4: 203–228.Google Scholar
  87. van Overbeek, J., Conklin, M. E., and Blakeslee, A. F. (1941). “Factors in coconut milk essential for growth and development of Datura embryos”. Science 94:350.Google Scholar
  88. van Overbeek, J., Siu, R., and Haagen-Smit, A. J. (1944). “Factors affecting the growth of Datura embryos in vitro”. Am. J. Bot. 31:219.Google Scholar
  89. van Overbeek, J., Tukey, H. B., Went, F. W. and Muir, R. M. (1954). “Nomenclature of chemical plant regulators”. Plant Physiol. 29: 307–308.Google Scholar
  90. Vick, B. A. and Zimmerman, D. C. (1986). “Characterization of 12-oxo-phytodienoic acid reductase in corn. The jasmonic acid pathway”. Plant Physiol. 80: 202–205.PubMedCrossRefGoogle Scholar
  91. Vliegenthart, J. A. and Vliegenthart, J. F. G. (1966). “Reinvestigation of authentic samples of auxin a and b and related products by mass spectometry”. Rucueil 85: 1266–1272.CrossRefGoogle Scholar
  92. von Sachs, J. (1880). “Stoff und Form der Pflanzenorgane. I”. Arb. Bot. Inst. Wurzburg 2: 452–488.Google Scholar
  93. Weaver, R. J. (1972). Plant Growth Substances in Agriculture, W. H. Freeman and Company, San Francisco.Google Scholar
  94. Weissmann, G. (1991). “Aspirin”. Sci. Am. 264: 84–90.Google Scholar
  95. Went, F. W. (1926). “On growth-accelerating substances in the coleoptile of Avena sativa”. Proc. Kon. Ned. Akad. Wet. 30:10–19.Google Scholar
  96. Went, F. W. (1928). “Wuchsstoff und Wachstum”. Rec. Tray. Bot. Neerland. 25: 1–116.Google Scholar
  97. Wilen, R. W., van Rooijen, G. J., Pearce, D. W., Pharis, R. P., Holbrook, L. A., and Moloney, M. M. (1991). “Effects of jasmonic acid on embryo specific processes in Brassica and Linum oilseeds”. Plant Physiol. 95: 399–405.PubMedCrossRefGoogle Scholar
  98. Yabuta, T. (1935). “Biochemistry of the bakanae’ fungus of rice”. Agr. Hort. (Tokyo) 10: 17–22.Google Scholar
  99. Yabuta, T. and Sumiki, Y. (1938). “On the crystal of gibberellin, a substance to promote plant growth”. J. Agric. Chem. Soc. Japan 14: 1526.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1996

Authors and Affiliations

  • Richard N. Arteca
    • 1
  1. 1.The Pennsylvania State UniversityUSA

Personalised recommendations