Inhibition of Cytochrome P450 Enzymes

  • Paul R. Ortiz de Montellano
  • Maria Almira Correia


The catalytic cycle of cytochrome P450 (see Chapters 3 and 8) traverses three steps that are particularly vulnerable to inhibition: (1) the binding of substrates, (2) the binding of molecular oxygen subsequent to the first electron transfer, and (3) the catalytic step in which the substrate is actually oxidized. This chapter focuses on inhibitors that act at one of these three steps. Inhibitors that act at other steps in the catalytic cycle, such as agents that interfere with the electron supply to the hemoprotein by accepting electrons directly from cytochrome P450 reductase,1–3 are not discussed here.


Aromatase Inhibitor Covalent Binding Microsomal Cytochrome Tienilic Acid Acetylenic Fatty Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rahimtula, A. D., and O’Brien, P. J., 1977, The peroxidase nature of cytochrome P450, in: Microsomes and Drug Oxidations ( V. Ullrich, I. Roots, A. Hildebrandt, R. W. Estabrook, and A. H. Conney, eds.), Pergamon Press, Elmsford, NY, pp. 210–217.Google Scholar
  2. 2.
    Rodrigues, A. D., Fernandez, D., Nosarzewski, M. A., Pierce, W. M., and Prough, R. A., 1991, Inhibition of hepatic microsomal cytochrome P-450 dependent monooxygenation activity by the antioxidant 3-tert-butyl-4-hydroxyanisole, Chem. Res. Toxicol. 4: 281–289.PubMedCrossRefGoogle Scholar
  3. 3.
    Kharasch, E. D., Wendel, N. K., and Novak, R. F., 1987, Anthracenedione antineoplastic agent effects on drug metabolism in vitro and in vivo: Relationship between structure and mechanism of inhibition, Fundam. App!. Toxicol. 9: 18–25.CrossRefGoogle Scholar
  4. 4.
    Testa, B., and Jenner, P., 1981, Inhibitors of cytochrome P-450s and their mechanism of action, Drug. Metab. Rev. 12: 1–117.PubMedCrossRefGoogle Scholar
  5. 5.
    Correia, M. A., and Ortiz de Montellano, P. R., 1993, Inhibitors of cytochrome P450 and possibilities for their therapeutic application, in: Frontiers in Biotransformation ( K. Ruckpaul, ed.), Akademie-Verlag, Berlin, pp. 74–146.Google Scholar
  6. 6.
    Murray, M., and Reidy, G. F., 1990, Selectivity in the inhibition of mammalian cytochromes P-450 by chemical agents, Pharmacol. Rev. 42: 85–101.PubMedGoogle Scholar
  7. 7.
    Ortiz de Montellano, P. R., 1988, Suicide substrates for drug metabolizing enzymes: Mechanism and biological consequences, in: Progress in Drug Metabolism ( G. G. Gibson, ed.), Taylor & Francis, London, pp. 99–148.Google Scholar
  8. 8.
    Vanden Bossche, H., 1992, Inhibitors of P450-dependent steroid biosynthesis: From research to medical treatment, J. Steroid Biochem. Mol. Biol. 43: 1003–1021.CrossRefGoogle Scholar
  9. 9.
    Sato, A., and Nakajima, T., 1979, Dose-dependent metabolic interaction between benzene and toluene in vivo and in vitro, Toxicol. App!. Pharmacol. 48: 249–256.CrossRefGoogle Scholar
  10. 10.
    Watkins, R. B., 1990, Role of cytochromes P450 in drug metabolism and hepatotoxicity, Sem in. Liver Dis. 10: 235–250.CrossRefGoogle Scholar
  11. 11.
    Jefcoate, C. R., 1978, Measurement of substrate and inhibitor binding to microsomal cytochrome P-450 by optical-difference spectroscopy, Methods Enzymol. 52: 258–279.PubMedCrossRefGoogle Scholar
  12. 12.
    Kumaki, K., Sato, M., Kon, H., and Nebert, D. W., 1978, Correlation of type I, type II, and reverse type I difference spectra with absolute changes in spin state of hepatic microsomal cytochrome P-450 iron from five mammalian species, J. Biol. Chem. 253: 1048–1058.PubMedGoogle Scholar
  13. 13.
    Schenkman, J. B., Sligar, S. G., and Cinti, D. L., 1981, Substrate interactions with cytochrome P-450, Pharmacol. Ther. 12: 43–71.PubMedCrossRefGoogle Scholar
  14. 14.
    Sligar, S. G., Cinti, D. L., Gibson, G. G., and Schenkman, J. B., 1979, Spin state control of the hepatic cytochrome P-450 redox potential, Biochem. Biophys. Res. Commun. 90: 925–932.PubMedCrossRefGoogle Scholar
  15. 15.
    Guengerich, F. P., 1983, Oxidation-reduction properties of rat liver cytochromes P450 and NADPHcytochrome P-450 reductase related to catalysis in reconstituted systems, Biochemistry 22: 2811–2820.PubMedCrossRefGoogle Scholar
  16. 16.
    Kitada, M., Chiba, K., Kamataki, T., and Kitagawa, H., 1977, Inhibition by cyanide of drug oxidations in rat liver microsomes, Jpn. J. Pharmacol. 27: 601–608.PubMedCrossRefGoogle Scholar
  17. 17.
    Ho, B., and Castagnoli, N., 1980, Trapping of metabolically generated electrophilic species with cyanide ion: Metabolism of 1-benzylpyrrolidine, J. Med. Chem. 23: 133–139.PubMedCrossRefGoogle Scholar
  18. 18.
    Sono, M., and Dawson, J. H., 1982, Formation of low spin complexes of ferric cytochrome P-450-CAM with anionic ligands: Spin state and ligand affinity comparison to myoglobin, J. Biol. Chem. 257: 5496–5502.PubMedGoogle Scholar
  19. 19.
    Backes, W. L., Hogaboom, M., and Canady, W. J., 1982, The true hydrophobicity of microsomal cytochrome P-450 in the rat: Size dependence of the free energy of binding of a series of hydrocarbon substrates from the aqueous phase to the enzyme and to the membrane as derived from spectral binding data, J. Biol. Chem. 257: 4063–4070.PubMedGoogle Scholar
  20. 20.
    Wink, D. A., Osawa, Y., Darbyshe, J. F., Jones, C. R., Eshenaur, S.C., and Nims, R. W., 1993, Inhibition of cytochromes P450 by nitric oxide and a nitric oxide-releasing agent, Arch, Biochem. Biophys. 300: 115–123.CrossRefGoogle Scholar
  21. 21.
    Khatsenko, O. G., Gross, S. S., Rifkind, A. B., and Vane, J. R., 1993, Nitric oxide is a mediator of the decrease in cytochrome P450-dependent metabolism caused by immunostimulants, Proc. Natl. Acad. Sci. USA 90: 11147–11151.PubMedCrossRefGoogle Scholar
  22. 22.
    Griscavage, J. M., Fukuto, J. M., Komori, Y., and Ignarro, L. J., 1994, Nitric oxide inhibits neuronal nitric oxide synthase by interacting with the heure prosthetic group. Role of tetrahydrobiopterin in modulating the inhibitory action of nitric oxide, J. Biol. Chem. 269: 21644–21649.PubMedGoogle Scholar
  23. 23.
    Hanson, L. K., Eaton, W. A., Sligar, S. G., Gunsalus, I. C., Gouterman, M., and Connell, C. R., 1976, Origin of the anomalous Soret spectra of carboxycytochrome P450, J. Am. Chem. Soc. 98: 2672–2674.PubMedCrossRefGoogle Scholar
  24. 24.
    Omura, T., and Sato, R., 1964, The carbon monoxide-binding pigment of liver microsomes. 1. Evidence for its hemoprotein nature, J. Biol. Chem. 239: 2370–2378.PubMedGoogle Scholar
  25. 25.
    Collman, J. R, and Sorrell, T. N., 1975, A model for the carbonyl adduct of ferrous cytochrome P-450, J. Am. Chem. Soc. 97: 4133–4134.PubMedCrossRefGoogle Scholar
  26. 26.
    Leeman, T., Bonnabry, R, and Dayer, R, 1994, Selective inhibition of major drug metabolizing cytochrome P450 isozymes in human liver microsomes by carbon monoxide, Life Sci. 54: 951–956.CrossRefGoogle Scholar
  27. 27.
    Canick, J. A., and Ryan, K. J., 1976, Cytochrome P-450 and the aromatization of 16-alpha-hydroxytestosterone and androstenedione by human placental microsomes, Mol. Cell. Endocrinol. 6: 105–115.PubMedCrossRefGoogle Scholar
  28. 28.
    Gibbons, G. F., Pullinger, C. R., and Mitropoulos, K. A., 1979, Studies on the mechanism of lanosterol 14-alpha-demethylation: A requirement for two distinct types of mixed-function-oxidase systems, Biochem. J. 183: 309–315.PubMedGoogle Scholar
  29. 29.
    Hansson, R., and Wikvall, K., 1982, Hydroxylations in biosynthesis of bile acids: Cytochrome P-450 LM4 and 12a-hydroxylation of 513-cholestane-3a,7a-diol, Eur. J. Biochem. 125: 423–429.PubMedCrossRefGoogle Scholar
  30. 30.
    Meigs, R. A., and Ryan, K. J., 1971, Enzymatic aromatization of steroids. I. Effects of oxygen and carbon monoxide on the intermediate steps of estrogen biosynthesis, J. Biol. Chem. 246: 83–87.PubMedGoogle Scholar
  31. 31.
    Zachariah, P. K., and Juchau, M. R., 1975, Interactions of steroids with human placental cytochrome P-450 in the presence of carbon monoxide, Life Sci. 16: 1689–1692.PubMedCrossRefGoogle Scholar
  32. 32.
    Tuckey, R. C., and Kamin, H., 1983, Kinetics of 02 and CO binding to adrenal cytochrome P-450scc: Effect of cholesterol, intermediates, and phosphatidylcholine vesicles, J. Biol. Chem. 258: 4232–4237.PubMedGoogle Scholar
  33. 33.
    Cohen, G. M., and Mannering, G. J., 1972, Involvement of a hydrophobic site in the inhibition of the microsomal para-hydroxylation of aniline by alcohols, Mol. Pharmacol. 8: 383–397.Google Scholar
  34. 34.
    Gerber, M. C., Tejwani, G. A., Gerber, N., and Bianchine, J. R., 1985, Drug interactions with cimetidine: An update, Pharmacol. Ther. 27: 353–370.PubMedCrossRefGoogle Scholar
  35. 35.
    Testa, B., 1981, Structural and electronic factors influencing the inhibition of aniline hydroxylation by alcohols and their binding to cytochrome P-450, Chem. Biol. Interact. 34: 287–300.PubMedCrossRefGoogle Scholar
  36. 36.
    Wattenberg, L. W., Lam, L. K. T., and Fladmoe, A. V., 1979, Inhibition of chemical carcinogen-induced neoplasia by coumarins and alpha-angelicalactone, Cancer Res. 39: 1651–1654.PubMedGoogle Scholar
  37. 37.
    Remmer, H., Schenkman, J., Estabrook, R. W., Sasame, H., Gillette, J., Narasimhulu, S., Cooper, D. Y., and Rosenthal, O., 1966, Drug interaction with hepatic microsomal cytochrome, Mol. Pharmacol. 2: 187–190.PubMedGoogle Scholar
  38. 38.
    Jefcoate, C. R., Gaylor, J. L., and Callabrese, R. L., 1969, Ligand interactions with cytochrome P-450. 1. Binding of primary amines, Biochemistry 8: 3455–3463.PubMedCrossRefGoogle Scholar
  39. 39.
    Schenkman, J. B., Remmer, H., and Estabrook, R. W., 1967, Spectral studies of drug interaction with hepatic microsomal cytochrome P-450, Mol. Pharmacol. 3: 113–123.Google Scholar
  40. 40.
    Dominguez, O. V., and Samuels, L. T., 1963, Mechanism of inhibition of adrenal steroid 11-beta-hydroxylase by methopyrapone (metopirone), Endocrinology 73: 304–309.PubMedCrossRefGoogle Scholar
  41. 41.
    Temple, T. E., and Liddle, G. W., 1970, Inhibitors of adrenal steroid biosynthesis, Annu. Rev. Pharmacol. 10: 199–218.PubMedCrossRefGoogle Scholar
  42. 42.
    Rogerson, T. D., Wilkinson, C. F., and Hetarski, K., 1977, Steric factors in the inhibitory interaction of imidazoles with microsomal enzymes, Biochem. Pharmacol. 26: 1039–1042.PubMedCrossRefGoogle Scholar
  43. 43.
    Wilkinson, C. F., Hetarski, K., Cantwell, G. R, and DiCarlo, F. J., 1974, Structure—activity relationships in the effects of 1-alkylimidazoles on microsomal oxidation in vitro and in vivo, Biochem. Pharmacol. 23: 2377–2386.PubMedCrossRefGoogle Scholar
  44. 44.
    Duquette, P. H., Erickson, R. R., and Holtzman, J. L., 1983, Role of substrate lipophilicity on the N-demethylation and type I binding of 3-O-alkylmorphine analogues, J. Med. Chem. 26: 1343–1348.PubMedCrossRefGoogle Scholar
  45. 45.
    Ator, M. A., and Ortiz de Montellano, R. R., 1990, Mechanism-based (suicide) enzyme inactivation, in: The Enzymes: Mechanisms of Catalysis, Vol. 19, 3rd ed. (D. S. Sig-man and R. D. Boyer, eds.), Academic Press, New York, pp. 214–282.Google Scholar
  46. 46.
    Silverman, R. B., 1988, Mechanism-Based Enzyme Inactivation: Chemistry and Enzymology, CRC Press, Boca Raton, FL.Google Scholar
  47. 47.
    Dalvi, R. R., 1987, Cytochrome P-450-dependent covalent binding of carbon disulfide to rat liver microsomal protein in vitro and its prevention by reduced glutathione, Arch. Toxicol. 61: 155–157.PubMedCrossRefGoogle Scholar
  48. 48.
    De Matteis, F. A., and Seawright, A. A., 1973, Oxidative metabolism of carbon disulphide by the rat: Effect of treatments which modify the liver toxicity of carbon disulphide, Chem. Biol. Interact. 7: 375–388.PubMedCrossRefGoogle Scholar
  49. 49.
    Bond, E. J., and De Matteis, F. A., 1969, Biochemical changes in rat liver after administration of carbon disulphide, with particular reference to microsomal changes, Biochem. Pharmacol. 18: 2531–2549.PubMedCrossRefGoogle Scholar
  50. 50.
    Halpert, J., Hammond, D., and Neal, R. A., 1980, Inactivation of purified rat liver cytochrome P-450 during the metabolism of parathion (diethyl p-nitrophenyl phosphorothionate), J. Biol. Chem. 255: 1080–1089.PubMedGoogle Scholar
  51. 51.
    Neal, R. A., Kamataki, T., Lin, M., Ptashne, K. A., Dalvi, R., and Poore, R. Y., 1977, Studies of the formation of reactive intermediates of parathion, in: Biological Reactive Intermediates ( D. J. Jollow, J. J. Koesis, R. Snyder, and H. Vaino, eds.), Plenum Press, New York, pp. 320–332.CrossRefGoogle Scholar
  52. 52.
    Miller, G. E., Zemaitis, M. A., and Greene, F. E., 1983, Mechanisms of diethyldithiocarbamate-induced loss of cytochrome P-450 from rat liver, Biochem. Pharmacol. 32: 2433–2442.PubMedCrossRefGoogle Scholar
  53. 53.
    Elhawari, A. M., and Plaa, G. L., 1979, Impairment of hepatic mixed-function oxidase activity by alpha-and beta-naphthylisothiocyanate: Relationship to hepatotoxicity, Toxicol. Appl. Pharmacol. 48: 445–458.CrossRefGoogle Scholar
  54. 54.
    Lee, R W., Arnau, T., and Neal, R. A., 1980, Metabolism of alpha-naphthylthiourea by rat liver and rat lung microsomes, Toxicol. Appl. Pharmacol. 53: 164–173.PubMedCrossRefGoogle Scholar
  55. 55.
    Lopez-Garcia, M. P., Dansette, R M., and Mansuy, D., 1993, Thiophene derivatives as new mechanism-based inhibitors of cytochromes P450: Inactivation of yeast-expressed human liver P450 2C9 by tienilic acid, Biochemistry 33: 166–175.CrossRefGoogle Scholar
  56. 56.
    Lopez-Garcia, M. P., Dansette, P. M., Valadon, P., Amar, C., Beaune, P. H., Guengerich, F. P., and Mansuy, D., 1993, Human liver P450s expressed in yeast as tools for reactive metabolite formation studies: Oxidative activation of tienilic acid by P450 2C9 and P450 2C10, Eur. J. Biochem. 213: 223–232.PubMedCrossRefGoogle Scholar
  57. 57.
    Menard, R. H., Guenthner, T. M., Taburet, A. M., Kon, H., Pohl, L. R., Gillette, J. R., Gelboin, H. V., and Trager, W. F., 1979, Specificity of the in vitro destruction of adrenal and hepatic microsomal steroid hydroxylases by thiosterols, Mol. Pharmacol. 16: 997–1010.PubMedGoogle Scholar
  58. 58.
    Kossor, D. C., Kominami, S., Takemori, S., and Colby, H. D., 1991, Role of the steroid 17a-hydroxylase in spironolactone-mediated destruction of adrenal cytochrome P-450, Mol. Pharmacol. 40: 321–325.PubMedGoogle Scholar
  59. 59.
    Halpert, J., and Neal, R. A., 1980, Inactivation of purified rat liver cytochrome P-450 by chloramphenicol, Mol. Pharmacol. 17: 427–434.PubMedGoogle Scholar
  60. 60.
    Halpert, J., 1982, Further studies of the suicide inactivation of purified rat liver cytochrome P-450 by chloramphenicol, Mol. Pharmacol. 21: 166–172.PubMedGoogle Scholar
  61. 61.
    Halpert, J., 1981, Covalent modification of lysine during the suicide inactivation of rat liver cytochrome P-450 by chloramphenicol, Biochem. Pharmacol. 30: 875–881.PubMedCrossRefGoogle Scholar
  62. 62.
    Halpert, J., Naslund, B., and Betner, I., 1983, Suicide inactivation of rat liver cytochrome P-450 by chloramphenicol in vivo and in vitro, Mol. Pharmacol. 23: 445–452.PubMedGoogle Scholar
  63. 63.
    Halpert, J., Balfour, C., Miller, N. E., and Kaminsky, L. S., 1986, Dichloromethyl compounds as mechanism-based inactivators of rat liver cytochromes P450 in vitro, Mol. Pharmacol. 30: 19–24.PubMedGoogle Scholar
  64. 64.
    Halpert, J., Jaw, J.-Y., Balfour, C., and Kaminsky, L. S., 1990, Selective inactivation by chlorofluoroacetamides of the major phenobarbital-inducible form(s) of rat liver cytochrome P-450, Drug Metab. Dispos. 18: 168–174.PubMedGoogle Scholar
  65. 65.
    CaJacob, C. A., Chan, W., Shephard, E., and Ortiz de Montellano, P. R., 1988, The catalytic site of rat hepatic lauric acid co-hydroxylase. Protein vs prosthetic heure alkylation in the uu-hydroxylation of acetylenic fatty acids, J. Biol. Chem. 263: 18640–18649.PubMedGoogle Scholar
  66. 66.
    Hammons, G. J., Alworth, W. L., Hopkins, N. E., Guengerich, F. P., and Kadlubar, F. E, 1989, 2-Ethynylnaphthalene as a mechanism-based inactivator of the cytochrome P-450-catalyzed N-oxidation of 2-naphthylamine, Chem. Res. Toxicol. 2: 367–374.Google Scholar
  67. 67.
    Yun, C.-H., Martin, M. V., Hopkins, N. E., Alworth, W. L., Hammons, G. J., and Guengerich, E P., 1992, Modification of cytochrome P4501A2 enzymes by the mechanism-based inactivator 2-ethynylnaphthalene, Biochemistry 31: 10556–10563.PubMedCrossRefGoogle Scholar
  68. 68.
    Gan, L.-S. L., Acebo, A. L., and Alworth, W. L., 1984, 1-Ethynylpyrene, a suicide inhibitor of cytochrome P-450 dependent benzo(a)pyrene hydroxylase activity in liver microsomes, Biochemistry 23: 3827–3836.Google Scholar
  69. 69.
    Roberts, E. S., Hopkins, N. E., Alworth, W. L., and Hollenberg, P. F., 1993, Mechanism-based inactivation of cytochrome P450 2B1 by 2-ethynylnaphthalene: Identification of an active-site peptide, Chem. Res. Toxicol. 6: 470–479.PubMedCrossRefGoogle Scholar
  70. 70.
    Chan, W. K., Sui, Z., and Ortiz de Montellano, P. R., 1993, Determinants of protein modification versus heure alkylation: Inactivation of cytochrome P450 1Al by 1-ethynylpyrene and phenylacetylene, Chem. Res. Toxicol. 6: 38–45.PubMedCrossRefGoogle Scholar
  71. 71.
    Halpert, J., Jaw, J.-Y., and Balfour, C., 1989, Specific inactivation by 173-substituted steroids of rabbit and rat liver cytochromes P-450 responsible for progesterone 21-hydroxylation, Mol. Pharmacol. 34: 148–156.Google Scholar
  72. 72.
    Stevens, J. C., Jaw, J.-Y., Peng, C.-T., and Halpert, J., 1991, Mechanism-based inactivation of bovine adrenal cytochromes P450 C-21 and P450 17a by 17(3-substituted steroids, Biochemistry 30: 3649–3658.PubMedCrossRefGoogle Scholar
  73. 73.
    Roberts, E. S., Hopkins, N. E., Zalulec, E. J., Gage, D. A., Alworth, W. L., and Hollenberg, P. F., 1994, Identification of active site peptides from 3H-labeled 2-ethynylnaphthalene-inactivated P450 2B I and 2B4 using amino acid sequencing and mass spectrometry, Biochemistry 33: 3766–3771.PubMedCrossRefGoogle Scholar
  74. 74.
    Lunetta, J. M., Sugiyama, K., and Correia, M. A., 1989, Secobarbital-mediated inactivation of rat liver cytochrome P-450b: A mechanistic reappraisal, Mol. Pharmacol. 35: 10–17.PubMedGoogle Scholar
  75. 75.
    Fouin-Fortunet, H., Tinel, M., Descatoire, V., Letteron, P., Laney, D., Geneve, J., and Pessayre, D., 1986, Inactivation of cytochrome P450 by the drug methoxsalen, J. Pharmacol. Exp. Ther. 236: 237–247.PubMedGoogle Scholar
  76. 76.
    Labbe, G., Descatoire, V., Beaune, P., Letteron, P., Larrey, D., and Pessayre, D., 1989, Suicide inactivation of cytochrome P450 by methoxsalen. Evidence for the covalent binding of a reactive intermediate to the protein moiety, J. Pharmacol. Exp. Ther. 250: 1034–1042.PubMedGoogle Scholar
  77. 77.
    Mays, D. C., Hilliard, J. B., Wong, D. D., Chambers, M. A., Park, S. S., Gelboin, H. V., and Gerber, N., 1990, Bioactivation of 8-methoxypsoralen and irreversible inactivation of cytochrome P450 in mouse liver microsomes: Modification by monoclonal antibodies, inhibition of drug metabolism and distribution of covalent adducts, J. Pharmacol. Exp. Ther. 254: 720–731.PubMedGoogle Scholar
  78. 78.
    Bornheim, L. M., Everhart, E. T., Li, J., and Correia, M. A., 1993, Characterization of cannabidiolmediated cytochrome P450 inactivation, Biochem. Pharmacol. 45: 1323–1331.PubMedCrossRefGoogle Scholar
  79. 79.
    Liu, H., Santostefano, M., and Safe, S., 1994, 2-Phenylphenanthridinone and related compounds: Aryl hydrocarbon receptor agonists and suicide inactivators of P4501A1, Arch. Biochem. Biophys. 313: 206–214.Google Scholar
  80. 80.
    Saunders, F. J., and Alberti, R. L., 1978, Aldactone: Spironolactone: A Comprehensive Review, Searle, New York.Google Scholar
  81. 81.
    Menard, R. H., Guenthner, T. M., Taburet, A. M., Kon, H., Pohl, L. R., Gillette, J. R., Gelboin, H. V., and Trager, W. F., 1979, Specificity of the in vitro destruction of adrenal and hepatic microsomal steroid hydroxylases by thiosteroids, Mol. Pharmacol. 16: 997–1010.PubMedGoogle Scholar
  82. 82.
    Decker, C., Sugiyama, K., Underwood, M., and Correia, M. A., 1986, Inactivation of rat hepatic cytochrome P-450 by spironolactone, Biochem. Biophys. Res. Commun. 136: 1162–1169.PubMedCrossRefGoogle Scholar
  83. 83.
    Decker, C. J., Rashed, M. S., Baillie, T. A., Maltby, D., and Correia, M. A., 1989, Oxidative metabolism of spironolactone: Evidence for the involvement of electrophilic thiosteroid species in drug-mediated destruction of rat hepatic cytochrome P450, Biochemistry 28: 5128–5136.PubMedCrossRefGoogle Scholar
  84. 84.
    Menard, R. H., Guenthner, T. M., Kon, H., and Gillette, J. R., 1979, Studies on the destruction of adrenal and testicular cytochrome P-450 by spironolactone: Requirement for the 7-alpha-thio group and evidence for the loss of the heme and apoproteins of cytochrome P-450, J. Biol. Chem. 254: 1726–1733.PubMedGoogle Scholar
  85. 85.
    Sherry, J. H., O’Donnell, J. P., Flowers, L., Lacagnin, L. B., and Colby, H. D., 1986, Metabolism of spironolactone by adrenocortical and hepatic microsomes: Relationship to cytochrome P-450 destruction, J. Pharmacol. Exp. Ther. 236: 675–680.PubMedGoogle Scholar
  86. 86.
    Colby, H. D., O’Donnell, J. P., Lynn, N., Kossor, D. C., Johnson, P. B., and Levitt, M., 1991, Relationship between covalent binding to microsomal protein and the destruction of adrenal cytochrome P-450 by spironolactone, Toxicology 67: 143–154.PubMedCrossRefGoogle Scholar
  87. 87.
    Decker, C. J., Cashman, J. R., Sugiyama, K., Maltby, D., and Correia, M. A., 1991, Formation of glutathionyl-spironolactone disulfide by rat liver cytochromes P450 or hog liver flavin-containing monooxygenases: A functional probe of two-electron oxidations of the thiosteroid? Chem. Res. Toxicol. 4: 669–677.PubMedCrossRefGoogle Scholar
  88. 88.
    Ortiz de Montellano, P. R., and Komives, E. A., 1985, Branchpoint for heure alkylation and metabolite formation in the oxidation of aryl acetylenes, J. Biol. Chem. 260: 3330–3336.Google Scholar
  89. 89.
    Poulos, T. L., Finzel, B. C., and Howard, A. J., 1987, High-resolution crystal structure of cytochrome P450ca,n, J. Mol. Biol. 195: 687–700.PubMedCrossRefGoogle Scholar
  90. 90.
    Nelson, D. R., and Strobel, H. W., 1988, On the membrane topology of vertebrate cytochrome P-450 proteins, J. Biol. Chem. 263: 6038–6050.PubMedGoogle Scholar
  91. 91.
    He, K., Chen, B., Falick, A. M., and Correia, M. A., 1994, Identification of an active site peptide modified during mechanism-based inactivation of cytochrome P450 2B1 by secobarbital, Abstracts, 10th International Symposium on Microsomes & Drug Oxidations, p. 558.Google Scholar
  92. 92.
    Casida, J. E., 1970, Mixed function oxidase involvement in the biochemistry of insecticide synergists, J. Agric. Food Chem. 18: 753–772.PubMedCrossRefGoogle Scholar
  93. 93.
    Hodgson, E., and Philpot, R. M., 1974, Interaction of methylene dioxyphenol (1,3-benzodioxole) compounds with enzymes and their effects on mammals, Drug Metab. Rev. 3: 231–301.PubMedCrossRefGoogle Scholar
  94. 94.
    Wilkinson, C. F., Murray, M., and Marcus, C. B., 1984, Interactions of methylenedioxyphenyl compounds with cytochrome P-450 and effects on microsomal oxidation, in: Reviews in Biochemical Toxicology, Vol. 6 (E. Hodgson, J. R. Bend, and R. M. Philpot, eds.), Elsevier, Amsterdam, pp. 27–63.Google Scholar
  95. 95.
    Kulkarni, A. P., and Hodgson, E., 1978, Cumene hydroperoxide-generated spectral interactions of piperonyl butoxide and other synergists with microsomes from mammals and insects, Pestic. Biochem. Physiol. 9: 75–83.CrossRefGoogle Scholar
  96. 96.
    Franklin, M. R., 1971, The enzymic formation of a methylene dioxyphenyl derivative exhibiting an isocyanide-like spectrum with reduced cytochrome P-450 in hepatic microsomes, Xenobiotica 1: 581–591.PubMedCrossRefGoogle Scholar
  97. 97.
    Elcombe, C. R., Bridges, J. W., Nimmo-Smith, R. H., and Werringloer, J., 1975, Cumene hydroperoxide-mediated formation of inhibited complexes of methylenedioxyphenyl compounds with cytochrome P-450, Biochem. Soc. Trans. 3: 967–970.Google Scholar
  98. 98.
    Elcombe, C. R., Bridges, J. W., Gray, T. J. B., Nimmo-Smith, R. H., and Netter, K. J., 1975, Studies on the interaction of safrole with rat hepatic microsomes, Biochem. Pharmacol. 24: 1427–1433.CrossRefGoogle Scholar
  99. 99.
    Dickins, M., Elcombe, C. R., Moloney, S. J., Netter, K. J., and Bridges, J. W., 1979, Further studies on the dissociation of the isosafrole metabolite—cytochrome P-450 complex, Biochem. Pharmacol. 28: 231–238.PubMedCrossRefGoogle Scholar
  100. 100.
    Ullrich, V., and Schnabel, K. H., 1973, Formation and binding of carbanions by cytochrome P-450 of liver microsomes, Drug Metab. Dispos. 1: 176–183.PubMedGoogle Scholar
  101. 101.
    Ullrich, V., 1977, Mechanism of microsomal monooxygenases and drug toxicity, in: Biological Reactive Intermediates ( D. J. Jollow, J. Kocsis, R. Snyder, and H. Vaino, eds.), Plenum Press, New York, pp. 65–82.CrossRefGoogle Scholar
  102. 102.
    Murray, M., Hetnarski, K., and Wilkinson, C. F., 1985, Selective inhibitory interactions of alkoxymethylenedioxybenzenes towards mono-oxygenase activity in rat-hepatic microsomes, Xenobiotica 15: 369–379.PubMedCrossRefGoogle Scholar
  103. 103.
    Murray, M., Wilkinson, C. F., Marcus, C., and Dube, C. E., 1983, Structure—activity relationships in the interactions of alkoxymethylenedioxybenzene derivatives with rat hepatic microsomal mixed-function oxidases in vivo, Mol. Pharmacol. 24: 129–136.PubMedGoogle Scholar
  104. 104.
    Mansuy, D., 1981, Use of model systems in biochemical toxicology: Heme models, in: Reviews in Biochemical Toxicology, Vol. 3 ( E. Hodgson, J. R. Bend, and R. M. Philpot, eds.), Elsevier, Amsterdam, pp. 283–320.Google Scholar
  105. 105.
    Mansuy, D., Battioni, J. P., Chottard, J. C., and Ullrich, V., 1979, Preparation of a porphyrin-iron-carbene model for the cytochrome P-450 complexes obtained upon metabolic oxidation of the insecticide synergists of the 1,3-benzodioxole series, J. Am. Chem. Soc. 101: 3971–3973.CrossRefGoogle Scholar
  106. 106.
    Dahl, A. R., and Hodgson, E., 1979, The interaction of aliphatic analogs of methylenedioxyphenyl compounds with cytochromes P-450 and P-420, Chem. Biol. Interact. 27: 163–175.PubMedCrossRefGoogle Scholar
  107. 107.
    Anders, M. W., Sunram, J. M., and Wilkinson, C. F., 1984, Mechanism of the metabolism of 1,3-benzodioxoles to carbon monoxide, Biochem. Pharmacol. 33: 577–580.PubMedCrossRefGoogle Scholar
  108. 108.
    Hansch, C., 1968, The use of homolytic, steric, and hydrophobic constants in a structure—activity study of 1,3-benzodioxole synergists, J. Med. Chem. 11: 920–924.PubMedCrossRefGoogle Scholar
  109. 109.
    Hennessy, D. J., 1965, Hydride-transferring ability of methylene dioxybenzenes as a basis of synergistic activity, J. Agric. Food Chem. 13: 218–231.CrossRefGoogle Scholar
  110. 110.
    Cook, J. C., and Hodgson, E., 1983, Induction of cytochrome P-450 by methylenedioxyphenyl compounds: Importance of the methylene carbon, Toxicol. Appl. Pharmacol. 68: 131–139.PubMedCrossRefGoogle Scholar
  111. 111.
    Casida, J. E., Engel, J. L., Essac, E. G., Kamienski, F. X., and Kuwatsuka, S., 1966, Methylene-14Cdioxyphenyl compounds: Metabolism in relation to their synergistic action, Science 153: 1130–1133.PubMedCrossRefGoogle Scholar
  112. 112.
    Kamienski, F. X., and Casida, J. E., 1970, Importance of methylenation in the metabolism in vivo and in vitro of methylenedioxyphenyl synergists and related compounds in mammals, Biochem. Pharmacol. 19: 91–112.PubMedCrossRefGoogle Scholar
  113. 113.
    Yu, L.-S., Wilkinson, C. F., and Anders, M. W., 1980, Generation of carbon monoxide during the microsomal metabolism of methylenedioxyphenyl compounds, Biochem. Pharmacol. 29: 1113–1122.PubMedCrossRefGoogle Scholar
  114. 114.
    Metcalf, R. L., Fukuto, C. W., Fahmy, S., El-Azis, S., and Metcalf, E. R., 1966, Mode of action of carbamate synergists, J. Agric. Food. Chem. 14: 555–562.CrossRefGoogle Scholar
  115. 115.
    Franklin, M. R., 1977, Inhibition of mixed-function oxidations by substrates forming reduced cytochrome P-450 metabolic-intermediate complexes, Pharmacol. Ther. A 2: 227–245.Google Scholar
  116. 116.
    Larrey, D., Tinel, M., and Pessayre, D., 1983, Formation of inactive cytochrome P450 Fe(II)—metabolite complexes with several erythromycin derivatives but not with josamycin and midecamycin in rats, Biochem. Pharmacol. 32: 1487–1493.PubMedCrossRefGoogle Scholar
  117. 117.
    Delaforge, M., Jaquen, M., and Mansuy, D., 1983, Dual effects of macrolide antibiotics on rat liver cytochrome P-450. Induction and formation of metabolite-complexes: A structure—activity relationship, Biochem. Pharmacol. 32: 2309–2318.PubMedCrossRefGoogle Scholar
  118. 118.
    Mansuy, D., Beaune, P., Cresteil, T., Bacot, C., Chottard, J. C., and Gans, P., 1978, Formation of complexes between microsomal cytochrome P-450-Fe(II) and nitrosoarenes obtained by oxidation of arylhydroxylamines or reduction of nitroarenes in situ, Eur. J Biochem. 86: 573–579.PubMedCrossRefGoogle Scholar
  119. 119.
    Jonsson, J., and Lindeke, B., 1976, On the formation of cytochrome P-450 product complexes during the metabolism of phenylalkylamines, Acta Pharm. Suec. 13: 313–320.PubMedGoogle Scholar
  120. 120.
    Franklin, M. R., 1974, The formation of a 455 nm complex during cytochrome P-450-dependent N-hydroxylamphetamine metabolism, Mol. Pharmacol. 10: 975–985.Google Scholar
  121. 121.
    Mansuy, D., 1978, Coordination chemistry of cytochromes P-450 and iron-porphyrins: Relevance to pharmacology and toxicology, Biochimie 60: 969–977.CrossRefGoogle Scholar
  122. 122.
    Lindeke, B., Anderson, E., Lundkvist, G., Jonsson, H., and Eriksson, S.-O., 1975, Autoxidation of N-hydroxyamphetamine and N-hydroxyphentermine: The formation of 2-nitroso-l-phenylpropanes and 1-phenyl-2-propanone oxime, Acta Pharm. Suec. 12: 183–198.PubMedGoogle Scholar
  123. 123.
    Mansuy, D., Gans, P., Chottard, J.-C., and Bartoli, J.-F., 1977, Nitrosoalkanes as Fe(II) ligands in the 455-nm-absorbing cytochrome P-450 complexes formed from nitroalkanes in reducing conditions, Eur. J. Biochem. 76: 607–615.PubMedCrossRefGoogle Scholar
  124. 124.
    Pessayre, D., Konstantinova-Mitcheva, M., Descatoire, V., Cobert, B., Wandscheer, J.-C., Level, R., Feldmann, G., Mansuy, D., and Benhamou, J.-P., 1981, Hypoactivity of cytochrome P-450 after triacetyloleandomycin administration, Biochem. Pharmacol. 30: 559–564.PubMedCrossRefGoogle Scholar
  125. 125.
    Wrighton, S. A., Maurel, P., Schuetz, E. G., Watkins, P. B., Young, B., and Guzelian, P. S., 1985, Identification of the cytochrome P-450 induced by macrolide antibiotics in rat liver as the glucocorticoid responsive cytochrome P-450p, Biochemistry 24: 2171–2178.PubMedCrossRefGoogle Scholar
  126. 126.
    Watkins, P. B., Wrighton, S. A., Schuetz, E. G., Maurel, P., and Guzelian, P. S., 1986, Macrolide antibiotics inhibit the degradation of the glucocorticoid-responsive cytochrome P-450p in rat hepatocytes in vivo and in primary monolayer culture, J. Biol. Chem. 261: 6264–6271.PubMedGoogle Scholar
  127. 127.
    Hines, R. N., and Prough, R. A., 1980, The characterization of an inhibitory complex formed with cytochrome P-450 and a metabolite of 1,1-disubstituted hydrazines, J. Pharmacol. Ther. 214: 80–86.Google Scholar
  128. 128.
    Muakkasah, S. F., Bidlack, W. R., and Yang, W. C. T., 1981, Mechanism of the inhibitory action of isoniazid on microsomal drug metabolism, Biochem. Pharmacol. 30: 1651–1658.CrossRefGoogle Scholar
  129. 129.
    Moloney, S. J., Snider, B. J., and Prough, R. A., 1984, The interactions of hydrazine derivatives with rat-hepatic cytochrome P-450, Xenobiorica 14: 803–814.CrossRefGoogle Scholar
  130. 130.
    Muakkassah, S. F., Bidlack, W. R., and Yang, W. C. T., 1982, Reversal of the effects of isoniazid on hepatic cytochrome P-450 by potassium ferricyanide, Biochem. Pharmacol. 31: 249–251.PubMedCrossRefGoogle Scholar
  131. 131.
    Mahy, J.-P., Battioni, P., Mansuy, D., Fisher, J., Weiss, R., Mispelter, J., Morgenstern-Badarau, I., and Gans, P., 1984, Iron porphyrin—nitrene complexes: Preparation from 1,1-dialkylhydrazines: Electronic structure from NMR, Mössbauer, and magnetic susceptibility studies and crystal structure of the [tetrakis(p-chlorophenyl) porphyrinato-(2,2,6,6-tetramethyl-1-piperidyl) nitrene]iron complex, J. Am. Chem. Soc. 106: 1699–1706.CrossRefGoogle Scholar
  132. 132.
    Mansuy, D., Battioni, P., and Mahy, J.-P., 1982, Isolation of an iron—nitrene complex from the di oxygen and iron porphyrin dependent oxidation of a hydrazine, J. Am. Chem. Soc. 104: 4487–4489.CrossRefGoogle Scholar
  133. 133.
    Ortiz de Montellano, P. R., 1985, Alkenes and alkynes, in: Bioactivntion of Foreign Compounds ( M. Anders, ed.), Academic Press, New York, pp. 121–155.Google Scholar
  134. 134.
    De Matteis, F., 1978, Loss of liver cytochrome P-450 caused by chemicals, in: Heine and Hemoproteins, Handbook of Experimental Pharmacology, Vol. 44 (F. De Matteis and W. N. Aldridge, eds.), Springer-Verlag, Berlin, pp. 95–127.Google Scholar
  135. 135.
    Ortiz de Montellano, P. R., and Correia, M. A., 1983, Suicidal destruction of cytochrome P-450 during oxidative drug metabolism, Annu. Rev. Pharmacol. Toxicol. 23: 481–503.CrossRefGoogle Scholar
  136. 136.
    Ortiz de Montellano, P. R., and Mico, B. A., 1980, Destruction of cytochrome P-450 by ethylene and other olefins, Mol. Pharmacol. 18: 128–135.Google Scholar
  137. 137.
    Collman, J. P., Hampton, P. D., and Brauman, J. I., 1986, Stereochemical and mechanistic studies of the “suicide” event in biomimetic P-450 olefin epoxidation, J. Am. Chem. Soc. 108: 7861–7862.PubMedCrossRefGoogle Scholar
  138. 138.
    Brady, J. F., Ishizaki, H., Fukuto, J. M., Lin, M. C., Fadel, A., Gapac, J. M., and Yang, C. S., 1991, Inhibition of cytochrome P-450 2E1 by diallyl sulfide and its metabolites, Chem. Res. Toxicol. 4: 642–647.PubMedCrossRefGoogle Scholar
  139. 139.
    Ortiz de Montellano, P. R., Stearns, R. A., and Langry, K. C., 1984, The allylisopropylacetamide and novonal prosthetic heure adducts, Mol. Pharmacol. 25: 310–317.Google Scholar
  140. 140.
    Ortiz de Montellano, P. R., Mangold, B. L. K., Wheeler, C., Kunze, K. L., and Reich, N. O., 1983, Stereochemistry of cytochrome P-450-catalyzed epoxidation and prosthetic heure alkylation, J. Biol. Chem. 258: 4208–4213.Google Scholar
  141. 141.
    Ortiz de Montellano, P. R., Kunze, K. L., Beilan, H. S., and Wheeler, C., 1982, Destruction of cytochrome P-450 by vinyl fluoride, fluroxene, and acetylene: Evidence for a radical cation intermediate in olefin oxidation, Biochemistry 21: 1331–1339.CrossRefGoogle Scholar
  142. 142.
    Kunze, K. L., Mangold, B. L. K., Wheeler, C., Beilan, H. S., and Ortiz de Montellano, P. R., 1983, The cytochrome P-450 active site, J. Biol. Chem. 258: 4202–4207.PubMedGoogle Scholar
  143. 143.
    Collman, J. P., Hampton, P. D., and Brauman, J. I., 1986, Stereochemical and mechanistic studies of the “suicide” event in biomimetic P-450 olefin epoxidation, J. Am. Chem. Soc. 108: 7861–7862.PubMedCrossRefGoogle Scholar
  144. 144.
    Collman, J. P., Hampton, P. D., and Brauman, J. I., 1990, Suicide inactivation of cytochrome P-450 model compounds by terminal olefins. Part I: A mechanistic study of heure N-alkylation and epoxidation, J. Am. Chem. Soc. 112: 2977–2986.CrossRefGoogle Scholar
  145. 145.
    Collman, J. P., Hampton, P. D., and Brauman, J. I., 1990, Suicide inactivation of cytochrome P-450 compounds by terminal olefins. Part II: Steric and electronic effects in heure N-alkylation and epoxidation, J. Am. Chem. Soc. 112: 2986–2998.CrossRefGoogle Scholar
  146. 146.
    Mansuy, D., Devocelle, L., Artaud, I., and Battioni, J.-P., 1985, Alkene oxidations by iodosylbenzene catalyzed by iron-porphyrins: Fate of the catalyst and formation of N-alkyl-porphyrin green pigments from monosubstituted alkenes as in cytochrome P-450, Nouv. J. Clrim. 9: 711–716.Google Scholar
  147. 147.
    Artaud, I., Devocelle, L., Battioni, J.-P., Girault, J.-P., and Mansuy, D., 1987, Suicidal inactivation of iron porphyrin catalysts during alk-1-ene oxidation: Isolation of a new type of N-alkylporphyrin, J. Am. Chem. Soc. 109: 3782–3783.CrossRefGoogle Scholar
  148. 148.
    Traylor, T. G., Nakano, T., Mikztal, A. R., and Dunlap, B. E., 1987, Transient formation of N-alkylhemins during hemin-catalyzed epoxidation of norbornene. Evidence concerning the mechanisms of epoxidation, J. Am. Chem. Soc. 109: 3625–3632.CrossRefGoogle Scholar
  149. 149.
    Traylor, T. G., and Mikztal, A. R., 1989, Alkene epoxidations catalyzed by iron(III), manganese(III), and chromium(III) porphyrins. Effects of metal and porphyrin substituents on selectivity and regio-chemistry of epoxidation, J. Am. Chem. Soc. 111: 7443–7448.CrossRefGoogle Scholar
  150. 150.
    Nakano, T., Traylor, T. G., and Dolphin, D., 1990, The formation of N-alkylporphyrins during epoxidation of ethylene catalyzed by iron(III) meso-tetrakis(2,6-dichlorophenyl)porphyrin, Can. J. Chem. 10: 1859–1866.Google Scholar
  151. 151.
    Tian, Z.-Q., Richards, J. L., and Traylor, T. G., 1995, Formation of both primary and secondary N-alkylhemins during hemin-catalyzed epoxidation of terminal alkenes, J. Am. Chem. Soc. 117: 21–29.CrossRefGoogle Scholar
  152. 152.
    Dexter, A. E, and Hager, L. P., 1995, Transient heure N-alkylation of chloroperoxidase by terminal alkenes and alkynes, J. Am. Chem. Soc. 117: 817–818.CrossRefGoogle Scholar
  153. 153.
    Ortiz de Montellano, P. R., and Kunze, K. L., 1980, Self-catalyzed inactivation of hepatic cytochrome P-450 by ethynyl substrates, J. Biol. Chem. 255: 5578–5585.Google Scholar
  154. 154.
    Guengerich, F. P., 1990, Mechanism-based inactivation of human liver microsomal cytochrome P-450 IIIA4 by gestodene, Chem. Res. Toxicol. 3: 363–371.PubMedCrossRefGoogle Scholar
  155. 155.
    De Matteis, F., Abbritti, G., and Gibbs, A. H., 1973, Decreased liver activity of porphyrin-metal chelatase in hepatic porphyria caused by 3,5-diethoxycarbonyl-1,4-dihydrocollidine: Studies in rats and mice, Biochem. J. 134: 717–727.PubMedGoogle Scholar
  156. 156.
    De Matteis, F., and Gibbs, A., 1972, Stimulation of liver 5-aminolaevulinate synthetase by drugs and its relevance to drug-induced accumulation of cytochrome P-450, Biochem. J. 126: 1149–1160.PubMedGoogle Scholar
  157. 157.
    Gayarthri, A. K., and Padmanaban, G., 1974, Biochemical effects of 3,5-diethoxycarbonyl-1,4-dihydrocollidine in mouse liver, Biochem. Pharmacol. 23: 2713–2725.CrossRefGoogle Scholar
  158. 158.
    Tephly, T. R., Gibbs, A. H., Ingall, G., and De Matteis, F., 1980, Studies on the mechanism of experimental porphyria and ferrochelatase inhibition produced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine, Int. J. Biochem. 12: 993–998.PubMedCrossRefGoogle Scholar
  159. 159.
    Cole, S. P. C. C., and Marks, G. S., 1984, Ferrochelatase and N-alkylated porphyrins, Mol. Cell. Biochem. 64: 127–137.PubMedCrossRefGoogle Scholar
  160. 160.
    Augusto, O., Beilan, H. S., and Ortiz de Montellano, R. R., 1982, The catalytic mechanism of cytochrome P-450: Spin-trapping evidence for one-electron substrate oxidation, J. Biol. Chem. 257: 11288–11295.PubMedGoogle Scholar
  161. 161.
    De Matteis, F., Hollands, C., Gibbs, A. H., de Sa, N., and Rizzardini, M., 1982, Inactivation of cytochrome P-450 and production of N-alkylated porphyrins caused in isolated hepatocytes by substituted dihydropyridines: Structural requirements for loss of haem and alkylation of the pyrrole nitrogen atom, FEBS Len. 145: 87–92.CrossRefGoogle Scholar
  162. 162.
    McCluskey, S. A., Marks, G. S., Sutherland, E. P., Jacobsen, N., and Ortiz de Montellano, R. R., 1986, Ferrochelatase-inhibitory activity and N-alkylprotoporphyrin formation with analogues of 3,5diethoxycarbonyl- 1,4-dihydro-2,4,6-trimethylpyridine (DDC) containing extended 4-alkyl groups: Implications for the active site of ferrochelatase, Mol. Pharmacol. 30: 352–357.PubMedGoogle Scholar
  163. 163.
    McCluskey, S. A., Riddick, D. S., Mackie, J. E., Kimmett, R. A., Whitney, R. A., and Marks, G. S., 1992, Inactivation of cytochrome P450 and inhibition of ferrochelatase by analogues of 3,5-diethoxycarbonyl-1,4-dihydro-2,4,6-trimethylpyridine with 4-nonyl and 4-dodecyl substituents, Can. J. Physiol. Pharmacol. 70: 1069–1074.PubMedCrossRefGoogle Scholar
  164. 164.
    Tephly, T. R., Coffman, B. L., Ingall, G., Abou Zeit-Har, M. S., Goff, H. M., Tabba, H. D., and Smith, K. M., 1981, Identification of N-methylprotoporphyrin IX in livers of untreated mice and mice treated with 3,5-diethoxycarbonyl-1,4-dihydrocollidine: Source of the methyl group, Arch. Biochem. Biophys. 212: 120–126.PubMedCrossRefGoogle Scholar
  165. 165.
    De Matteis, F., Gibbs, A. H., Farmer, R. B., and Lamb, J. H., 1981, Liver production of N-alkylated porphyrins caused by treatment with substituted dihydropyridines, FEBS Lett. 129: 328–331.PubMedCrossRefGoogle Scholar
  166. 166.
    De Matteis, F., Gibbs, A. H., and Hollands, C., 1983, N-Alkylation of the haem moiety of cytochrome P-450 caused by substituted dihydropyridines. Preferential attack of different pyrrole nitrogen atoms after induction of various cytochrome P-450 isoenzymes, Biochem. J. 211: 455–461.PubMedGoogle Scholar
  167. 167.
    Tephly, T. R., Black, K. A., Green, M. D., Coffman, B. L., Dannan, G. A., and Guengerich, F. R. 1986, Effect of the suicide substrate 3,5-diethoxycarbonyl-2,6-dimethyl-4-ethyl-1,4-dihydropyridine on the metabolism of xenobiotics and on cytochrome P-450 apoproteins, Mol. Pharmacol. 29: 81–87.PubMedGoogle Scholar
  168. 168.
    Tephly, T. R., Black, K. A., Green, M. D., Coffman, B. L., Dannan, G. A., and Guengerich, F. P., 1986, Effect of suicide substrate 3,5-diethoxycarbonyl-2,6-dimethyl-4-ethyl-1,4-dihydropyridine on the metabolism of xenobiotics and on cytochrome P-450 apoproteins, Mol. Pharmacol. 29: 81–87.PubMedGoogle Scholar
  169. 169.
    Riddick, D. S., Park, S. S., Gelboin, H. V., and Marks, G. S., 1990, Effects of 4-alkyl analogues of 3,5-diethoxycarbonyl-1,4-dihydro-2,4,6-trimethylpyridine on hepatic cytochrome P-450 heure, apoproteins, and catalytic activities following in vivo administration to rats, Mol. Pharmacol. 37: 130–136.PubMedGoogle Scholar
  170. 170.
    Lee, J. S., Jacobsen, N. E., and Ortiz de Montellano, P. R., 1988, 4-Alkyl radical extrusion in the cytochrome P-450-catalyzed oxidation of 4-alkyl-l,4-dihydropyridines, Biochemistry 27: 7703–7710.Google Scholar
  171. 171.
    Bäcker, R. H., and Guengerich, F. P., 1986, Oxidation of 4-aryl-and 4-alkyl-substituted 2,6-dimethyl3,5-bis(alkoxycarbonyl)-1,4-dihydropyridines by human liver microsomes and immunochemical evidence for the involvement of a form of cytochrome P-450, J. Med. Chem. 29: 1596–1603.CrossRefGoogle Scholar
  172. 172.
    McCluskey, S. A., Whitney, R. A., and Marks, G. S., 1989, Evidence for the stereoselective inhibition of chick embryo hepatic ferrochelatase by N-alkylated porphyrins, Mol. Pharmacol. 36: 608–614.PubMedGoogle Scholar
  173. 173.
    Kennedy, C. H., and Mason, R. P., 1990, A reexamination of the cytochrome P-450-catalyzed free radical production from dihydropyridine: Evidence of trace transition metal catalysis, J. Biol. Chem. 265: 11425–11428.PubMedGoogle Scholar
  174. 174.
    Ortiz de Montellano, R. R., and Kerr, D. E., 1985, Inactivation of myoglobin by ortho-substituted aryl hydrazines: Formation of prosthetic heure aryl-iron but not N-aryl adducts, Biochemistry 24: 1147–1152.CrossRefGoogle Scholar
  175. 175.
    Lukton, D., Mackie, J. E., Lee, J. S., Marks, G. S., and Ortiz de Montellano, R. R., 1988, 2,2-Dialkyl1,2-dihydroquinolines: Cytochrome P-450 catalyzed N-alkylporphyrin formation, ferrochelatase inhibition, and induction of 5-aminolevulinic acid synthase activity, Chem. Res. Toxicol. 1: 208–215.Google Scholar
  176. 176.
    Muakkassah, W. F., and Yang, W. C. T., 1981, Mechanism of the inhibitory action of phenelzine on microsomal drug metabolism, J. Pharmacol. Exp. Ther. 219: 147–155.PubMedGoogle Scholar
  177. 177.
    Ortiz de Montellano, P. R., Augusto, O., Viola, F., and Kunze, K. L., 1983, Carbon radicals in the metabolism of alkyl hydrazines, J. Biol. Chem. 258: 8623–8629.Google Scholar
  178. 178.
    Ortiz de Montellano, P. R., and Watanabe, M. D., 1987, Free radical pathways in the in vitro hepatic metabolism of phenelzine, Mol. Pharmacol. 31: 213–219.Google Scholar
  179. 179.
    Rumyantseva, G. V., Kennedy, C. H., and Mason, R. P., 1991, Trace transition metal-catalyzed reactions in the microsomal metabolism of alkyl hydrazines to carbon-centered free radicals, J. Biol. Chem. 266: 21422–21427.PubMedGoogle Scholar
  180. 180.
    Jonen, H. G., Werringloer, J., Prough, R. A., and Estabrook, R. W., 1982, The reaction of phenylhydrazine with microsomal cytochrome P-450: Catalysis of heure modification, J. Biol. Chem. 257: 4404–4411.PubMedGoogle Scholar
  181. 181.
    Mansuy, D., Battioni, P., Bartoli, J.-F., and Mahy, J.-P., 1985, Suicidal inactivation of microsomal cytochrome P-450 by hydrazones, Biochem. Pharmacol. 34: 431–432.CrossRefGoogle Scholar
  182. 182.
    Delaforge, M., Battioni, R, Mahy, J.-P., and Mansuy, D., 1986, In vivo formation of a-methyl and a-phenyl-ferric complexes of hemoglobin and liver cytochrome P-450 upon treatment of rats with methyl and phenylhydrazine, Chem. Biol. Interact. 60: 101–114.Google Scholar
  183. 183.
    Raag, R., Swanson, B. S., Poulos, T. L., and Ortiz de Montellano, P. R., 1990, Formation, crystal structure, and rearrangement of a cytochrome P450Cnm iron-phenyl complex, Biochemistry 29: 8119–8126.PubMedCrossRefGoogle Scholar
  184. 184.
    Ortiz de Montellano, P. R., and Kunze, K. L., 1981, Formation of N-phenylheme in the hemolytic reaction of phenylhydrazine with hemoglobin, J. Am. Chem. Soc. 103: 581–586.Google Scholar
  185. 185.
    Saito, S., and Itano, H. A., 1981, Beta-meso-phenylbiliverdin IX-alpha and N-phenylprotoporphyrin IX, products of the reaction of phenylhydrazine with oxyhemoproteins, Proc. Natl. Acad. Sci. USA 78: 5508–5512.PubMedCrossRefGoogle Scholar
  186. 186.
    Augusto, O., Kunze, K. L., and Ortiz de Montellano, P. R., 1982, N-Phenylprotoporphyrin IX formation in the hemoglobin—phenyl hydrazine reaction: Evidence for a protein-stabilized iron-phenyl intermediate, J. Biol. Chem. 257: 6231–6241.PubMedGoogle Scholar
  187. 187.
    Kunze, K. L., and Ortiz de Montellano, P. R., 1983, Formation of a sigma-bonded aryl-iron complex in the reaction of arylhydrazines with hemoglobin and myoglobin, J. Am. Chem. Soc. 105: 1380–1381.CrossRefGoogle Scholar
  188. 188.
    Ortiz de Montellano, P. R., and Kerr, D. E., 1983, Inactivation of catalane by phenylhydrazine: Formation of a stable aryl-iron heure complex, J. Biol. Chem. 258: 10558–10563.Google Scholar
  189. 189.
    Ringe, D., Petsko, G. A., Kerr, D. E., and Ortiz de Montellano, P. R., 1984, Reaction of myoglobin with phenylhydrazine: A molecular doorstop, Biochemistry 23: 2–4.PubMedCrossRefGoogle Scholar
  190. 190.
    Swanson, B. A., and Ortiz de Montellano, P. R., 1991, Structure determination and absolute stereo-chemistry of the four N-phenylprotoporphyrin IX regioisomers, J. Am. Chem. Soc. 113: 8146–8153.CrossRefGoogle Scholar
  191. 191.
    Tuck, S. F., Graham-Lorence, S., Peterson, J. A., and Ortiz de Montellano, P. R., 1993, Active sites of the cytochrome P450cam (CYP101) F87W and F87A mutants. Evidence for significant structural reorganization without alteration of catalytic regiospecificity, J. Biol. Chem. 268: 269–275.PubMedGoogle Scholar
  192. 192.
    Swanson, B. A., Dutton, D. R., Yang, C. S., and Ortiz de Montellano, P. R., 1991, The active sites of cytochromes P450 IA1, IIBI, 11B2, and IIE1. Topological analysis by in situ rearrangement of phenyl-iron complexes, J. Biol. Chem. 266: 19258–19264.PubMedGoogle Scholar
  193. 193.
    Swanson, B. A., Halpert, J. R., Bornheim, L. M., and Ortiz de Montellano, P. R., 1992, Topological analysis of the active sites of cytochromes P4501IB4 (rabbit), P45011B10 (mouse) and P4501IB11 (dog) by in situ rearrangement of phenyl-iron complexes, Arch. Biochem. Biophys. 292: 42–46.PubMedCrossRefGoogle Scholar
  194. 194.
    Tuck, S. F., Peterson, J. A., and Ortiz de Montellano, P. R., 1992, Active site topologies of bacterial cytochromes P450 101 (P450ca,n), P450 108 (P450,Pq,), and P450 102 (P45013M-3): In situ rearrangement of their phenyl-iron complexes, J. Biol. them. 267: 5614–5620.Google Scholar
  195. 195.
    Tuck, S. F., Aoyama, Y., Yoshida, Y., and Ortiz de Montellano, P. R., 1992, Active site topology of Saccharomyces cerevisiae lanosterol 14a-demethylase (CYP51) and its A310D mutant (cytochrome P450sGt), J. Biol. Chem. 267: 13175–13179.PubMedGoogle Scholar
  196. 196.
    Tuck, S. F., and Ortiz de Montellano, P. R., 1992, Topological mapping of the active sites of cytochromes P4502B 1 and P4502B2 by in situ rearrangement of their aryl-iron complexes, Biochemistry 31: 6911–6916.PubMedCrossRefGoogle Scholar
  197. 197.
    Tuck, S.F., Hiroya, K., Shimizu, T., Hatano, M., and Ortiz de Montellano, P. R., 1993, The cytochrome P450 1A2 (CYP1A2) active site: Topology and perturbations caused by Glu-318 and Thr-319 mutations, Biochemistry 32: 2548–2553.PubMedCrossRefGoogle Scholar
  198. 198.
    Battioni, P., Mahy, J.-P., Delaforge, M., and Mansuy, D., 1983, Reaction of monosubstituted hydrazines and diazenes with rat-liver cytochrome P-450: Formation of ferrous-diazene and ferric sigma-alkyl complexes, Eur. J. Biochem. 134: 241–248.PubMedCrossRefGoogle Scholar
  199. 199.
    Battioni, P., Mahy, J.-P., Gillet, G., and Mansuy, D., 1983, Iron porphyrin dependent oxidation of methyl-and phenylhydrazine: Isolation of iron(II)-diazene and sigma-alkyliron (III) (or aryliron(III)) complexes. Relevance to the reactions of hemoproteins with hydrazines, J. Am. Chem. Soc. 105: 1399–1401.CrossRefGoogle Scholar
  200. 200.
    Campbell, C. D., and Rees, C. W., 1969, Reactive intermediates. Part III. Oxidation of 1-aminobenzotriazole with oxidants other than lead tetra-acetate, J. Chem. Soc. C 1969: 752–756.CrossRefGoogle Scholar
  201. 201.
    Ortiz de Montellano, P. R., and Mathews, J. M., 1981, Autocatalytic alkylation of the cytochrome P-450 prosthetic haem group by 1-aminobenzotriazole: Isolation of an N,N-bridged benzyne-protoporphyrin IX adduct, Biochem. J. 195: 761–764.Google Scholar
  202. 202.
    Ortiz de Montellano, R. R., Mathews. J. M., and Langry, K. C., 1984, Autocatalytic inactivation of cytochrome P-450 and chloroperoxidase by 1-aminobenzotriazole and other aryne precursors, Tetrahedron 40: 511–519.Google Scholar
  203. 203.
    Ortiz de Montellano, R. R., and Costa, A. K., 1985, Dissociation of cytochrome P450 inactivation and induction, Arch. Biochem. Biophys. 251: 514–524.CrossRefGoogle Scholar
  204. 204.
    Mico, B. A., Federowicz, D. A., Ripple, M. G., and Kerns, W., 1988, In vivo inhibition of oxidative drug metabolism by, and acute toxicity of, 1-aminobenzotriazole (ABT), Biochem. Pharmacol. 37: 2515–2519.PubMedGoogle Scholar
  205. 205.
    Mugford, C. A., Mortillo, M., Mico, B. A., and Tarloff, J. B., 1992, 1-Aminobenzotriazole-induced destruction of hepatic and renal cytochromes P450 in male Sprague—Dawley rats, Fundam. Appl. Toxicol. 19: 43–49.Google Scholar
  206. 206.
    Mathews, J. M., and Bend, J. R., 1986, N-Alkylaminobenzotriazoles as isozyme-selective suicide inhibitors of rabbit pulmonary microsomal cytochrome P-450, Mol. Pharmacol. 30: 25–32.PubMedGoogle Scholar
  207. 207.
    Mathews, J. M., and Bend, J. R., 1993, N-Aralkyl derivatives of 1-aminobenzotriazole as potent isozyme-selective mechanism-based inhibitors of rabbit pulmonary cytochrome P450 in vivo, J. Pharmacol. Exp. Ther. 265: 281–285.PubMedGoogle Scholar
  208. 208.
    Woodcroft, K. J., Szczepan, E. W., Knickle, L. C., and Bend, J. R., 1990, Three N-aralkylated derivatives of 1-aminobenzotriazole as potent isozyme-selective mechanism-based inhibitors of guinea pig pulmonary cytochrome P450 in vitro, Drug Metab. Dispos. 18: 1031–1037.PubMedGoogle Scholar
  209. 209.
    Moreland, D. E., Corbin, F. T., and McFarland, J. E., 1993, Effects of safeners on the oxidation of multiple substrates by grain sorghum microsomes, Pestic. Biochem. Physiol. 45: 43–53.CrossRefGoogle Scholar
  210. 210.
    Cabanne, F., Huby, D., Gaillardon, P., Scalia, R., and Durst, F., 1987, Effect of the cytochrome P-450 inactivator 1-aminobenzotriazole on the metabolism of chlortoluron and isoproturon in wheat, Pestic. Biochem. Biophys. 28: 371–380.CrossRefGoogle Scholar
  211. 211.
    Feyereisen, R., Langry, K. C., and Ortiz de Montellano, P. R., 1984, Self-catalyzed destruction of insect cytochrome P-450, Insect Biochem. 14: 19–26.CrossRefGoogle Scholar
  212. 212.
    Capello, S., Henderson, L., DeGrazia, F., Liberato, D., Garland, W., and Town, C., 1990, The effect of the cytochrome P-450 suicide inactivator, 1-aminobenzotriazole, on the in vivo metabolism and pharmacologic activity of flurazepam, Drug Metab. Dispos. 18: 190–196.PubMedGoogle Scholar
  213. 213.
    Kaikaus, R. M., Chan, W. K., Lysenko, N., Ray, R., Ortiz de Montellano, P. R., and Bass, N. M., 1993, Induction of peroxisomal fatty acid (3-oxidation and liver fatty acid-binding protein by peroxisome proliferators: Mediation via the cytochrome P450IVA1 (n-hydroxylase pathway, J. Biol. Chem. 268: 9593–9603.PubMedGoogle Scholar
  214. 214.
    Nichols, W. K., Larson, D. N., and Yost, G. S., 1990, Bioactivation of 3-methylindole by isolated rabbit lung cells, Toxicol. Appl. Pharmacol. 105: 264–270.PubMedCrossRefGoogle Scholar
  215. 215.
    Whitman, D. W., and Carpenter, B. K., 1980, Experimental evidence for nonsquare cyclobutadiene as a chemically significant intermediate in solution, J. Am. Chem. Soc. 102: 4272–4274.CrossRefGoogle Scholar
  216. 216.
    Stearns, R. A., and Ortiz de Montellano, P. R., 1985, Inactivation of cytochrome P450 by a catalytically generated cyclobutadiene species, J. Am. Chem. Soc. 107: 234–240.CrossRefGoogle Scholar
  217. 217.
    Stejskal, R., Itabashi, M., Stanek, J., and Hruban, Z., 1975, Experimental porphyria induced by 3-[2-(2,4,6-trimethylphenyl)-thioethyl]-4-methylsydnone, Virchows Arch. 18: 83–100.Google Scholar
  218. 218.
    Ortiz de Montellano, P. R., and Grab, L. A., 1986, Inactivation of cytochrome P-450 during catalytic oxidation of a 3-[(arylthio)ethyl]sydnone: N-vinyl heure formation via insertion into the Fe-N bond, J. Am. Chem. Soc. 108: 5584–5589.CrossRefGoogle Scholar
  219. 219.
    White, E. H., and Egger, N., 1984, Reaction of sydnones with ozone as a method of deamination: On the mechanism of inhibition of monoamine oxidase by sydnones, J. Am. Chem. Soc. 106: 3701–3703.CrossRefGoogle Scholar
  220. 220.
    Chevrier, B., Weiss, R., Lange, M. C., Chottard,.1.-C., and Mansuy, D., 1981, An iron(III)-porphyrin complex with a vinylidene group inserted into an iron-nitrogen bond: Relevance of the structure of the active oxygen complex of catalase, J. Am. Chem. Soc. 103: 2899–2901.Google Scholar
  221. 221.
    Latos-Grazynski, L., Cheng, R.-J., La Mar, G. N., and Balch, A. L., 1981, Reversible migration of an axial carbene ligand into an iron-nitrogen bond of a porphyrin: Implications for high oxidation states of heure enzymes and heure catabolism, J. Am. Chem. Soc. 103: 4271–4273.CrossRefGoogle Scholar
  222. 222.
    Grab, L. A., Swanson, B. A., and Ortiz de Montellano, P. R., 1988, Cytochrome P-450 inactivation by 3-alkylsydnones: Mechanistic implications of N-alkyl and N-alkenyl heure adduct formation, Biochemistry 27: 4805–4814.PubMedCrossRefGoogle Scholar
  223. 223.
    White, I. N. H., Smith, A. G., and Farmer, P. B., 1983, Formation of N-alkylated protoporphyrin IX in the livers of mice after diethylnitrosamine treatment, Biochem. J. 212: 599–608.PubMedGoogle Scholar
  224. 224.
    Ding, X., and Coon, M. J., 1988, Cytochrome P-450-dependent formation of ethylene from N-nitrosoethylamines, Drug Metab. Dispos. 16: 265–269.PubMedGoogle Scholar
  225. 225.
    Frater, Y., Brady, A., Lock, E. A., and De Matteis, F., 1993, Formation of N-methyl protoporphyrin in chemically-induced protoporphyria. Studies with a novel porphyrogenic agent, Arch. Toxicol. 67: 179–185.PubMedCrossRefGoogle Scholar
  226. 226.
    De Matteis, F., and Gibbs, A. H., 1980, Drug-induced conversion of liver haem into modified porphyrins, Biochem. J. 187: 285–288.PubMedGoogle Scholar
  227. 227.
    Holley, A. E., Frater, Y., Gibbs, A. H., De Matteis, F., Lamb, J. H., Farmer, P. B., and Naylor, S., 1991, Isolation of two N-monosubstituted protoporphyrins, bearing either the whole drug or a methyl group on the pyrrole nitrogen atom, from liver of mice given griseofulvin, Biochem. J. 274: 843–848.PubMedGoogle Scholar
  228. 228.
    Gibbs, A. H., Naylor, S., Lamb, J. H., Frater, Y., and De Matteis, F., 1990, Copper-induced dealkylation studies of biologically N-alkylated porphyrins by fast atom bombardment mass spectrometry, Anal. Chini. Acta 241: 233–239.CrossRefGoogle Scholar
  229. 229.
    Holley, A., King, L. J., Gibbs, A. H., and De Matteis, F., 1990, Strain and sex differences in the response of mice to drugs that induce protoporphyria: Role of porphyrin biosynthesis and removal, J. Biochem. Toxicol. 5: 175–182.PubMedCrossRefGoogle Scholar
  230. 230.
    De Matteis, F., Gibbs, A. H., Martin, S. R., and Milek, R. L. B., 1991, Labeling in vivo and chirality of griseofulvin-derived N-alkylated protoporphyrins, Biochem. J. 280: 813–816.PubMedGoogle Scholar
  231. 231.
    Kunze, K. L., and Trager, W. F., 1993, Isoform-selective mechanism-based inhibition of human cytochrome P450 1A2 by furafylline, Chem. Res. Toxicol. 6: 649–656.PubMedCrossRefGoogle Scholar
  232. 232.
    Clarke, S. E., Ayrton, A. D., and Chenery, R. J., 1994, Characterization of the inhibition of P4501A2 by furafylline, Xenobiotica 24: 517–526.PubMedCrossRefGoogle Scholar
  233. 233.
    Hoag, M. K. P., Trevor, A. J., Kalir, A., and Castagnoli, N., 1987, NADPH-dependent metabolism, covalent binding to macromolecules, and inactivation of cytochrome(s) P450, Drug Metab. Dispos. 15: 485–490.PubMedGoogle Scholar
  234. 234.
    Osawa, Y., and Coon, M. J., 1989, Selective mechanism-based inactivation of the major phenobarbital-inducible P-450 cytochrome from rabbit liver by phencyclidine and its oxidation product, the iminium compound, Drug Metab. Dispos. 17: 7–13.PubMedGoogle Scholar
  235. 235.
    Owens, S. M., Gunnell, M., Laurenzana, E. M., and Valentine, J. L., 1993, Dose-and time-dependent changes in phencyclidine metabolite covalent binding in rats and the possible role of CYP2D1, J. Pharmacol. Exp. Ther. 265: 1261–1266.PubMedGoogle Scholar
  236. 236.
    Brady, J. F., Dokko, J., Di Stefano, E. W., and Cho, A. K., 1987, Mechanism-based inhibition of cytochrome P-450 by heterocyclic analogues of phencyclidine, Drug Metab. Dispos. 15: 648–652.PubMedGoogle Scholar
  237. 237.
    Koop, D. R., 1990, Inhibition of ethanol-inducible cytochrome P450IIE1 by 3-amino-1,2,4-triazole, Chem. Res. Toxicol. 3: 377–383.PubMedCrossRefGoogle Scholar
  238. 238.
    Correia, M. A., Decker, C., Sugiyama, K., Caldera, P., Bornheim, L., Wrighton, S. A., Rettie, A. E., and Trager, W. F., 1987, Degradation of rat hepatic cytochrome P-450 heme by 3,5-dicarbethoxy-2,6dimethyl-4-ethyl-1,4-dihydropyridine to irreversibly bound protein adducts, Arch. Biochem. Biophys. 258: 436–451.PubMedCrossRefGoogle Scholar
  239. 239.
    Tierney, D. J., Haas, A. L., and Koop, D. R., 1992, Degradation of cytochrome P450 2E1: Selective loss after labilization of the enzyme, Arch. Biochem. Biophys. 293: 9–16.PubMedCrossRefGoogle Scholar
  240. 240.
    Osawa, Y., and Pohl, L. R., 1989, Covalent bonding of the prosthetic heme to protein: A potential mechanism for the suicide inactivation or activation of hemoproteins, Chem. Res. Toxicol. 2: 131–141.PubMedCrossRefGoogle Scholar
  241. 241.
    Davies, H. S., Britt, S. G., and Pohl, L. R., 1986, Carbon tetrachloride and 2-isopropyl-4-pentenamideinduced inactivation of cytochrome P-450 leads to heme-derived protein adducts, Arch. Biochem. Biophys. 244: 387–352.PubMedCrossRefGoogle Scholar
  242. 242.
    Guengerich, P., 1986, Covalent binding to apoprotein is a major fate of heme in a variety of reactions in which cytochrome P-450 is destroyed, Biochem. Biophys. Res. Commun. 138: 193–198.PubMedCrossRefGoogle Scholar
  243. 243.
    Riddick, D. S., and Marks, G. S., 1990, Irreversible binding of heme to microsomal protein during inactivation of cytochrome P450 by alkyl analogues of 3,5-diethoxycarbonyl-1,4-dihydro-2,4,6trimethylpyridine, Biochem. Pharmacol. 40: 1915–1921.PubMedCrossRefGoogle Scholar
  244. 244.
    Sugiyama, K., Yao, K., Rettie, A. E., and Correia, M. A., 1989, Inactivation of rat hepatic cytochrome P-450 isozymes by 3,5-dicarbethoxy-2,6-dimethyl-4-ethyl-1,4-dihydropyridine, Chem. Res. Toxicol. 2: 400–410.PubMedCrossRefGoogle Scholar
  245. 245.
    Schaefer, W. H., Harris, T. M., and Guengerich, F. P., 1985, Characterization of the enzymatic and non-enzymatic peroxidative degradation of iron porphyrins and cytochrome P-450 heure, Biochemistry, 24: 3254–3263.PubMedCrossRefGoogle Scholar
  246. 246.
    Nerland, D. E., Iba, M. M., and Mannering, G. J., 1981, Use of linoleic acid hydroperoxide in the determination of absolute spectra of membrane-bound cytochrome P450, Mol. Pharmacol. 19: 162–167.PubMedGoogle Scholar
  247. 247.
    Karuzina, I. I., and Archakov, A. I., 1994, The oxidative inactivation of cytochrome P450 in monooxygenase reactions, Free Radical Biol. Med. 16: 73–97.CrossRefGoogle Scholar
  248. 248.
    Yao, K., Falick, A. M., Patel, N., and Correia, M. A., 1993, Cumene hydroperoxide-mediated inactivation of cytochrome P450 2B1: Identification of an active site heme-modified peptide, J. Biol. Chem. 268: 59–65.PubMedGoogle Scholar
  249. 249.
    Correia, M. A., 1993, Drug-mediated heme-modification of cytochrome P450 apoproteins: Structural characterization and physiological implications, Toxicologist 13: 15.Google Scholar
  250. 250.
    Catalano, C. E., Choe, Y. S., and Ortiz de Montellano, P. R., 1989, Reactions of the protein radical in peroxide-treated myoglobin: Formation of a heure-protein cross-link, J. Biol. Chem. 264: 10534–10541.PubMedGoogle Scholar
  251. 251.
    Choe, Y. S., and Ortiz de Montellano, P R., 1991, Differential additions to the myoglobin prosthetic heure group. Oxidative y-meso substitution by alkylhydrazines, J. Biol. Chem. 266: 8523–8530.PubMedGoogle Scholar
  252. 252.
    Osawa, Y., Martin, B. M., Griffin, P. R., Yates, J. R., III, Shabanowitz, J., Hunt, D. F., Murphy, A. C., Chen, L., Cotter, R. J., and Pohl, L. R., 1990, Metabolism-based covalent bonding of the heme prosthetic group to its apoprotein during the reductive debromination of BrCC13 by myoglobin, J. Biol. Chem. 265: 10340–10346.PubMedGoogle Scholar
  253. 253.
    Osawa, Y., Highet, R. J., Bax, A., and Pohl, L. R., 1991, Characterization by NMR of the heure-myoglobin adduct formed during the reductive metabolism of BrCCI3. Covalent bonding of the proximal histidine to the ring 1 vinyl group, J. Biol. Chem. 266: 3208–3214.PubMedGoogle Scholar
  254. 254.
    Kindt, J. T., Woods, A., Martin, B. M., Cotter, R. J., and Osawa, Y., 1992, Covalent alteration of the prosthetic heure of human hemoglobin by BrCC13. Cross-linking of heure to cysteine residue 93, J. Biol. Chem. 267: 8739–8743.PubMedGoogle Scholar
  255. 255.
    Correia, M. A., Yao, K., Wrighton, S. A., Waxman, D. J., and Rettie, A., 1992, Differential apoprotein loss of rat liver cytochromes P450 after their inactivation by 3,5-di carbethoxy-2,6-dimethyl-4-ethyl1,4-dihydropyridine: A case for distinct proteolytic mechanisms? Arch. Biochem. Biophys. 294: 493503.Google Scholar
  256. 256.
    Guzelian, P. S., and Swisher, R. W., 1979, Degradation of cytochrome P-450 haem by carbon tetrachloride and 2-allyl-2-isopropylacetamide in rat liver in vivo and in vitro: Involvement of non-carbon monoxide-forming mechanisms, Biochem. J. 184: 481–489.PubMedGoogle Scholar
  257. 257.
    Ortiz de Montellano, P. R., and Kunze, K. L., 1980, Inactivation of hepatic cytochrome P-450 by allenic substrates, Biochem. Biophys. Res. Commun. 94: 443–449.CrossRefGoogle Scholar
  258. 258.
    Hanzlik, R. P., Kishore, V., and Tullman, R., 1979, Cyclopropylamines as suicide substrates for cytochromes P-450, J. Med. Chem. 22: 759–761.PubMedCrossRefGoogle Scholar
  259. 259.
    Macdonald, T. L., Zirvi, K., Burka, L. T., Peyman, P., and Guengerich, F. P., 1982, Mechanism of cytochrome P-450 inhibition by cyclopropylamines, J. Am. Chem. Soc. 104: 2050–2052.CrossRefGoogle Scholar
  260. 260.
    Ortiz de Montellano, P. R., and Mathews, J. M., 1981, Inactivation of hepatic cytochrome P-450 by a 1,2,3-benzothiadiazole insecticide synergist, Biochem. Pharmacol. 30: 1138–1141.CrossRefGoogle Scholar
  261. 261.
    De Groot, H., and Haas, W., 1981, Self-catalyzed 02-independent inactivation of NADPH- or dithionite-reduced microsomal cytochrome P-450 by carbon tetrachloride, Biochem. Pharmacol. 30: 2343–2347.PubMedCrossRefGoogle Scholar
  262. 262.
    Poli, G., Cheeseman, K., Slater, T. E, and Danzani, M. U., 1981, The role of lipid peroxidation in CC14-induced damage to liver microsomal enzymes: Comparative studies in vitro using microsomes and isolated liver cells, Chem. Biol. Interact. 37: 13–24.PubMedCrossRefGoogle Scholar
  263. 263.
    Fernandez, G., Villaruel, M. C., de Toranzo, E. G. D., and Castro, J. A., 1982, Covalent binding of carbon to the heure moiety of cytochrome P-450 and its degradation products, Res. Commun. Chem. Pathol. Pharmacol. 35: 283–290.PubMedGoogle Scholar
  264. 264.
    De Groot, H., Harnisch, U., and Noll, T., 1982, Suicidal inactivation of microsomal cytochrome P-450 by halothane under hypoxic conditions, Biochem. Biophys. Res. Commun. 107: 885–891.PubMedCrossRefGoogle Scholar
  265. 265.
    Reiner, O., and Uehleke, H., 1971, Bindung von Tetrachlorkohlenstoff an reduziertes mikrosomales Cytochrome P-450 und an Ham, Hoppe-Seylers Z. Physiol. Chem. 352: 1048–1052.PubMedCrossRefGoogle Scholar
  266. 266.
    Cox, P. J., King, L. J., and Parke, D. V., 1976, The binding of trichlorofluoromethane and other haloalkanes to cytochrome P-450 under aerobic and anaerobic conditions, Xenobiotica 6: 363–375.PubMedCrossRefGoogle Scholar
  267. 267.
    Roland, W. C., Mansuy, D., Nastainczyk, W., Deutschmann, G., and Ullrich, V., 1977, The reduction of polyhalogenated methanes by liver microsomal cytochrome P450, Mol. Pharmacol. 13: 698–705.Google Scholar
  268. 268.
    Mansuy, D., and Fontecave, M., 1983, Reduction of benzyl halides by liver microsomes: Formation of 478 nm-absorbing sigma-alkyl-ferric cytochrome P-450 complexes, Biochem. Pharmacol. 32: 1871–1879.PubMedCrossRefGoogle Scholar
  269. 269.
    Mansuy, D., Lange, M., Chottard, J. C., Bartoli, J. E, Chevrier, B., and Weiss, R., 1978, Dichlorocarbene complexes of iron(II)-porphyrins—Crystal and molecular structure of Fe(TPP)(CCl2)(H2O), Angew. Chem. Int. Ed. Engl. 17: 781–782.CrossRefGoogle Scholar
  270. 270.
    Ahr, H. J., King, L. J., Nastainczyk, W., and Ullrich, V., 1980, The mechanism of chloroform and carbon monoxide formation from carbon tetrachloride by microsomal cytochrome P-450, Biochem. Pharmacol. 29: 2855–2861.PubMedCrossRefGoogle Scholar
  271. 271.
    Mansuy, D., Lange, M., Chottard, J. C., and Bartoli, J. F., 1978, Reaction du complexe carbenique Fe(II)(tetraphenylporphyrine)(CCl2) avec les amines primaires: Formation d’isonitriles, Tetrahedron Lett. 33: 3027–3030.CrossRefGoogle Scholar
  272. 272.
    Mansuy, D., and Battioni, J.-P., 1982, Isolation of sigma-alkyl-iron(Ill) or carbene-iron(II) complexes from reduction of polyhalogenated compounds by iron(II)-porphyrine: The particular case of halothane CF3CHC1Br, J. Chem. Soc. Chem. Commun. 1982: 638–639.CrossRefGoogle Scholar
  273. 273.
    Ruf, H. H., Aar, H., Nastainczyk, W., Ullrich, V., Mansuy, D., Battioni, J.-P., Montiel-Montoya, R., and Trautwein, A., 1984, Formation of a ferric carbanion complex from halothane and cytochrome P-450: Electron spin resonance, electronic spectra and model complexes, Biochemistry 23: 5300–5306.CrossRefGoogle Scholar
  274. 274.
    Castro, C. E., Wade, R. S., and Belser, N. O., 1985, Biodehalogenation: Reactions of cytochrome P-450 with polyhalomethanes, Biochemistry 24: 204–210.PubMedCrossRefGoogle Scholar
  275. 275.
    Callot, H. J., and Scheffer, E., 1980, Model for the in vitro transformation of cytochrome P-450 into “green pigments,” Tetrahedron Lett. 21: 1335–1338.CrossRefGoogle Scholar
  276. 276.
    Lange, M., and Mansuy, D., 1981, N-Substituted porphyrins formation from carbene iron-porphyrin complexes: A possible pathway for cytochrome P-450 heure destruction, Tetrahedron Lett. 22: 2561–2564.CrossRefGoogle Scholar
  277. 277.
    Chevrier, B., Weiss, R., Lange, M., Chotard, J. C., and Mansuy, D., 1981, An iron(III)-porphyrin complex with a vinylidene group inserted into an iron-nitrogen bond: Relevance to the structure of the active oxygen complex of catalase, J. Am. Chem. Soc. 103: 2899–2901.CrossRefGoogle Scholar
  278. 278.
    Olmstead, M. M., Cheng, R.-J., and Balch, A. L., 1982, X-ray crystallographic characterization of an iron porphyrin with a vinylidene carbene inserted into an iron-nitrogen bond, Inorg. Chem. 21: 41434148.Google Scholar
  279. 279.
    Falzon, M., Nielsch, A., and Burke, M. D., 1986, Denaturation of cytochrome P-450 by indomethacin and other non-steroidal anti-inflammatory drugs: Evidence for a surfactant mechanism and a selective effect of a p-chlorophenyl moiety, Biochem. Pharmacol. 35: 4019–4024.PubMedCrossRefGoogle Scholar
  280. 280.
    Guengerich, F. P., Dannan, G. A., Wright, T. S., Martin, M. V., and Kaminsky, L. S., 1982, Purification and characterization of liver microsomal cytochromes P-450: Electrophoretic, spectral, catalytic, and immunochemical properties and inducibility of eight isozymes isolated from rats treated with phenobarbital or beta-naphthoflavone, Biochemistry 21: 6019–6030.PubMedCrossRefGoogle Scholar
  281. 281.
    Halpert, J. R., 1995, Structural basis of selective cytochrome P450 inhibition, Annu. Rev. Pharmacol. Toxicol. 35: 29–53.PubMedCrossRefGoogle Scholar
  282. 282.
    Covey, D. F., 1988, Aromatase inhibitors: Specific inhibitors of oestrogen biosynthesis, in: Sterol Biosynthesis Inhibitors ( M. Berg and M. Plempel, eds.), Ellis Norwood, Cambridge, pp. 534–571.Google Scholar
  283. 283.
    Henderson, D., Habenicht, U.-F., Nishino, Y., Kerb, U., and El Etreby, M. E, 1986, Aromatase inhibitors and benign prostatic hyperplasie, J. Steroid Biochem. 25: 867–876.PubMedCrossRefGoogle Scholar
  284. 284.
    Van Wauwe, J. P., and Janssen, P. A. J., 1989, Is there a case for P-450 inhibitors in cancer treatment? J. Med. Chem. 32: 2231–2239.PubMedCrossRefGoogle Scholar
  285. 285.
    Kellis, J. T., Sheets, J. J., and Vickery, L. E., 1984, Amino-steroids as inhibitors and probes of the active site of cytochrome P-450scc. Effects on the enzyme from different sources, J. Steroid Biochem. 20: 671–676.PubMedCrossRefGoogle Scholar
  286. 286.
    Sheets, J. J., and Vickery, L. E., 1983, Active site-directed inhibitors of cytochrome P-450scc: Structural and mechanistic implications of a side chain-substituted series of amino-steroids, J. Biol. Chem. 258: 11446–11452.PubMedGoogle Scholar
  287. 287.
    Sheets, J. J., and Vickery, L. E., 1982, Proximity of the substrate binding site and the heme-iron catalytic site in cytochrome P-450scc, Proc. Natl. Acad. Sci. USA 79: 5773–5777.PubMedCrossRefGoogle Scholar
  288. 288.
    Nagahisa, A., Foo, T., Gut, M., and Orme-Johnson, W. H., 1985, Competitive inhibition of cytochrome P-450scc by (22R)- and (228)-22-aminocholesterol: Side chain stereochemical requirements for C-22 amine coordination to the active-site heure, J. Biol. Chem. 260: 846–851.PubMedGoogle Scholar
  289. 289.
    Vickery, L. E., and Singh, J., 1988, 22-Thio-23,24-bisnor-5-cholen-313-ol: An active site-directed inhibitor of cytochrome P450scc, J. Steroid Biochem. 29: 539–543.Google Scholar
  290. 290.
    Nagahisa, A., Spencer, R. W., and Orme-Johnson, W. H., 1983, Acetylenic mechanism-based inhibitors of cholesterol side chain cleavage by cytochrome P-450scc, J. Biol. Chem. 258: 6721–6723.PubMedGoogle Scholar
  291. 291.
    Olakanmi, O., and Seybert, D. W., 1990, Modified acetylenic steroids as potent mechanism-based inhibitors of cytochrome P-450scc, J. Steroid Biochem. 36: 273–280.PubMedCrossRefGoogle Scholar
  292. 292.
    Krueger, R. J., Nagahisa, A., Gut, M., Wilson, S. R., and Orme-Johnson, W. H., 1985, Effect of P-450scc inhibitors on corticosterone production by rat adrenal cells, J. Biol. Chem. 260: 852–859.PubMedGoogle Scholar
  293. 293.
    Nagahisa, A., Orme-Johnson, W. H., and Wilson, S. R., 1984, Silicon mediated suicide inhibition: An efficient mechanism-based inhibitor of cytochrome P-450scc oxidation of cholesterol, J. Am. Chem. Soc. 106: 1166–1167.CrossRefGoogle Scholar
  294. 294.
    Trahanovsky, W. S., and Himstedt, A. L., 1974, Oxidation of organic compounds with cerium(1V). XX. Abnormally rapid rate of oxidative cleavage of (beta-trimethylsilylethyl)-phenylmethanol, J. Am. Chem. Soc. 96: 7974–7976.CrossRefGoogle Scholar
  295. 295.
    Vickery, L. E., and Singh, J., 1988, 22-Thio-23,24-bisnor-5-cholen-3ß-ol: An active site-directed inhibitor of cytochrome P450scc, J. Steroid Biochem. 29: 539–543.Google Scholar
  296. 296.
    Miao, E., Zuo, C., Nagahisa, A., Taylor, B. J., Joardar, S., Byon, C., Wilson, S. R., and Orme-Johnson, W. H., 1990, Cytochrome P450scc mediated oxidation of (20S)-22-nor-22-thiacholesterol: Characterization of mechanism-based inhibition, Biochemistry 29: 21–99.Google Scholar
  297. 297.
    Vanden Bossche, H., 1992, Inhibitors of P450-dependent steroid biosynthesis: From research to medical treatment, J. Steroid Biochem. Mol. Biol. 43: 1003–1021.CrossRefGoogle Scholar
  298. 298.
    Brodie, A. M. H., Marsh, D., and Brodie, H. J., 1979, Aromatase inhibitors. IV. Regression of hormone-dependent, mammary tumors in the rat with 4-acetoxy-4-androstene-3,17-dione, J. Steroid Biochem. 10: 423–429.PubMedCrossRefGoogle Scholar
  299. 299.
    Henderson, I. C., and Canellos, G. P., 1980, Cancer of the breast (The past decade), N. Engl. J. Med. 302: 78–90.PubMedCrossRefGoogle Scholar
  300. 300.
    Santen, R. J., Worgul, T. J., Samojlik, E., Interrante, A., Boucher, A. E., Lipton, A., Harvey, H. A., White, D. S., Smart, E., Cox, C., and Wells, S. A., 1981, A randomized trial comparing surgical adrenalectomy with aminoglutethimide plus hydrocortisone in women with advanced breast cancer, N. Engl. J. Med. 305: 545–551.PubMedCrossRefGoogle Scholar
  301. 301.
    Brodie, A. M. H., Dowsett, M., and Coombes, R. C., 1988, Aromatase inhibitors as new endocrine therapy for breast cancer, Cancer Treat. Res. 39: 51–65.PubMedCrossRefGoogle Scholar
  302. 302.
    Brodie, A. M. H., Banks, P. K., Inkster, S. E., Dowsett, M., and Coombes, R. C., 1990, Aromatase inhibitors and hormone-dependent cancers, J. Steroid Biochem. Mol. Biol. 37: 327–333.PubMedCrossRefGoogle Scholar
  303. 303.
    Henderson, D., Habenicht, U.-F., Nishino, Y., and El Etreby, M. F., 1987, Estrogens and benign prostatic hyperplasia: The basis for aromatase inhibitor therapy, Steroids 50: 219–233.PubMedCrossRefGoogle Scholar
  304. 304.
    Schweikert, H.-U., and Tunn, U. W., 1987, Effects of the aromatase inhibitor testolactone on human benign prostatic hyperplasia, Steroids 50: 191–199.PubMedCrossRefGoogle Scholar
  305. 305.
    Phillips, G. B., Castelli, W. P., Abbott, R. D., and McNamara, P. M., 1983, Association of hyperestrogenemia and coronary heart disease in men in the Framingham cohort, Am. J. Med. 74: 863–869.PubMedCrossRefGoogle Scholar
  306. 306.
    Harris, A. L., Powles, T. J., Smith, I. E., Coombes, R. C., Ford, H. T., Gazet, J. C., Harmer, C. L., Morgan, M., White, H., Parsons, C. A., and McKinna, J. A., 1983, Aminoglutethimide for the treatment of advanced postmenopausal breast cancer, Eur. J. Cancer Clin. Oncol. 19: 11–17.PubMedCrossRefGoogle Scholar
  307. 307.
    Foster, A. B., Jarman, M., Leung, C.-S., Rowlands, M. G., Taylor, G. N., Plevey, R. G., and Sampson, P., 1985, Analogues of aminoglutethimide: Selective inhibition of aromatase, J. Med. Chem. 28: 200–204.PubMedCrossRefGoogle Scholar
  308. 308.
    Foster, A. B., Jarman, M., Leung, C.-S., Rowlands, M. G., and Taylor, G. N., 1983, Analogues of aminoglutethimide: Selective inhibition of cholesterol side-chain cleavage, J. Med. Chem. 26: 50–54.PubMedCrossRefGoogle Scholar
  309. 309.
    Bhatnagar, A. S., Hausler, A., Schieweck, K., Browne, L. J., Bowman, R., and Steele, R. E., 1990, Novel aromatase inhibitors, J. Steroid Biochem. Mol. Biol. 37: 363–367.PubMedCrossRefGoogle Scholar
  310. 310.
    Lipton, A., Harvey, H. A., Demers, L. M., Hanagan, J. R., Mulagha, M. T., Kochak, G. M., Fitzsimmons, S., Sanders, S. I., and Santen, R. J., 1990, A phase I trial of CGS 16949A: A new aromatase inhibitor, Cancer 65: 1279–1285.PubMedCrossRefGoogle Scholar
  311. 311.
    Santen, R. J., Demers, L. M., Adlercreutz, H., Harvey, H., Santner, S., Sanders, S., and Lipton, A., 1989, Inhibition of aromatase with CGS 16949A in postmenopausal women, J. Clin. Endocrinol. Metab. 68: 99–106.PubMedCrossRefGoogle Scholar
  312. 312.
    Stein, R. C., Dowsett, M., Davenport, J., Hedley, A., Ford, H. T., Gazet, J.-C., and Coombes, R. C., 1990, Preliminary study of the treatment of advanced breast cancer in postmenopausal women with the aromatase inhibitor CGS 16949A, Cancer Res. 50: 1381–1384.PubMedGoogle Scholar
  313. 313.
    Demers, L. M., Melby, J. C., Wilson, T. E., Lipton, A., Harvey, H. A., and Santen, R. J., 1990, The effects of CGS 16949A, an aromatase inhibitor on adrenal mineralocorticoid biosynthesis, J. Clin. Endocrinol. Metab. 70: 1162–1166.PubMedGoogle Scholar
  314. 314.
    Wouters, W., De Coster, R., Tuman, R. W., Bowden, C. R., Bruynseels, J., Vanderpas, H., Van Rooy, P., Amery, W. K., and Janssen, P. A. J., 1989, Aromatase inhibition by R 76713: Experimental and clinical pharmacology, J. Steroid Biochem. 34: 427–430.PubMedCrossRefGoogle Scholar
  315. 315.
    Wouters, W., De Coster, R., Van Dun, J., Krekels, M. D. W. G., Dillen, A., Raeymaekers, A., Freyne, E., Van Gelder, J., Sanz, G., Venet, M., and Janssen, M., 1990, Comparative effects of the aromatase inhibitor R76713 and of its enantiomers R83839 and R83842 on steroid biosynthesis in vitro and in vivo, J. Steroid Biochem. Mol. Biol. 37: 1049–1054.CrossRefGoogle Scholar
  316. 316.
    Vanden Bossche, H., Willemsens, G., Rods, I., Bellens, D., Moereels, H., Coene, M.-C., Le Jeune, L., Lauwers, W., and Janssen, P. A. J., 1990, R 76713 and enantiomers: Selective, nonsteroidal inhibitors of the cytochrome P450-dependent oestrogen synthesis, Biochem. Pharmacol. 40: 1707–1718.CrossRefGoogle Scholar
  317. 317.
    Flynn, G. A., Johnston, J. O., Wright, C. L., and Metcalf, B. W., 1981, The time-dependent inactivation of aromatase by 17–13-hydroxy-l0-methylthioestra-1,4-dien-3-one, Biochem. Biophys. Res. Commun. 103: 913–918.PubMedCrossRefGoogle Scholar
  318. 318.
    Wright, J. N., van Leersum, P. T., Chamberlin, S. G., and Akhtar, M., 1989, Inhibition of aromatase by steroids substituted at C-19 with halogen, sulphur, and nitrogen, J. Chem. Soc. Perkin Trans. I 1989: 1647–1655.CrossRefGoogle Scholar
  319. 319.
    Wright, J. N., Slatcher, G., and Akhtar, M., 1991, “Slow-binding” sixth-ligand inhibitors of cytochrome P-450 aromatase. Studies with 19-thiomethyl-and 19-azido-androstenedione, Biochem. J. 273:533–539.Google Scholar
  320. 320.
    Delaisi, C., Coucet, B., Hartmann, C., Tric, B., Gourvest, J. F., and Lesuisse, D., 1992, RU54115, a tight-binding aromatase inhibitor potentially useful for the treatment of breast cancer, J. Steroid Biochem. Mol. Biol. 41: 773–777.PubMedCrossRefGoogle Scholar
  321. 321.
    Bednarski, R J., and Nelson, S. D., 1989, Interactions of thiol-containing androgens with human placental aromatase, J. Med. Chem. 32: 203–213.PubMedCrossRefGoogle Scholar
  322. 322.
    Geelen, J. A. A., Deckers, G. H., Van Der Wardt, J. T. H., Loozen, H. J. J., Tax, L. J. W., and Kloosterboer, H. J., 1991, Selection of 19-(ethyldithio)-androst-4-ene-3,17-dione (ORG 30958): A potent aromatase inhibitor in vivo, J. Steroid Biochem. Mol. Biol. 38: 181–188.CrossRefGoogle Scholar
  323. 323.
    Lovett, J. A., Darby, M. V., and Counsell, R. E., 1984, Synthesis and evaluation of 19-aza-and 19-aminoandrostenedione analogues as potential aromatase inhibitors, J. Med. Chem. 27: 734–740.PubMedCrossRefGoogle Scholar
  324. 324.
    Shih, M.-J., Carrell, M. H., Carrell, H. L., Wright, C. L., Johnston, J. O., and Robinson, C. H., 1987, Stereoselective inhibition of aromatase by novel epoxysteroids, J. Chem. Soc. Chem. Commun. 1987: 213–214.CrossRefGoogle Scholar
  325. 325.
    Childers, W. E., and Robinson, C. H., 1987, Novel l0(3-thiiranyl steroids as aromatase inhibitors, J. Chem. Soc. Chem. Commun. 320–321.Google Scholar
  326. 326.
    Childers, W. E., Silverton, J. V., Kellis, J. T., Vickery, L. E., and Robinson, C. H., 1991, Inhibition of human placental aromatase by novel homologated 19-oxiranyl and 19-thiiranyl steroids, J. Med. Chem. 34: 1344–1349.PubMedCrossRefGoogle Scholar
  327. 327.
    Kellis, J. T., Childers, W. E., Robinson, C. H., and Vickery, L. E., 1987, Inhibition of aromatase cytochrome P-450 by 10-oxirane and 10-thiirane substituted androgens. Implications for the structure of the active site, J. Biol. Chem. 262: 4421–4426.PubMedGoogle Scholar
  328. 328.
    Njar, V. C. O., Safi, E., Silverton, J. V., and Robinson, C. H., 1993, Novel 10P-aziridinyl steroids: Inhibitors of aromatase, J. Chem. Soc. Perkin Trans. I N10: 1161–1168.CrossRefGoogle Scholar
  329. 329.
    Metcalf, B. W., Wright, C. L., Burkhan, J. R, and Johnston, J. O., 1981, Substrate-induced inactivation of aromatase by allenic and acetylenic steroids, J. Am. Chem. Soc. 103: 3221–3222.CrossRefGoogle Scholar
  330. 330.
    Johnston, J. O., 1987, Biological characterization of 10-(2-propynyl)estr-4-ene-3,17-dione (MDL 18,962), an enzyme-activated inhibitor of aromatase, Steroids 50: 105–120.PubMedCrossRefGoogle Scholar
  331. 331.
    Johnston, J. O., Wright, C. L., and Metcalf, B. W., 1984, Time-dependent inhibition of aromatase in trophoblastic tumor cells in tissue culture, J. Steroid Biochem. 20: 1221–1226.PubMedCrossRefGoogle Scholar
  332. 332.
    Covey, D. G., Hood, W. F., and Parikh, V. D., 1981, 10–13-Propynyl-substituted steroids: Mechanism-based enzyme-activated irreversible inhibitors of estrogen biosynthesis, J. Biol. Chem. 256: 1076–1079.Google Scholar
  333. 333.
    Brandt, M. E., Puett, D., Covey, D. F., and Zimniski, S. J., 1988, Characterization of pregnant mare’s serum gonadotropin-stimulated rat ovarian aromatase and its inhibition by 10-propargylestr-4-ene3,17-dione, J. Steroid Biochem. 34: 317–324.CrossRefGoogle Scholar
  334. 334.
    Marcotte, R. A., and Robinson, C. H., 1982, Synthesis and evaluation of 10-beta-substituted 4-estrene3,17-diones as inhibitors of human placental microsomal aromatase, Steroids 39: 325–344.PubMedCrossRefGoogle Scholar
  335. 335.
    Numazawa, M., Mutsumi, A., Asano, N., and Ito, Y., 1993, A time-dependent inactivation of aromatase by 19-substituted androst-4-ene-3,6,17-diones, Steroids 58: 40–46.PubMedCrossRefGoogle Scholar
  336. 336.
    Marcotte, R. A., and Robinson, C. H., 1982, Design of mechanism-based inactivators of human placental aromatase, Cancer Res. 42: 3322–3325.Google Scholar
  337. 337.
    Marcotte, R. A., and Robinson, C. H., 1982, Inhibition and inactivation of estrogen synthetase (aromatase) by fluorinated substrate analogues, Biochemistry 21: 2773–2778.PubMedCrossRefGoogle Scholar
  338. 338.
    Numazawa, M., Mutsumi, A., Hoshi, K., Oshibe, M., Ishikawa, E., and Kigawa, H., 1991, Synthesis and biochemical studies of 16- and 19-substituted androst-4-enes as aromatase inhibitors, J. Med. Chem. 34: 2496–2504.PubMedCrossRefGoogle Scholar
  339. 339.
    Mann, J., and Pietrzak, B., 1987, Preparation of aromatase inhibitors. Synthesis of 19,19-difluoro-4hydroxyandrost-4-ene-3,7-di one and related compounds, J. Chem. Soc. Perkin Trans. 11987: 385–388.CrossRefGoogle Scholar
  340. 340.
    Furth, P. S., and Robinson, C. H., 1989, Tritium release from [19–3H]19,19-difluoroandrost-4-ene3,17-dione during inactivation of aromatase, Biochemistry 28: 1254–1259.PubMedCrossRefGoogle Scholar
  341. 341.
    Covey, D. F., and Hood, W. F., 1982, Aromatase enzyme catalysis is involved in the potent inhibition of estrogen biosynthesis caused by 4-acetoxy-and 4-hydroxy-4-androstene-3,17-dione, Mol. Pharmacol. 21: 173–180.PubMedGoogle Scholar
  342. 342.
    Brodie, A. M. H., Garrett, W. M., Hendrickson, J. R., Tsai-Morris, C.-H., Marcotte, P. A., and Robinson, C. H., 1981, Inactivation of aromatase in vitro by 4-hydroxy-4-androstene-3,17-dione and 4-acetoxy4-androstene-3,17-dione and sustained effects in vivo, Steroids 38: 693–702.PubMedCrossRefGoogle Scholar
  343. 343.
    Brodie, A. M. H., 1994, Aromatase inhibitors in the treatment of breast cancer, J. Steroid Biochem. Mol. Biol. 49: 281–287.PubMedCrossRefGoogle Scholar
  344. 344.
    Di Salle, E., Giudici, D., Briatico, G., and Ornati, G., 1990, Novel irreversible aromatase inhibitors, Ann. N.Y. Acad. Sci. 595: 357–367.PubMedCrossRefGoogle Scholar
  345. 345.
    Di Salle, E., Giudici, D., Ornati, G., Briatico, G., D’Alessio, R., Villa, V., and Lombardi, P., 1990, 4-Aminoandrostenedione derivatives: A novel class of irreversible aromatase inhibitors. Comparison with FCE 24304 and 4-hydroxyandrostenedione, J. Steroid Biochem. Mol. Biol. 37: 369–374.Google Scholar
  346. 346.
    Di Salle, E., Briatico, G., Giudici, D., Ornati, G., and Zaccheo, T., 1989, Aromatase inhibition and experimental antitumor activity of FCE 24304, MDL 18962 and SH 489, J. Steroid Biochem. 34: 431–434.PubMedCrossRefGoogle Scholar
  347. 347.
    Marsh, D. A., Brodie, H. J., Garrett, W., Tsai-Morris, C.-H., and Brodie, A. M., 1985, Aromatase inhibitors. Synthesis and biological activity of androstenedione derivatives, J. Med. Chem. 28: 788–795.PubMedCrossRefGoogle Scholar
  348. 348.
    Brodie, A. M. H., Brodie, H. J., Garrett, W. M., Hendrickson, J. R., Marsh, D. H., and Tsai-Morris, C.-H., 1982, Effect of an aromatase inhibitor, 1,4,6-androstatriene-3,17-dione, on 7,12-dimethyl-[a]anthracene-induced mammary tumors in the rat and its mechanism of action in vivo, Biochem. Pharmacol. 31: 2017–2023.CrossRefGoogle Scholar
  349. 349.
    Henderson, D., Norbisrath, G., and Kerb, U., 1986, 1-Methyl-1,4-androstadiene-3,17-dione (SH 489): Characterization of an irreversible inhibitor of estrogen biosynthesis, J. Steroid Biochem. 24: 303–306.Google Scholar
  350. 350.
    Numazawa, M., Mutsumi, A., Hoshi, K., and Tanaka, Y., 1992, Androst-5-ene-7,17-dione: A novel class of suicide substrate of aromatase, Biochem. Biophys. Res. Commun. 186: 32–39.PubMedCrossRefGoogle Scholar
  351. 351.
    Covey, D. F., and Hood, W. F., 1981, Enzyme-generated intermediates derived from 4-androstene3,6,17-trione and 1,4,6-androstatriene-3,17-dione cause a time-dependent decrease in human placental aromatase activity, Endocrinology 108: 1597–1599.PubMedCrossRefGoogle Scholar
  352. 352.
    Numazawa, M., Tsuji, M., and Mutsumi, A., 1987, Studies on aromatase inhibition with 4-androstene3,6,17-trione: Its 3[3-reduction and time-dependent irreversible binding to aromatase with human placental microsomes, J. Steroid Biochem. 28: 337–344.PubMedCrossRefGoogle Scholar
  353. 353.
    Numazawa, M., Midzuhashi, K., and Nagaoka, M., 1994, Metabolic aspects of the 113-proton and the 19-methyl group of androst-4-ene-3,6,17-trione during aromatization by placental microsomes and inactivation of aromatase, Biochem. Pharmacol. 47: 717–726.PubMedCrossRefGoogle Scholar
  354. 354.
    Longcope, C., Femino, A., and Johnston, J.O., 1988, Inhibition of peripheral aromatization in baboons by an enzyme-activated aromatase inhibitor (MDL 18,962), Endocrinology 122: 2007–2011.PubMedCrossRefGoogle Scholar
  355. 355.
    Johnston, J. O., 1990, Studies with the steroidal aromatase inhibitor, 19-acetylenic androstenedione (MDL 18,962), J. Cancer Res. Clin. Oncol. 116: 880.Google Scholar
  356. 356.
    Covey, D. F., Hood, W. F., Bensen, D. D., and Carrell, H. L., 1984, Hydroperoxides as inactivators of aromatase: 10-Beta-hydroperoxy-4-estrene-3,17-dione, crystal structure and inactivation characteristics, Biochemistry 23: 5398–5406.PubMedCrossRefGoogle Scholar
  357. 357.
    Covey, D. F., Hood, W. F., and McMullan, P. C., 1986, Studies of the inactivation of human placental aromatase by 17a-ethynyl-substituted 1013-hydroperoxy and related 19-nor steroids, Biochem. Pharmacol. 35: 1671–1674.PubMedCrossRefGoogle Scholar
  358. 358.
    Bednarski, P. J., Porubek, D. J., and Nelson, S. D., 1985, Thiol-containing androgens as suicide substrates of aromatase, J. Med. Chem. 28: 775–779.PubMedCrossRefGoogle Scholar
  359. 359.
    Shih, M.-J., Carrell, M. H., Carrell, H. L., Wright, C. L., Johnston, J. O., and Robinson, C. H., 1987, Stereoselective inhibition of aromatase by novel epoxysteroids. J. Chem Soc. Chem. Commun. 1987: 213–214.CrossRefGoogle Scholar
  360. 360.
    Burkhart, J. P., Peet, N. P., Wright, C. L., and Johnston, J. O., 1991, Novel time-dependent inhibitors of human placental aromatase, J. Med. Chem. 34: 1748–1750.PubMedCrossRefGoogle Scholar
  361. 361.
    Vanden Bossche, H., Willemsens, G., Cools, W., Marichal, P., and Lauwers, W., 1983, Hypothesis on the molecular basis of the antifungal activity of N-substituted imidazoles and triazoles, Biochem. Soc. Trans. 11: 665–667.PubMedGoogle Scholar
  362. 362.
    Mercer, E. I., 1991, Sterol biosynthesis inhibitors: Their current status and modes of action, Lipids 26: 584–597.PubMedCrossRefGoogle Scholar
  363. 363.
    Berg, M., and Plempel, M. (eds.), 1988, Sterol Biosynthesis Inhibitors, Ellis Horwood, Cambridge.Google Scholar
  364. 364.
    Vanden Bossche, H., Lauwers, W., Willemsens, G., Marichal, P., Cornelissen, F., and Cools, W., 1984, Molecular basis for the antimycotic and antibacterial activity of N-substituted imidazoles and triazoles: The inhibition of isoprenoid biosynthesis, Pestic. Sci. 15: 188–198.CrossRefGoogle Scholar
  365. 365.
    Heeres, J., De Brabander, M., and Vanden Bossche, H., 1982, Ketoconazole: Chemistry and basis for selectivity, in: Current Chemotherapy and Immunotherapy, Vol. 2 ( P. Periti and G. G. Grossi, eds.), American Society of Microbiology, Washington, DC, pp. 1007–1009.Google Scholar
  366. 366.
    Willemsens, G., Cools, W., and Vanden Bossche, H., 1980, Effects of miconazole and ketoconazole on sterol synthesis in a subcellular fraction of yeast and mammalian cells, in: The Host—Invader Interplay ( H. Vanden Bossche, ed.), Elsevier/North-Holland, Amsterdam, pp. 691–694.Google Scholar
  367. 367.
    Murray, M., Ryan, A. J., and Little, R J., 1982, Inhibition of rat hepatic microsomal aminopyrine N-demethylase activity by benzimidazole derivatives: Quantitative structure—activity relationships, J. Med. Chem. 25: 887–892.PubMedCrossRefGoogle Scholar
  368. 368.
    Santen, R. J., Vanden Bossche, H., Symoens, J., Brugmans, J., and DeCoster, R., 1983, Site of action of low dose ketoconazole or androgen biosynthesis in men, J. Clin. Endocrinol. Metab. 57: 732–736.PubMedCrossRefGoogle Scholar
  369. 369.
    Gander, R, Mercer, E. I., Baldwin, B. C., and Wiggins, T. E., 1983, A comparison of the potency of some fungicides as inhibitors of sterol 14-demethylation, Pestic. Biochem. Physiol. 19: 1–10.CrossRefGoogle Scholar
  370. 370.
    Nes, W. R., 1974, Role of sterols in membranes, Lipids 9: 596–612.PubMedCrossRefGoogle Scholar
  371. 371.
    Yeagle, R. L., Martin, R. B., Lala, A. K., Lin, H.-K., and Block, K., 1977, Differential effects of cholesterol and lanosterol on artificial membranes, Proc. Natl. Acad. Sci. USA 74: 4924–4926.PubMedCrossRefGoogle Scholar
  372. 372.
    Freier, C. E., Laderson, R. C., and Sibert, D. F., 1979, Membrane phospholipid alterations in response to sterol depletion of LM cells, J. Biol. Chem. 254: 6909–6916.Google Scholar
  373. 373.
    Dolle, R. E., Allaudeen, H. S., and Kruse, L. I., 1990, Design and synthesis of 14a-methyl-15-aza-ohomosterols as novel antimycotics, J. Med. Chem. 33: 877–880.PubMedCrossRefGoogle Scholar
  374. 374.
    Frye, L. L., Cusack, K. E, Leonard, D. A., and Anderson, J. A., 1994, Oxolanosterol oximes: Dual-action inhibitors of cholesterol biosynthesis, J. Lipid Res. 35: 1333–1344.PubMedGoogle Scholar
  375. 375.
    Aoyama, Y., Yoshida, Y., Sonoda, Y., and Sato, Y., 1987, 7-Oxo-24,25-dihydrolanosterol: A novel lanosterol 14a-demethylase (P-450 140M) inhibitor which blocks electron transfer to the oxyferro intermediate, Biochim. Biophys. Acta 922: 270–277.Google Scholar
  376. 376.
    Cooper, A. B., Wright, J. J., Ganguly, A. K., Desai, J., Loenberg, D., Parmegiani, R., Feingold, D. S., and Sud, I. J., 1989, Synthesis of 14-a-aminomethyl substituted lanosterol derivatives; inhibitors of fungal ergosterol biosynthesis, J. Chem. Soc. Chem. Commun. 1989: 898–900.CrossRefGoogle Scholar
  377. 377.
    Frye, L. L., Cusack, K. P., and Leonard, D. A., 1993, 32-Methyl-32-oxylanosterols: Dual-action inhibitors of cholesterol biosynthesis, J. Med. Chem. 36: 410–416.Google Scholar
  378. 378.
    Frye, L. L., and Robinson, C. H., 1988, Novel inhibitors of lanosterol 14a-methyl demethylase, a critical enzyme in cholesterol biosynthesis, J. Chem. Soc. Chem. Commun. 1988: 129–131.CrossRefGoogle Scholar
  379. 379.
    Mayer, R. J., Adams, J. L., Bossard, M. J., and Berkhout, T. A., 1991, Effects of a novel lanosterol 14a-demethylase inhibitor on the regulation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase in Hep G2 cells, J. Biol. Chem. 266: 20070–20078.PubMedGoogle Scholar
  380. 380.
    Frye, L. L., and Robinson, C. H., 1990, Synthesis of potential mechanism-based inactivators of lanosterol 14a-demethylase, J. Org. Chem. 55: 1579–1584.CrossRefGoogle Scholar
  381. 381.
    Tuck, S. F., Robinson, C. H., and Silverton, J. V., 1991, Assessment of the active-site requirements of lanosterol 14a-demethylase: Evaluation of novel substrate analogues as competitive inhibitors, J. Org. Chem. 56: 1260–1266.CrossRefGoogle Scholar
  382. 382.
    Bossard, M. J., Tomaszek, T. A., Gallagher, T., Metcalf, B. W., and Adams, J. L., 1991, Steroidal acetylenes: Mechanism-based inactivators of lanosterol 14a-demethylase, Bioorg. Chem. 19: 418–432.CrossRefGoogle Scholar
  383. 383.
    Trzaskos, J. M., Magolda, R. L., Favata, M. F., Fischer, R. T., Johnson, P. R., Chen, H. W., Ko, S. S., Leonard, D. A., and Gaylor, J. L., 1993, Modulation of 3-hydroxy-3-methylglutaryl-CoA reductase by 15a-fluorolanost-7-en-3 3-ol. A mechanism-based inhibitor of cholesterol biosynthesis, J. Biol. Chem. 268: 22591–22599.PubMedGoogle Scholar
  384. 384.
    Angelastro, M. R., Laughlin, M. E., Schatzman, G. L., Bey, P., and Blohm, T. R., 1989, 17β-(Cyclopropylamino)-androst-5-en-3β-ol, a selective mechanism-based inhibitor of cytochrome P45017α (steroid 17α-hydroxylase/C17–20 lyase), Biochem. Biophys. Res. Commun. 162: 1571–1577.Google Scholar
  385. 385.
    Berg, A. M., Kickman, A. B., Miao, E., Cochran, A., Wilson, S. R., and Orme-Johnson, W. H., 1990, Effects of inhibitors of cytochrome P-45017α on steroid production in mouse Leydig cells and mouse and pig testes microsomes, Biochemistry 29: 2193.Google Scholar
  386. 386.
    Viger, A., Coustal, S., Perard, S., Chappe, B., and Marquet, A., 1988, Synthesis and activity of new inhibitors of aldosterone biosynthesis, J. Steroid Biochem. 30: 469–472.PubMedCrossRefGoogle Scholar
  387. 387.
    Viger, A., Coustal, S., Perard, S., Piffeteau, A., and Marquet, A., 1989, 18-Substituted progesterone derivatives as inhibitors of aldosterone biosynthesis, J. Steroid Biochem. 33: 119–124.Google Scholar
  388. 388.
    Gomez-Sanchez, C. E., Chiou, S., and Yamakita, N., 1993, 18-Ethynyl-deoxycorticosterone inhibition of steroid production is different in freshly isolated compared to cultured calf zona glomerulosa cells, J. Steroid Biochem. Mol. Biol. 46: 805–810.Google Scholar
  389. 389.
    Johnston, J. O., Wright, C. L., Bohnke, R. A., and Kastner, P. R., 1991, Inhibition of aldosterone biosynthesis in primates by 18-acetylenic deoxycorticosterone, Endocrinology 128(Suppl.):Abstract 24.Google Scholar
  390. 390.
    Shak, S., and Goldstein, I., 1984, Omega-oxidation is the major pathway for the catabolism of leukotriene B4 in human polymorphonuclear leukocytes, J. Biol. Chem. 259: 10181–10187.PubMedGoogle Scholar
  391. 391.
    Kupfer, D., 1982, Endogenous substrates of monooxygenases: Fatty acids and prostaglandins, in: Hepatic Cytochrome P450 Monooxygenase System ( J. B. Sehenkman and D. Kupfer, eds.), Pergamon Press, Elmsford, NY, pp. 157–190.Google Scholar
  392. 392.
    Kupfer, D., 1980, Endogenous substrates of monooxygenases: Fatty acids and prostaglandins, Pharmacol. Ther. A 11: 469–496.CrossRefGoogle Scholar
  393. 393.
    Fulco, A. J., 1991, P450BM-3 and other inducible bacterial P450 cytochromes: Biochemistry and regulation, Anne. Rev. Pharmacol. Toxicol. 31: 177–203.CrossRefGoogle Scholar
  394. 394.
    Ortiz de Montellano, P. R., and Reich, N. O., 1984, Specific inactivation of hepatic fatty acid hydroxylases by acetylenic fatty acids, J. Biol. Chem. 259: 4136–4141.Google Scholar
  395. 395.
    Salaun, J. P., Reichhart, D., Simon, A., Durst, E, Reich, N. O., and Ortiz de Montellano, P. R., 1984, Autocatalytic inactivation of plant cytochrome P-450 enzymes: Selective inactivation of the lauric acid in-chain hydroxylase from Helianthus tuberosus L. by unsaturated substrate analogs, Arch. Biochem. Biophys. 232: 1–7.PubMedCrossRefGoogle Scholar
  396. 396.
    CaJacob, C. A., and Ortiz de Montellano, P. R., 1986, Mechanism-based in vivo inactivation of lauric acid hydroxylases, Biochemistry 25: 4705–4711.PubMedCrossRefGoogle Scholar
  397. 397.
    Hirt, D. L., and Jacobson, H. R., 1991, Functional effects of cytochrome P450 arachidonate metabolites in the kidney, Semin. Nephrol. 11: 148–155.PubMedGoogle Scholar
  398. 398.
    McGiff, J. C., Quilley, C. P., and Carroll, M. A., 1993, The contribution of cytochrome P450-dependent arachidonate metabolites to integrated renal function, Steroids 58: 573–579.PubMedCrossRefGoogle Scholar
  399. 399.
    Zou, A.-P., Ma, Y.-H., Sui, Z.-H., Ortiz de Montellano, P. R., Clark, J. E., Masters, B. S., and Roman, R. J., 1994, Effects of 17-octadecynoic acid, a suicide-substrate inhibitor of cytochrome P450 fatty acid co-hydroxylase, on renal function in rats, J. Pharmacol. Exp. Ther. 268: 474–481.PubMedGoogle Scholar
  400. 400.
    Shak, S., Reich, N. O., Goldstein, I. M., and Ortiz de Montellano, P. R., 1985, Leukotriene B4 w-hydroxylase in human polymorphonuclear leukocytes: Suicidal inactivation by acetylenic fatty acids, J. Biol. Chem. 260: 13023–13028.PubMedGoogle Scholar
  401. 401.
    Williams, D. E., Muerhoff, A. S., Reich, N. O., CaJacob, C. A., Ortiz de Montellano, P. R., and Masters, B. S. S., 1989, Prostaglandin and fatty acid w and (w-1) oxidation in rabbit lung. Acetylenic fatty acid mechanism based inactivators as specific inhibitors, J. Biol. Chem. 264: 749–756.PubMedGoogle Scholar
  402. 402.
    Shirane, N., Sui, Z., Peterson, J. A., and Ortiz de Montellano, P. R., 1993, Cytochrome P4508M-3 (CYP102): Regiospecificity of oxidation of co-unsaturated fatty acids and mechanism-based inactivation, Biochemistry 32: 13732–13741.PubMedCrossRefGoogle Scholar
  403. 403.
    Kikuta, Y., Kusunose, E., Endo, K., Yamamoto, S., Sogawa, K., Fujii-Kuriyama, Y., and Kusunose, M., 1993, A novel form of cytochrome P-450 family 4 in human polymorphonuclear le ukocytes. cDNA cloning and expression of leukotriene B4 w-hydroxylase, J. Biol. Chem. 268: 9376–9380.PubMedGoogle Scholar
  404. 404.
    Clancy, R. M., Dahinden, C. A., and Hugli, T. E., 1984, Oxidation of leukotrienes at the w end: Demonstration of a receptor for the 20-hydroxy derivative of leukotriene B4 on human neutrophils and implications for the analysis of leukotriene receptors, Proc. Natl. Acad. Sci. USA 81: 5729–5733.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Paul R. Ortiz de Montellano
    • 1
  • Maria Almira Correia
    • 2
  1. 1.Department of Pharmaceutical Chemistry, School of PharmacyUniversity of California, San FranciscoSan FranciscoUSA
  2. 2.Department of Cellular and Molecular PharmacologyUniversity of California, San FranciscoSan FranciscoUSA

Personalised recommendations