Locomotion in Nocturnal Prosimians

  • Holger Preuschoft
  • Hartmut Witte
  • Martin Fischer


Napier and Napier (1967), whose categorization has often been criticized and sometimes modified, but never replaced, divided the prosimians into the following locomotor categories: slow climbing (and bridging), branch running and walking, vertical clinging and leaping.


Small Mammal Stride Length Stride Frequency Mass Moment Trunk Flexion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander, McN. (1974). The mechanics of jumping in a dog (Canis familiaris). Journal of Zoology, London, 173, 549–573.CrossRefGoogle Scholar
  2. Alexander, McN. (1990). Elastic mechanisms in the locomotion of vertebrates. Netherlands Journal of Zoology, 40, 93–105.CrossRefGoogle Scholar
  3. Alexander, McN. & Bennett-Clark, H.C. (1977). Storage of elastic strain energy in muscle and other tissues. Nature, 265, 114–117.PubMedCrossRefGoogle Scholar
  4. Buck, C. & Bär, H. (1991). Investigations on the biomechanical significance of dermatoglyphic ridges. In H. Preuschoft & D.J. Chivers (Eds.), Hands of Primates (pp. 285–306). Wien, New York: Springer Verlag.Google Scholar
  5. Cartmill, M. (1974). Pads and claws in arboreal locomotion. In F.A. Jenkins (Ed.), Primate Locomotion (pp. 45–83). New York: Academic Press.Google Scholar
  6. Cartmill, M. (1979). The volar skin of primates: Its frictional characteristics and their functional significance. American Journal of Physical Anthropology, 50, 497–510.PubMedCrossRefGoogle Scholar
  7. Cartmill, M. (1985). Climbing. In M. Hildebrand, D.M. Bramble, K.F. Liem & D.B. Wake (Eds.), Functional Vertebrate Morphology (pp. 73–88). Cambridge, Mass. and London: The Belknap Press of Harvard University Press.Google Scholar
  8. Christian, A. (1993). Zur Biomechanik der Lokomotion vierfßiger Reptilien (besonders der Sqamata). Dissertation, Bochum. Will appear printed in Courier Forschungsinstitut Senckenberg, Frankfurt a.M.Google Scholar
  9. Christian, A., Horn, H.-G. & Preuschoft, H. (1994a). Bipedie bei rezenten Reptilien. Natur und Museum, 124, 45–57.Google Scholar
  10. Christian A., Horn, H.-G. & Preuschoft, H. (1994b). Biomechanical reasons for bipedalism in reptiles. Amphibia — Reptilia, 15, 275–284.CrossRefGoogle Scholar
  11. Demes, B. (1989). Biomechanische Allometrie: Wie die Körpergröße Fortbewegung und Körperform von Primaten bestimmt. Courier Forschungsinstitut Senckenberg, Frankfurt a.M., 141, 1–83.Google Scholar
  12. Demes, B. & Günther, M.M. (1989a). Biomechanics and allometric scaling in primate locomotion and morphology. Folia Primatologica, 53, 125–141.CrossRefGoogle Scholar
  13. Demes, B. & Günther, M.M. (1989b). Wie die Körpermasse den Springstil von Halbaffen und deren Proportionen bestimmt. Zeitschrift für Morphologie und Anthropologie 77, 209–225.PubMedGoogle Scholar
  14. Demes, B., Forchap, E. & Herwig, H. (1991). They seem to glide. Are there aerodynamic effects in leaping prosimian primates? Zeitschrift für Morphologie und Anthropologie, 78, 373–385.PubMedGoogle Scholar
  15. Demes, B., Larson, S.G., Stern, J.T. & Jungers, W.L. (1994). The hindlimb drive of primates — theoretical reconsideration and empirical examination of a widely held concept. Journal of Human Evolution, 26, 353–374.CrossRefGoogle Scholar
  16. Demes, B., Jungers W.L. jr. & Nieschalk, U. (1990). Size and speed related aspects of quadrupedal walking in slender and slow lorises. In F.K. Jouffroy, M.H. Stack & C. Niemitz (Eds.), Gravity, Posture and Locomotion in Primates (pp. 175–197). Firenze: Il Sedicesimo.Google Scholar
  17. Dunbar, D.C. (1994). The influence of segmental movements and design on whole-body rotations during the airborne phase of primate leaps. Zeitschrift für Morphologie und Anthropologie, 80, 1 (in press).Google Scholar
  18. Fischer, M. S. (1993). Die Lokomotion von Procavia capensis (Mammalia: Hyracoidea). Ein Beitrag zur Evolution des Bewegungssystems der Säugetiere. Habilitationsschrift, Tübingen.Google Scholar
  19. Fleagle, J.G., Stern, J.T., Jungers, W.L., Susman, R.L., Vangor, A.K. & Wells, J.P. (1981). Climbing: A biomechanical link with brachiation and with bipedalism. Symposia of the Zoological Society of London, 48, 359–375.Google Scholar
  20. Günther, M.M. (1989). Funktionsmorphologische Untersuchungen zum Sprungverhalten an mehreren Halbaffenarten (Galago moholi, Galago (Otolemur) garnetti, Lemur catta). Dissertation, Berlin.Google Scholar
  21. Günther, M.M., Preuschoft, H., Ishida, J. & Nakano, Y. (1992). Can prosimian-like leaping be considered a preadaptation to bipedal walking in hominids? In S. Matano, R.H. Tuttle, H. Ishida & M. Goodman (Eds.), Topics in Primatology Vol. 3 (pp. 153–165). Tokyo: University of Tokyo Press.Google Scholar
  22. Gruber, K. (1987). Entwicklung eines Modelles zur Berechnung der Kräfte im Knie- und Hüftgelenk bei sportlichen Bewegungsabläufen mit hohen Beschleunigungen. Dissertation, Tübingen.Google Scholar
  23. Gruber, K., Legal, H. & Ruder, H. (1982). Biomechanische Analyse der Bewegungsabläufe an der unteren Extremität. I. Beschleunigungen. Zeitschrift für Orthopädie, 120, 806–813.CrossRefGoogle Scholar
  24. Hirasaki, E., Kumakura, H. & Matano, S. (1993). Kinesiological characteristics of vertical climbing in Ateles geoffroyi and Macaca fuscata. Folia Primatologica, 61, 148–156.CrossRefGoogle Scholar
  25. Jenkins, F.A. jr. (1974). Tree shrew locomotion and the origins of primate arborealism. In F.A. Jenkins jr. (Ed.), Primate Locomotion (pp. 85–115). New York: Academic Press.Google Scholar
  26. Jouffroy, F.K., Godinot, M. & Nakano, Y. (1993). Biometrical characteristics of primate hands. In H. Preuschoft & D.J. Chivers (Eds.), Hands of Primates (pp. 133–171). Wien, New York: Springer Verlag.CrossRefGoogle Scholar
  27. Jungers, W.L. & Stern, J.T. (1984). Kinesiological aspects of brachiation in lar gibbons. In H. Preuschoft, D.J. Chivers, W.Y. Brockelman & N. Creel (Eds.), The Lesser Apes, Evolutionary and Behavioural Biology (pp. 119–134). Edinburgh: Edinburgh University Press.Google Scholar
  28. Kimura, T., Okada, M. & Ishida, H. (1979). Kinesiologic characteristics of primate waiking: its significance in human walking. In M.E. Morbeck, H. Preuschoft & N. Gomberg (Eds.), Environment, Behavior and Morphology: Dynamic Interactions in Primates (pp. 297–311). New York: G. Fischer.Google Scholar
  29. Kram, R. & Taylor, C.R. (1990). Energetics for running: a new perspective. Nature, 346, 265–267.CrossRefGoogle Scholar
  30. Loitsch, C. (1994). Kinematische Untersuchung über den Galopp von Pferden (Equus caballus). Dissertation, Bochum.Google Scholar
  31. Merkens, H. (1987). Quantitative evaluation of equine locomotion using force plate data. PhD thesis, Utrecht.Google Scholar
  32. Mochon, S. & McMahon, T.A. (1980). Ballistic walking. Journal of Biomechechanics, 13, 49–57.Google Scholar
  33. Mochon, S. & McMahon, T.A. (1981). Ballistic walking: An improved model. Mathematical Biosciences, 241–260.Google Scholar
  34. Napier, J.R. & Napier, P.H. (1967). A Handbook of Living Primates. New York: Academic Press.Google Scholar
  35. Niemitz, C. (1984). Activity rhythms and use of space in semi-wild Bornean tarsiers, with remarks on wild spectral tarsiers. In C. Niemitz (Ed.), Biology of Tarsiers (pp. 85–115). Stuttgart: G. Fischer.Google Scholar
  36. Nieschalk, U. (1991). Fortbewegung und Funktionsmorphologie von Loris tardigradus und anderen kleinen quadrupeden Halbaffen in Anpassung an unterschiedliche Habitate. Dissertation, Bochum.Google Scholar
  37. Nieschalk, U. & Demes, B. (1992). Biomechanical determinants of reduction of the secondary ray in Lorisinae. In H. Preuschoft & D.J. Chivers (Eds.), Hands of Primates (pp. 225–234). Wien, New York: Springer-Verlag.Google Scholar
  38. Peters, A. & Preuschoft, H. (1984). External biomechanics in Tarsius and its morphological and kinematic consequences. In C. Niemitz (Ed.), Biology of Tarsiers (pp. 227–255). Stuttgart: G. Fischer.Google Scholar
  39. Preuschoft, H. (1970). Functional anatomy of the lower extremity. In G.H. Bourne (ed.) The Chimpanzee, Vol. 3 (pp. 221–294). Basel: Karger-Verlag.Google Scholar
  40. Preuschoft, H. (1970). Statische Untersuchungen am Fuß der Primaten. II. Statik des ganzen Fußes. Zeitschrift fürAnatomie und Entwicklungsgeschichte, 131, 156–192.CrossRefGoogle Scholar
  41. Preuschoft, H. (1985). On the quality and magnitude of mechanical stresses in the locomotor system dunng rapid movements. Zeitschrift für Morphologie und Anthropologie, 75, 245–262.PubMedGoogle Scholar
  42. Preuschoft, H. (1988). The external forces and internal stresses occuring in the distal limb segments of dressage and jumping horses. Zeitschrift für Säugetierkunde, 54, 172–190.Google Scholar
  43. Preuschoft, H. (1989). Body shape and differences between species. Human Evolution, 4, 145–156CrossRefGoogle Scholar
  44. Preuschoft, H. (1990). Gravity in primates and its relation to body shape and locomotion. In F.K. Jouffroy, M.H. Stack & C. Niemitz (Eds.), Gravity, Posture and Locomotion in Primates (pp.107–127). Firenze: Il Sedicesimo.Google Scholar
  45. Preuschoft, H. (1992). Biomechanics and functional morphology. Karger Gazette, 54, 7.Google Scholar
  46. Preuschoft, H., Godinot, M., Beard, C., Nieschalk, U. & Jouffroy, F.K. (1993). Biomechanical considerations to explain important morphological characters of primate hands. In H. Preuschoft & D.J. Chivers (Eds.), Hands of Primates (pp. 245–256). Wien, New York: Springer-Verlag.CrossRefGoogle Scholar
  47. Preuschoft H. & Demes, B. (1984). Biomechanics of brachiation. In H. Preuschoft, W.Y. Brockelman, D.J. Chivers & N. Creel (Eds.), The Lesser Apes. Evolutionary and Behavioral Biology (pp. 96–118). Edinburgh: Edinburgh University Press.Google Scholar
  48. Preuschoft, H. & Günther, M.M. (1994). Biomechanics and body shape in primates compared with horses. Zeitschriftfür Morphologie und Anthropologie, 80, 1 (in press).Google Scholar
  49. Preuschoft, H. & Witte, H. (1991). Biomechanical reasons for the evolution of hominoid body shape. In B. Senut & M. Pickford (Eds.), Origine(s) de la Bipédie chez les Hominidés (pp. 59–77). Paris: CNRS.Google Scholar
  50. Preuschoft, H., Witte, H. & Demes, B. (1992). Biomechanical factors that influence overall body shape ot large apes and humans. In S. Matano, R.H. Tuttle, H. Ishida & M.Goodman (Eds.), Topics in Primatology, Vol. 3 (pp. 259–289). Tokyo: Tokyo University Press.Google Scholar
  51. Rawlins, R.G. (1993). Locomotive and manipulative use of the hand in the Cayo Santiago macaques (Macaca mulatta). In H. Preuschoft & D.J. Chivers (Eds.) Hands of Primates (pp. 21–30). Wien, New York: Springer-Verlag.CrossRefGoogle Scholar
  52. Sellers, W.I. & Crompton, R.H. (1994). A system for 2- and 3D kinematic and kinetic analysis of locomotion, and its appplication to analysis of the energetic efficiency of jumping locomotion. Zeitschrift für Morphologie und Anthropologie, 80, 1, (in press).Google Scholar
  53. Schultz, A.H. (1961). Curvature of the vertebral column. In H. Hofer, A.H. Schultz & D. Starck (Eds.), Primatologia Vol. IV-5, Basel: Karger Verlag.Google Scholar
  54. Schultz, A.H. (1963a). The relative lengths of the foot skeleton and its main parts in primates. In J.R.. Napier & N.A. Barnicot (Eds.), The Primates (pp. 199–206). London: Zoological Society of London.Google Scholar
  55. Schultz, A.H. (1963b). Relations between the length of the main parts of the foot skeleton in primates. Folia Primatologica, 1, 150–171.CrossRefGoogle Scholar
  56. Schulz, M.H.H. (1994). Die biomechanische Bedeutung der Papillarleistenmuster auf den Fingerbeeren der Primaten. Zeitschriftfür Morphologie und Anthropolo2ie, 80, (in press).Google Scholar
  57. Vilensky, J.A. (1989). Primate quadrupedalism: How and why does it differ from that of typical quadrupeds? Brain, Behavior and Evolution, 34, 357–364.PubMedCrossRefGoogle Scholar
  58. Vilensky, J.A. & More, A.M. (1992). Utilization of lateral- and diagonal-sequence gaits at identical speeds by individual vervet monkeys. In S. Matano, R.H. Tuttle, H. Ishida & M. Goodman (Eds.), Topics in Primatology Vol. 3 (pp. 129–137). Tokyo: University of Tokyo Press,Google Scholar
  59. Witte, H., Preuschoft, H. & Recknagel, St. (1991). Human body proportions explained on the basis of biomechanical principles. Zeitschrift fr Morphologie und Anthropologie, 78, 407–423.Google Scholar
  60. Witte, H., Lesch, C., Preuschoft, H. & Loitsch, C. (1995). Die Gangarten der Pferde. Pferdeheilkunde (in press).Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Holger Preuschoft
    • 1
  • Hartmut Witte
    • 1
  • Martin Fischer
    • 2
  1. 1.Abtlg. Funktionelle Morphologie Institut für AnatomieRuhr-Universität BochumGermany
  2. 2.Institut für spezielle Zoologie und EvolutionsbiologieFriedrich Schiller-Universität JenaGermany

Personalised recommendations