Oxygen Activation and Reactivity

  • Paul R. Ortiz de Montellano


The cytochrome P450-catalyzed insertion of an oxygen into a substrate culminates a process that reduces molecular oxygen to a species equivalent, in terms of formal electron count and reactivity, to an oxygen atom.1–6 The cytochrome P450 catalytic cycle traverses the following steps (Fig. 1): (1) reversible substrate binding, (2) reduction of cytochrome P450 from the ferric to the ferrous state by auxiliary electron transport proteins, (3) binding of molecular oxygen to give the ferrous dioxygen complex, (4) transfer of a second electron from the auxiliary electron transport proteins, (5) cleavage of the oxygen-oxygen bond to give a molecule of water and an oxidizing species in which the second oxygen is bound to the iron, (6) insertion of the iron-bound oxygen into the substrate, and (7) product dissociation. In the case of microsomal cytochrome P450 enzymes, the auxiliary electron transport protein is cytochrome P450 reductase, although cytochrome b 5 is able in some instances to provide the second electron. In the case of most bacterial and mitochondrial cytochrome P450 enzymes the electron transfer partners are a flavoprotein (e.g., adrenodoxin reductase) and an iron-sulfur protein (e.g., adrenodoxin) (see Chapters 3 and 11). Uncoupling of catalytic turnover from substrate oxidation can divert the consumption of reducing equivalents toward the production of superoxide, H2O2, or water rather than substrate-derived products (see Chapter 3).6 Although the physiological turnover of cytochrome P450 generally adheres to the above sequence, alternative oxygen donors such as peroxides can react with cytochrome P450 via “shunt” mechanisms that produce the activated oxidizing species without recourse to reducing equivalents or molecular oxygen. The early parts of this catalytic cycle involving reductive activation of molecular oxygen are discussed in detail in Chapters 3 and 7. This chapter concentrates on the nature of the activated oxidizing species, the shunt pathways for its formation, and its reactions with organic substrates.


Isotope Effect Cumene Hydroperoxide Cytochrome P450 Reductase Deuterium Isotope Effect Prosthetic Heme Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ortiz de Montellano, P. R., 1986, Oxygen activation and transfer, in: Cytochrome P-450: Structure, Mechanism, and Biochemistry ( P. R. Ortiz de Montellano, ed.), Plenum Press, New York, pp. 217–271.Google Scholar
  2. 2.
    White, R. E., and Coon, M. J., 1980, Oxygen activation by cytochrome P450, Annu. Rev. Biochem. 49: 315–356.PubMedCrossRefGoogle Scholar
  3. 3.
    Dawson, J. H., 1988, Probing structure-function relationships in heme-containing oxygenases and peroxidases, Science 240: 433–439.PubMedCrossRefGoogle Scholar
  4. 4.
    Ishimura, Y., 1993, Oxygen activation and transfer, in: Cytochrome P-450, 2nd ed. ( T. Omura, Y. Ishimura, and Y. Fujii-Kuriyama, eds.), VCH, Weinheim, pp. 80–91.Google Scholar
  5. 5.
    Koymans, L., Donné-op Den Kelder, G. M., Koppele Te, J. M., and Vemieulen, N. P. E., 1993, Cytochromes P450: Their active-site structure and mechanism of oxidation, Drug Metab. Rev. 25: 325–387.PubMedCrossRefGoogle Scholar
  6. 6.
    Archakov, A. I., and Bachmanova, G. I., 1990, Cytochrome P450 and Active Oxygen, Taylor & Francis, London.Google Scholar
  7. 7.
    Dolphin, D., Forman, A., Borg, D. C., Fajer, J., and Felton, R. H., 1971, Compounds I of catalase and horse radish peroxidase: it-cation radicals, Proc. Natl. Acad. Sci. USA 68: 614–618.PubMedCrossRefGoogle Scholar
  8. 8.
    Morishima, I., Takamuki, Y., and Shiro, Y., 1984, Nuclear magnetic resonance studies of metalloporphyrin it-cation radicals as models for compound I of peroxidases, J. Am. Chem. Soc. 106: 7666–7672.CrossRefGoogle Scholar
  9. 9.
    Roberts, J. E., Hoffman, B. M., Rutter, R., and Hager, L. P., 1981, Electron-nuclear double resonance of horseradish peroxidase compound I, J. Biol. Chem. 256: 2118–2121.PubMedGoogle Scholar
  10. 10.
    La Mar, G. N., de Ropp, J. S., Latos-Grazynski, L., Balch, A. L., Johnson, R. B., Smith, K. M., Parish, D. W., and Cheng, R.-J., 1983, Proton NMR characterization of the ferryl group in model heure complexes and hemoproteins: Evidence for the FeIV=O group in ferry] myoglobin and compound II of horseradish peroxidase, J. Am. Chem. Soc. 105: 782–787.CrossRefGoogle Scholar
  11. 11.
    Hoffman, B. M., Roberts, J. E., Kang, C. H., and Margoliash, E., 1981, Electron paramagnetic and electron nuclear double resonance of the hydrogen peroxide compound of cytochrome c peroxidase, J. Biol. Chem. 256: 6556–6564.PubMedGoogle Scholar
  12. 12.
    McCandlish, E., Miksztal, A. R., Nappa, M., Sprenger, A. Q., Valentine, J. S., Stong, J. D., and Spiro, T. G., 1980, Reactions of superoxide with iron porphyrins in aprotic solvents: A high spin ferric porphyrin peroxo complex, J. Am. Chem. Soc. 102: 4268–4271.CrossRefGoogle Scholar
  13. 13.
    Ataollah, S., and Goff, H. M., 1982, Characterization of superoxide-metalloporphyrin reaction products: Effective use of deuterium NMR spectroscopy, J. Am. Chem. Soc. 104: 6318–6322.CrossRefGoogle Scholar
  14. 14.
    Burstyn, J. N., Roe, J. A., Miksztal, A. R., Shaevitz, B. A., Lang, G., and Valentine, J. S., 1988, Magnetic and spectroscopic characterization of an iron porphyrin peroxide complex. Peroxoferrioctaethylporphyrin (1-), J. Am. Chem. Soc. 110: 1382–1388.CrossRefGoogle Scholar
  15. 15.
    Welborn, C. H., Dolphin, D., and James, B. R., 1981, One-electron electrochemical reduction of a ferrous porphyrin dioxygen complex, J. Am. Chem. Soc. 103: 2869–2871.CrossRefGoogle Scholar
  16. 16.
    Miksztal, A. R., and Valentine, J. S., 1984, Reactivity of the peroxo ligand in metalloporphyrin complexes. Reaction of sulfur dioxide with iron and titanium porphyrin peroxo complexes to give sulfato complexes or sulfate, Jnorg. Chem. 23: 3548–3552.CrossRefGoogle Scholar
  17. 17.
    Valentine, J. S., Burstyn, J. N., and Margerum, L. D., 1988, Mechanisms of Dioxygen Activation in Metal-Containing Monooxygenases: Enzymes and Model Systems, Plenum Press, New York, pp. 175–187.Google Scholar
  18. 18.
    Hrycay, E. G., and O’Brien, P. J., 1971, Cytochrome P450 as a microsomal peroxidase utilizing a lipid peroxide substrate, Arch. Biochem. Biophys. 147: 14–27.PubMedCrossRefGoogle Scholar
  19. 19.
    Hrycay, E. G., and O’Brien, P. J., 1972, Cytochrome P450 as a microsomal peroxidase in steroid hydroperoxide reduction, Arch. Biochem. Biophys. 153: 480–494.PubMedCrossRefGoogle Scholar
  20. 20.
    Hrycay, E. G., and O’Brien, P. J., 1974, Microsomal electron transport. II. Reduced nicotinamide adenine dinucleotide-cytochrome b5 reductase and cytochrome P450 as electron carriers in microsomal NADH-peroxidase activity, Arch. Biochem. Biophys. 160: 230–245.PubMedCrossRefGoogle Scholar
  21. 21.
    O’Brien, P. J., 1978, Hydroperoxides and superoxides in microsomal oxidations, Pharmacol. Ther. A2: 517–536.Google Scholar
  22. 22.
    Rahimtula, A. D., and O’Brien, P. J., 1977, The hydroperoxide dependent microsomal oxidation of alcohols, Eur. J. Biochem. 77: 210–211.CrossRefGoogle Scholar
  23. 23.
    Davies, M. J., 1989, Detection of peroxyl and alkoxyl radicals produced by reaction of hydroperoxides with rat liver microsomal fractions, Biochem. J. 257: 603–606.PubMedGoogle Scholar
  24. 24.
    O’Brien, P. J., and Rahimtula, A., 1975, Involvement of cytochrome P450 in the intracellular formation of lipid peroxides, J. Agr Food Chem 23: 154–158.CrossRefGoogle Scholar
  25. 25.
    Weiss, R. H., and Estabrook, R. W., 1986, The mechanism of cumene hydroperoxide-dependent lipid peroxidation: The function of cytochrome P-450, Arch. Biochem. Biophys. 251: 348–360.PubMedCrossRefGoogle Scholar
  26. 26.
    Lindstrom, T. D., and Aust, S. D., 1984, Studies on cytochrome P450-dependent lipid hydroperoxide reduction, Arch. Biochem. Biophys. 233: 80–87.PubMedCrossRefGoogle Scholar
  27. 27.
    Cavallini, L., Valente, M., and Bindoli, A., 1983, NADH and NADPH inhibit lipid peroxidation promoted by hydroperoxides in rat liver microsomes, Biochim. Biophys. Acta 752: 339–345.PubMedCrossRefGoogle Scholar
  28. 28.
    Kadlubar, E E, Morton, K. C., and Ziegler, D. M., 1973, Microsomal-catalyzed hydroperoxide-dependent C-oxidation of amines, Biochem. Biophys. Res. Commun. 54: 1255–1261.PubMedCrossRefGoogle Scholar
  29. 29.
    Nordblom, G. D., White, R. E., and Coon, M. J., 1976, Studies on hydroperoxide-dependent substrate hydroxylation by purified liver microsomal cytochrome P450, Arch. Biochem. Biophys. 175: 524–533.PubMedCrossRefGoogle Scholar
  30. 30.
    Ashley, P. L., and Griffin, B. W., 1981, Involvement of radical species in the oxidation of aminopyrine and 4-aminoantipyrine by cumene hydroperoxide in rat liver microsomes, Mol. Pharmacol. 19: 146–152.PubMedGoogle Scholar
  31. 31.
    Griffin, B. W., 1982, Use of spin traps to elucidate radical mechanisms of oxidations by hydroperoxides catalyzed by hemoproteins, Can. J. Chem. 60: 1463–1473.CrossRefGoogle Scholar
  32. 32.
    Rahimtula, A. D., and O’Brien, P. J., 1975, Hydroperoxide-dependent 0-dealkylation reactions catalyzed by liver microsomal cytochrome P450, Biochem. Biophys. Res. Commun. 62: 268–275.PubMedCrossRefGoogle Scholar
  33. 33.
    Burke, D. M., and Mayer, R. T., 1975, Inherent specificities of purified cytochrome P450 and P-448 toward biphenyl hydroxylation and ethoxyresorufin deethylation, Drug Metab. Dispos. 3: 245–253.PubMedGoogle Scholar
  34. 34.
    Rahimtula, A. D., and O’Brien, P. J., 1974, Hydroperoxide catalyzed liver microsomal aromatic hydroxylation reactions involving cytochrome P450, Biochem. Biophys. Res. Commun. 60: 440–447.PubMedCrossRefGoogle Scholar
  35. 35.
    Hrycay, E. G., Gustafsson, J.-A., Ingelman-Sundberg, M., and Ernster, L., 1975, Sodium periodate, sodium chlorite, organic hydroperoxides, and H2O2 as hydroxylating agents in steroid hydroxylation reactions catalyzed by partially purified cytochrome P450, Biochem. Biophys. Res. Commun. 66: 209–216.PubMedCrossRefGoogle Scholar
  36. 36.
    Ellin, A., and Orrenius, S., 1975, Hydroperoxide-supported cytochrome P450-linked fatty acid hydroxylation in liver microsomes, FEBS Lett. 50: 378–381.PubMedGoogle Scholar
  37. 37.
    Danielsson, H., and Wikvall, K., 1976, On the ability of cumene hydroperoxide and NaI04 to support microsomal hydroxylations in biosynthesis and metabolism of bile acids, FEBS Len. 66: 299–302.CrossRefGoogle Scholar
  38. 38.
    Gustafsson, J.-A., Hrycay, E.G., and Ernster, L., 1976, Sodium periodate, sodium chlorite, and organic hydroperoxides as hydroxylating agents in steroid hydroxylation reactions catalyzed by adrenocortical microsomal and mitochondrial cytochrome P450, Arch. Biochem. Biophys. 174: 440–453.PubMedCrossRefGoogle Scholar
  39. 39.
    Hrycay, E. G., Gustafsson, J.-A., Ingelman-Sundberg, M., and Ernster, L., 1976, The involvement of cytochrome P450 in hepatic microsomal steroid hydroxylation reactions supported by sodium periodate, sodium chlorite, and organic hydroperoxides, Eur. J. Biochem. 61: 43–52.PubMedCrossRefGoogle Scholar
  40. 40.
    Rahimtula, A. D., O’Brien, P. J., Seifried, H. E., and Jerina, D. M., 1978, The mechanism of action of cytochrome P450: Occurrence of the “NIH shift” during hydroperoxide-dependent aromatic hydroxylations, Eur. J. Biochem. 89: 133–141.PubMedCrossRefGoogle Scholar
  41. 41.
    van Lier, J. E., and Rousseau, J., 1976, Mechanism of cholesterol side-chain cleavage: Enzymic rearrangement of 2013-hydroperoxy-20-isocholesterol to 20ß,21-dihydroxy-20-isocholesterol, FEBS Lett. 70: 23–27.PubMedCrossRefGoogle Scholar
  42. 42.
    Larroque, C., and van Lier, J. E., 1986, Hydroperoxysterols as a probe for the mechanism of cytochrome P-450scc-mediated hydroxylation: Homolytic versus heterolytic oxygen-oxygen bond scission, J. Biol. Chem. 261: 1083–1087.PubMedGoogle Scholar
  43. 43.
    Larroque, C., and van Lier, J. E., 1983, Spectroscopic evidence for the formation of a transient species during cytochrome P450scc induced hydroperoxysterol-glycol conversions, Biochem. Biophys. Res. Commun. 112: 655–662.PubMedCrossRefGoogle Scholar
  44. 44.
    Larroque, C., Lange, R., Maurin, L., Bienvenue, A., and van Lier, J. E., 1990, On the nature of the cytochrome P450scc “ultimate oxidant”: Characterization of a productive radical intermediate, Arch. Biochem. Biophys. 282: 198–201.PubMedCrossRefGoogle Scholar
  45. 45.
    Thompson, J. A., and Wand, M. D., 1985, Interaction of cytochrome P-450 with a hydroperoxide derived from butylated hydroxytoluene. Mechanism of isomerization, J. Biol. Chem. 260: 10637–10644.PubMedGoogle Scholar
  46. 46.
    Wand, M. D., and Thompson, J. A., 1986, Cytochrome P-450-catalyzed rearrangement of a peroxyquinol derived from butylated hydroxytoluene. Involvement of radical and cationic intermediates, J. Biol. Chem. 261: 14049–14056.PubMedGoogle Scholar
  47. 47.
    Yumibe, N. P., and Thompson, J. A., 1988, Fate of free radicals generated during one-electron reductions of 4-alkyl-l,4-peroxyquinols by cytochrome P-450, Chem. Res. Toxicol. 1: 385–390.PubMedCrossRefGoogle Scholar
  48. 48.
    White, R. E., Sligar, S. G., and Coon, M. J., 1980, Evidence for a homolytic mechanism of peroxide oxygen-oxygen bond cleavage during substrate hydroxylation by cytochrome P450, J. Bio!. Chem. 255: 11108–11111.Google Scholar
  49. 49.
    Vaz, A. D. N., and Coon, M. J., 1987, Hydrocarbon formation in the reductive cleavage of hydroperoxides by cytochrome P-450, Proc. Natl. Acad. Sci. USA 84: 1172–1176.PubMedCrossRefGoogle Scholar
  50. 50.
    Thompson, J. A., and Yumibe, N. P., 1989, Mechanistic aspects of cytochrome P-450-hydroperoxide interactions: Substituent effects on degradative pathways, Drug. Metab. Rev. 20: 365–378.PubMedCrossRefGoogle Scholar
  51. 51.
    Fish, K. M., Avaria, G. E., and Groves, J. T., 1988, Rearrangement of alkyl hydroperoxides mediated by cytochrome P-450: Evidence for the oxygen rebound mechanism, in: Microsomes and Drug Oxidations ( J. O. Miners, D. J. Birkett, R. Drew, B. K. May, and M. E. McManus, eds.), Taylor & Francis, London, pp. 176–183.Google Scholar
  52. 52.
    Koop, D. R., and Hollenberg, P. F., 1980, Kinetics of the hydroperoxide-dependent dealkylation reactions catalyzed by rabbit liver microsomal cytochrome P450, J. Biol. Chem. 255: 9685–9692.PubMedGoogle Scholar
  53. 53.
    Blake, R. C., and Coon, M. J., 1980, On the mechanism of action of cytochrome P450: Spectral intermediates in the reactions of P450LM2 with peroxy compounds, J. Biol. Chem. 255: 4100–4111.PubMedGoogle Scholar
  54. 54.
    Blake, R. C., and Coon, M. J., 1981, On the mechanism of action of cytochrome P450: Role of peroxy spectral intermediates in substrate hydroxylation, J. Bio!. Chem. 256: 5755–5763.Google Scholar
  55. 55.
    Blake, R. C., and Coon, M. J., 1981, On the mechanism of action of cytochrome P450: Evaluation of homolytic and heterolytic mechanisms of oxygen-oxygen bond cleavage during substrate hydroxylation by peroxides, J. Biol. Chem. 256: 12127–12133.PubMedGoogle Scholar
  56. 56.
    Rahimtula, A. D., O’Brien, P. J., Hrycay, E. G., Peterson, J. A., and Estabrook, R. W., 1974, Possible higher valence states of cytochrome P450 during oxidative reactions, Biochem. Biophys. Res. Commun. 60: 695–702.PubMedCrossRefGoogle Scholar
  57. 57.
    Dunford, H. B., 1982, Peroxidases, in: Advances in Inorganic Biochemistry ( G. Eichhorn and L. G. Marzilli, eds.), Elsevier, Amsterdam, pp. 41–68.Google Scholar
  58. 58.
    Wagner, G. C., Palcic, M. M., and Dunford, H. B., 1983, Absorption spectra of cytochrome P450ca,,, in the reaction with peroxy acids, FEBS Lea. 156: 244–248.CrossRefGoogle Scholar
  59. 59.
    Egawa, T., Shimada, H., and Ishimura, Y., 1994, Evidence for compound I formation in the reaction of cytochrome P450ca„,, with m-chloroperbenzoic acid, Biochem. Biophys. Res. Commun. 201: 1464–1469.PubMedCrossRefGoogle Scholar
  60. 60.
    Wagner, G. C., and Gunsalus, I. C., 1982, Cytochrome P450: Structure and states, in: Biology, and Chemistry of Iron, NATO Adv. Study hut. See. C 89: 405–412.Google Scholar
  61. 61.
    Kobayashi, K., Amano, M., Kanbara, Y., and Hayashi, K., 1987, One-electron reduction of the oxyform of 2,4-diacetyldeuterocytochrome P-450, J. Biol. Chem. 262: 5445–5447.PubMedGoogle Scholar
  62. 62.
    Kobayashi, K., Iwamoto, T., and Honda, K., 1994, Spectral intermediates in the reaction of ferrous cytochrome P450.Q,,, with superoxide anion, Biochem. Biophys. Res. Commun. 201: 1348–1355.PubMedCrossRefGoogle Scholar
  63. 63.
    Tajima, K., Edo, T., Ishzu, K., Imaoka, S., Funae, Y., Oka, S., and Sakurai, H., 1993, Cytochrome P-450-butyl peroxide complex detected by ESR, Biochem. Biophys. Res. Commun. 191: 157–164.PubMedCrossRefGoogle Scholar
  64. 64.
    McCarthy, M.-B., and White, R. E., 1983, Competing modes of peroxyacid flux through cytochrome P450, J. Biol. Chem. 258: 11610–11616.PubMedGoogle Scholar
  65. 65.
    Capdevila, J., Estabrook, R. W., and Prough, R. A., 1980, Differences in the mechanism of NADPHand cumene hydroperoxide-supported reactions of cytochrome P450, Arch. Biochem. Biophys. 200: 186–195.PubMedCrossRefGoogle Scholar
  66. 66.
    Hlavica, P., Golly, I., and Mietaschk, J., 1983, Comparative studies on the cumene hydroperoxideand NADPH-supported N-oxidation of 4-chloroaniline by cytochrome P450, Biochem. J. 212: 539547.Google Scholar
  67. 67.
    Renneberg, R., Damerau, W., Jung, C., Ebert, B., and Scheller, F., 1983, Study of H2O2-supported N-demethylations catalyzed by cytochrome P450 and horseradish peroxidase, Biochem. Biophys. Res. Commun. 113: 332–339.PubMedCrossRefGoogle Scholar
  68. 68.
    Bartsch, H., and Hecker, E., 1971, On the metabolic activation of the carcinogen N-hydroxy-N-2-acetylaminofluorene. III. Oxidation with horseradish peroxidase to yield 2-nitrosofluorene and N-acetoxy-N-2-acetylaminofluorene, Biochim. Biophys. Acta 237: 567–578.PubMedCrossRefGoogle Scholar
  69. 69.
    Reigh, D. L., and Floyd, R. A., 1981, Evidence for a cytochrome P-420 catalyzed mechanism of activation of N-hydroxy-2-acetylaminofluorene, Cancer Biochem. Biophys. 5: 213–217.Google Scholar
  70. 70.
    Stier, A., Reitz, I., and Sackmann, E., 1972, Radical accumulation in liver microsomal membranes during biotransformation of aromatic amines and nitro compounds, Naunyn-Schmiedebergs Arch. Pharmacol. 274: 189–191.PubMedCrossRefGoogle Scholar
  71. 71.
    Renneberg, R., Scheller, F., Ruckpaul, K., Pirrwitz, J., and Mohr, P., 1978, NADPH and H2O2-dependent reactions of cytochrome P450LM compared with peroxidase catalysis, FEBS Lett. 96: 349–353.PubMedCrossRefGoogle Scholar
  72. 72.
    Renneberg, R., Capdevila, J., Chacos, N., Estabrook, R. W., and Prough, R. A., 1981, Hydrogen peroxide-supported oxidation of benzo[a]pyrene by rat liver microsomal fractions, Biochem. Pharmacol. 30: 843–848.PubMedCrossRefGoogle Scholar
  73. 73.
    Estabrook, R. W., Martin-Wixtrom, C., Saeki, Y., Rennberg, R., Hildebrandt, A., and Werringloer, J., 1984, The peroxidatic function of liver microsomal cytochrome P450. Comparison of hydrogen peroxide and NADPH-catalyzed N-demethylation reactions, Xenobiotica 14: 87–104.PubMedCrossRefGoogle Scholar
  74. 74.
    Holm, K. A., Engell, R. J., and Kupfer, D., 1985, Regioselectivity of hydroxylation of prostaglandins by liver microsomes supported by NADPH versus H2O2 in methylcholanthrene-treated and control rats: Formation of novel prostaglandin metabolites, Arch. Biochem. Biophys. 237: 477–489.PubMedCrossRefGoogle Scholar
  75. 75.
    Fasco, M. J., Piper, L. J., and Kaminsky, L. S., 1979, Cumene hydroperoxide-supported microsomal hydroxylations of warfarin—A probe of cytochrome P450 multiplicity and specificity, Biochem. Pharmacol. 28: 97–103.PubMedCrossRefGoogle Scholar
  76. 76.
    Kelly, W. G., and Stolee, A. H., 1978, Stabilization of placental aromatase by dithiothreitol in the presence of oxidizing agents, Steroids 31: 533–539.PubMedCrossRefGoogle Scholar
  77. 77.
    Gustafsson, J.-A., Rondahl, L., and Bergman, J., 1979, Iodosylbenzene derivatives as oxygen donors in cytochrome P450 catalyzed steroid hydroxylations, Biochemistry 18: 865–870.PubMedCrossRefGoogle Scholar
  78. 78.
    Gustafsson, J.-A., and Bergman, J., 1976, Iodine-and chlorine-containing oxidation agents as hydroxylating catalysts in cytochrome P450-dependent fatty acid hydroxylation reactions in rat liver microsomes, FEBS Lett. 70: 276–280.PubMedCrossRefGoogle Scholar
  79. 79.
    Lichtenberger, F., Nastainczyk, W., and Ullrich, V., 1976, Cytochrome P450 as an oxene transferase, Biochem. Biophys. Res. Commun. 70: 939–946.PubMedCrossRefGoogle Scholar
  80. 80.
    Berg, A., Ingelman-Sundberg, M., and Gustafsson, J.-A., 1979, Purification and characterization of cytochrome P450meg, J. Biol. Chem. 254: 5264–5271.PubMedGoogle Scholar
  81. 81.
    Heimbrook, D. C., and Sligar, S. G., 1981, Multiple mechanisms of cytochrome P450-catalyzed substrate hydroxylation, Biochem. Biophys. Res. Commun. 99: 530–535.PubMedCrossRefGoogle Scholar
  82. 82.
    Macdonald, T. L., Burka, L. T., Wright, S. T., and Guengerich, F. P., 1982, Mechanisms of hydroxylation by cytochrome P450: Exchange of iron-oxygen intermediates with water, Biochem. Biophys. Res. Commun. 104: 620–625.PubMedCrossRefGoogle Scholar
  83. 83.
    Kexel, H., Schmelz, E., and Schmidt, H.-L., 1977, Oxygen transfer in microsomal oxidative desulfuration, in: Microsomes and Drug Oxidations ( V. Ullrich, I. Roots, A. Hildebrandt, R. W. Estabrook, and A. H. Conney, eds.), Pergamon Press, Elmsford, NY, pp. 269–274.Google Scholar
  84. 84.
    Hayano, M., Lindberg, M. C., Dorfman, R. I., Hancock, J. E. H., and von Doering, W. E., 1955, On the mechanism of the C-1 113-hydroxylation of steroids: A study with H2018 and 021’8, Arch. Biochem. Biophys. 59: 529–532.PubMedCrossRefGoogle Scholar
  85. 85.
    Hayano, M., Saito, A., Stone, D., and Dorfman, R. I., 1956, Hydroxylation of steroids by microorganisms in the presence of 18O2, Biochim. Biophys. Acta 21: 380–381.PubMedCrossRefGoogle Scholar
  86. 86.
    Watanabe, Y., Iyanagi, T., and Oae, S., 1980, Kinetic study on enzymatic S-oxygenation promoted by a reconstituted system with purified cytochrome P450, Tetrahedron Lett. 21: 3685–3688.CrossRefGoogle Scholar
  87. 87.
    Watanabe, Y., Numata, T., Iyanagi, T., and Oae, S., 1981, Enzymatic oxidation of alkyl sulfides by cytochrome P450 and hydroxyl radical, Bull. Chem. Soc. Jpn. 54: 1163–1170.CrossRefGoogle Scholar
  88. 88.
    Nordblom, G. D., White, R. E., and Coon, M. J., 1976, Studies on hydroperoxide-dependent substrate hydroxylation by purified liver microsomal cytochrome P450, Arch. Biochem. Biophys. 175: 524–533.PubMedCrossRefGoogle Scholar
  89. 89.
    Schardt, B. C., and Hill, C. L., 1983, Preparation of iodobenzene dimethoxide: A new synthesis of [18O]iodosylbenzene and a reexamination of its infrared spectrum, Inorg. Chem. 22: 1563–1565.CrossRefGoogle Scholar
  90. 90.
    White, R. E., and McCarthy, M.-B., 1984, Aliphatic hydroxylation by cytochrome P450: Evidence for rapid hydrolysis of an intermediate iron-nitrene complex, J. Am. Chem. Soc. 106: 4922–4926.CrossRefGoogle Scholar
  91. 91.
    White, R. E., 1987, Methanolysis of ((tosylimino)iodo)benzene, Inorg. Chem. 26: 3916–3919.CrossRefGoogle Scholar
  92. 92.
    Svastits, E. W., Dawson, J. H., Breslow, R., and Gellman, S. H., 1985, Functionalized nitrogen atom transfer catalyzed by cytochrome P-450, J. Am. Chem. Soc. 107: 6427–6428.CrossRefGoogle Scholar
  93. 93.
    Heimbrook, D. C., Murray, R. E., Egeberg, K. D., Sligar, S. G., Nee, M. W., and Bruice, T. C., 1984, Demethylation of N,N-dimethylaniline and p-cyano-N,N-dimethylaniline and their N-oxides by cytochromes P450t.N42 and P450cam, J. Am. Chem. Soc. 106: 1514–1515.CrossRefGoogle Scholar
  94. 94.
    Seto, Y., and Guengerich, F. P., 1993, Partitioning between N-dealkylation and N-oxygenation in the oxidation of N,N-dialkylarylamines catalyzed by cytochrome P450 2B1, J. Biol. Chem. 268: 9986–9997.PubMedGoogle Scholar
  95. 95.
    Bergstrom, S., Lindstredt, S., Samuelson, B., Corey, E. J., and Gregoriou, G. A., 1958, The stereo-chemistry of 7a-hydroxylation in the biosynthesis of cholic acid from cholesterol, J. Am. Chem. Soc. 80: 2337–2338.CrossRefGoogle Scholar
  96. 96.
    Corey, E. J., Gregoriou, G. A., and Peterson, D. H., 1958, The stereochemistry of l la-hydroxylation of steroids, J. Am. Chem. Soc. 80: 23–38.Google Scholar
  97. 97.
    McMahon, R. E., Sullivan, H. R., Craig, J. C., and Pereira, W. E., 1969, The microsomal oxygenation of ethyl benzene: Isotopic, stereochemical, and induction studies, Arch. Biochem. Biophys. 132: 575–577.PubMedCrossRefGoogle Scholar
  98. 98.
    Hamberg, M., and Bjorkhem, I., 1971, co-Oxidation of fatty acids. I. Mechanism of microsomal (bland w2-hydroxylation, J. Biol. Chem. 246: 7411–7416.Google Scholar
  99. 99.
    Shapiro, S., Piper, J. U., and Caspi, E., 1982, Steric course of hydroxylation at primary carbon atoms: Biosynthesis of 1-octanol from (1R)- and (1S)-[1 3H,2H,1H; 1–14C]octane by rat liver microsomes, J. Am. Chem. Soc. 104: 2301–2305.CrossRefGoogle Scholar
  100. 100.
    Fretz, H., Woggon, W.-D., and Voges, R., 1989, The allylic oxidation of geraniol catalyzed by cytochrome P450carh, proceeding with retention of configuration, Helu Chim. Acta 72: 391–400.CrossRefGoogle Scholar
  101. 101.
    Groves, J. T., McClusky, G. A., White, R. E., and Coon, M. J., 1978, Aliphatic hydroxylation by highly purified liver microsomal cytochrome P450: Evidence for a carbon radical intermediate, Biochem. Biophys. Res. Commun. 81: 154–160.PubMedCrossRefGoogle Scholar
  102. 102.
    Gelb, M. H., Heimbrook, D. C., Malkonen, P., and Sligar, S. G., 1982, Stereochemistry and deuterium isotope effects in camphor hydroxylation by the cytochrome P450cam monooxygenase system, Biochemistry 21: 370–377.PubMedCrossRefGoogle Scholar
  103. 103.
    Fourneron, J. D., Archelas, A., and Furstoss, R., 1989, Microbial transformations. 10. Evidence for a carbon-radical intermediate in the biohydroxylations achieved by the fungus Beauveria sulfurescens, J. Org. Chem. 54: 2478–2483.CrossRefGoogle Scholar
  104. 104.
    White, R. E., Miller, J. P., Favreau, L. V., and Bhattacharyaa, A., 1986, Stereochemical dynamics of aliphatic hydroxylation by cytochrome P450, J. Am. Chem. Soc. 108: 6024–6031.PubMedCrossRefGoogle Scholar
  105. 105.
    Tanaka, K., Kurihara, N., and Nakajima, M., 1979, Oxidative metabolism of tetrachlorocyclohexenes, pentachlorocyclohexenes, and hexachlorocyclohexenes with microsomes from rat liver and house fly abdomen, Pestic. Biochem. Physiol. 10: 79–95.CrossRefGoogle Scholar
  106. 106.
    Groves, J. T., and Subramanian, D. V., 1984, Hydroxylation by cytochrome P450 and metalloporphyrin models: Evidence for allylic rearrangement, J. Am. Chem. Soc. 106: 2177–2181.CrossRefGoogle Scholar
  107. 107.
    Oliw, E. H., Brodowsky, I. D., Hörnsten, L., and Hamberg, M., 1993, Bis-allylic hydroxylation of polyunsaturated fatty acids by hepatic monooxygenases and its relation to the enzymatic and nonenzymatic formation of conjugated hydroxy fatty acids, Arch. Biochem. Biophys. 300: 434–439.PubMedCrossRefGoogle Scholar
  108. 108.
    McClanahan, R. H., Huitric, A. C., Pearson, P. G., Desper, J. C., and Nelson, S. D., 1988, Evidence for a cytochrome P450 catalyzed allylic rearrangement with double bond topomerization, J. Am. Chem. Soc. 110: 1979–1981.CrossRefGoogle Scholar
  109. 109.
    Griller, D., and Ingold, K. U., 1980, Free-radical clocks, Acc. Chem. Res. 13: 317–323.CrossRefGoogle Scholar
  110. 110.
    White, R. E., Groves, J. T., and McClusky, G. A., 1979, Electronic and steric factors in regioselective hydroxylation catalyzed by purified cytochrome P450, Acta Biol. Med. Ger. 38: 475–482.PubMedGoogle Scholar
  111. 111.
    Sligar, S. G., Gelb, M. H., and Heimbrook, D. C., 1984, Bio-organic chemistry and cytochrome P450-dependent catalysis, Xenobiotica 14: 63–86.PubMedCrossRefGoogle Scholar
  112. 112.
    Houghton, J. D., Beddows, S. E., Suckling, K. E., Brown, L., and Suckling, C. J., 1986, 5a,6aMethanocholestan-3β-ol as a probe of the mechanism of action of cholesterol 7a-hydroxylase, Tetrahedron Leu. 27: 4655–4658.Google Scholar
  113. 113.
    Hoyte, R. M., and Hochberg, R. B., 1979, Enzymatic side chain cleavage of C-20 alkyl and aryl analogs of (20-S)-20-hydroxycholesterol. Implications for the biosynthesis of pregnenolone, J. Biol. Chem. 254: 2278–2286.PubMedGoogle Scholar
  114. 114.
    Strugnell, S., Calverley, M. J., and Jones, G., 1990, Metabolism of a cyclopropane-ring-containing analog of 1 a-hydroxyvitamin D3 in a hepatocyte cell model. Identification of 24-oxidized metabolites, Biochem. Pharmacol. 40: 333–341.PubMedCrossRefGoogle Scholar
  115. 115.
    Holland, H. L., Chernishenko, M. J., Conn, M., Munoz, A., Manoharan, T. S., and Zawadski, M. A., 1990, Enzymic hydroxylation and sulfoxidation of cyclopropyl compounds by fungal biotransformation, Can. J. Chem. 68: 696–700.CrossRefGoogle Scholar
  116. 116.
    Ortiz de Montellano, P. R., and Stearns, R. A., 1987, Timing of the radical recombination step in cytochrome P450 catalysis with ring-strained probes, J. Am. Chem. Soc. 109: 3415–3420.CrossRefGoogle Scholar
  117. 117.
    Bowry, V. W., and Ingold, K. U., 1991, A radical clock investigation of microsomal cytochrome P450 hydroxylation of hydrocarbons. Rate of oxygen rebound, J. Am. Chem. Soc. 113: 5699–5707.CrossRefGoogle Scholar
  118. 118.
    Atkinson, J. K., and Ingold, K. U., 1993, Cytochrome P450 hydroxylation of hydrocarbons: Variation in the rate of oxygen rebound using cyclopropyl radical clocks including two new ultrafast probes, Biochemistry 32: 9209–9214.PubMedCrossRefGoogle Scholar
  119. 119.
    Foster, A. B., 1985, Deuterium isotope effects in the metabolism of drugs and xenobiotics: Implications for drug design, Adv. Drug Res. 14: 2–40.Google Scholar
  120. 120.
    Lu, A. Y. H., Harada, N., and Miwa, G. T., 1984, Rate-limiting steps in cytochrome P450-catalyzed reactions: Studies on isotope effects in the 0-deethylation of 7-ethoxycoumarin, Xenobiotica 14: 1926.CrossRefGoogle Scholar
  121. 121.
    Simons, J. W., and Rabinovitch, B. S., 1963, Deuterium isotope effects in rates of methylene radical insertion into carbon—hydrogen bonds and across carbon—carbon double bonds, J. Am. Chem. Soc. 85: 1023–1024.CrossRefGoogle Scholar
  122. 122.
    Goldstein, M. J., and Dolbier, W. R., 1965, The intramolecular insertion mechanism of a-haloneopentyl lithium, J. Am. Chem. Soc. 87: 2293–2295.CrossRefGoogle Scholar
  123. 123.
    O’Ferrall, R. A. M., 1970, Model calculations of hydrogen isotope effects for nonlinear transition states, J. Chem. Soc. B 1970: 785–790.CrossRefGoogle Scholar
  124. 124.
    Hjelmeland, L. M., Aronow, L., and Trudell, J. R., 1977, Intramolecular determination of primary kinetic isotope effects in hydroxylations catalyzed by cytochrome P450, Biochem. Biophys. Res. Commun. 76: 541–549.CrossRefGoogle Scholar
  125. 125.
    Foster, A. B., Jarman, M., Stevens, J. D., Thomas, P., and Westwood, J. H., 1974, Isotope effects in O- and N-demethylations mediated by rat liver microsomes: An application of direct insertion electron impact mass spectrometry, Chem. Biol. Interact. 9: 327–340.PubMedCrossRefGoogle Scholar
  126. 126.
    Miwa, G. T., Walsh, J. S., and Lu, A. Y. H., 1984, Kinetic isotope effects on cytochrome P450-catalyzed oxidation reactions: The oxidative 0-dealkylation of 7-ethoxycoumarin, J. Biol. Chem. 259: 3000–3004.PubMedGoogle Scholar
  127. 127.
    Jones, J. P., Korzekwa, K. R., Rettie, A. E., and Trager, W. F., 1986, Isotopically sensitive branching and its effect on the observed intramolecular isotope effects in cytochrome P-450 catalyzed reactions: A new method for the estimation of intrinsic isotope effects, J. Am. Chem. Soc. 108: 7074–7078.CrossRefGoogle Scholar
  128. 128.
    Jones, J. P., and Trager, W. F., 1987, The separation of the intramolecular isotope effect for the cytochrome P-450 catalyzed hydroxylation of n-octane into its primary and secondary components, J. Am. Chem. Soc. 109: 2171–2173.CrossRefGoogle Scholar
  129. 129.
    Jones, J. P., Rettie, A. E., and Trager, W. F., 1990, Intrinsic isotope effects suggest that the reaction coordinate symmetry for the cytochrome P-450 catalyzed hydroxylation of octane is isozyme independent, J. Med. Chem. 33: 1242–1246.PubMedCrossRefGoogle Scholar
  130. 130.
    Hanzlik, R. P., and Ling, K.-H. J., 1990, Active site dynamics of toluene hydroxylation by cytochrome P-450, J. Org. Chem. 55: 3992–3997.CrossRefGoogle Scholar
  131. 131.
    Hanzlik, R. P., and Ling, K.-H. J., 1993, Active site dynamics of xylene hydroxylation by cytochrome P-450 as revealed by kinetic deuterium isotope effects, J. Am. Chem. Soc. 115: 9363–9370.CrossRefGoogle Scholar
  132. 132.
    Holland, H. L., Brown, F. M., and Conn, M., 1990, Side chain hydroxylation of aromatic compounds by fungi. Part 4. Influence of the para substituent on kinetic isotope effects during benzylic hydroxylation of Mortierella isabellina, J. Chem. Soc. Perkin Trans. 2 1990: 1651–1665.Google Scholar
  133. 133.
    Sugiyama, K., and Trager, W. F., 1986, Prochiral selectivity and intramolecular isotope effects in the cytochrome P450 catalyzed cu-hydroxylation of cumene, Biochemistry 25: 7336–7343.PubMedCrossRefGoogle Scholar
  134. 134.
    Frommer, U., Ullrich, V., and Staudinger, H., 1970, Hydroxylation of aliphatic compounds by liver microsomes. I. The distribution of isomeric alcohols, Hoppe-Seylers Z. Physiol. Chem. 351: 903–912.PubMedCrossRefGoogle Scholar
  135. 135.
    White, R. E., McCarthy, M.-B., Egeberg, K. D., and Sligar, S. G., 1984, Regioselectivity in the cytochromes P450: Control by protein constraints and by chemical reactivities, Arch. Biochem. Biophys. 228: 493–502.PubMedCrossRefGoogle Scholar
  136. 136.
    Korzekwa, K. R., Jones, J. P., and Gillette, J. R., 1990, Theoretical studies on cytochrome P450 mediated hydroxylation: A predictive model for hydrogen atom abstractions, J. Am. Chem. Soc. 112: 7042–7046.CrossRefGoogle Scholar
  137. 137.
    Stearns, R. A., and Ortiz de Montellano, P. R., 1985, Cytochrome P450-catalyzed oxidation of quadricyclane: Evidence for a radical cation intermediate, J. Am. Chem. Soc. 107: 4081–4082.CrossRefGoogle Scholar
  138. 138.
    Gassman, P. G., and Yamaguchi, R., 1982, Electron transfer from highly strained polycyclic molecules, Tetrahedron 38: 1113–1122.CrossRefGoogle Scholar
  139. 139.
    Watabe, T., and Akamatsu, K., 1974, Microsomal epoxidation of cis-stilbene: Decrease in epoxidase activity related to lipid peroxidation, Biochem. Pharmacol. 23: 1079–1085.PubMedCrossRefGoogle Scholar
  140. 140.
    Watabe, T., Ueno, Y., and Imazumi, J., 1971, Conversion of oleic acid into threo-dihydroxystearic acid by rat liver microsomes, Biochem. Pharmacol. 20: 912–913.PubMedCrossRefGoogle Scholar
  141. 141.
    Ortiz de Montellano, P. R., Mangold, B. L. K., Wheeler, C., Kunze, K. L., and Reich, N. O., 1983, Stereochemistry of cytochrome P450-catalyzed epoxidation and prosthetic heme alkylation, J. Biol. Chem. 258: 4202–4207.Google Scholar
  142. 142.
    Hanzlik, R. P., and Shearer, G. O., 1978, Secondary deuterium isotope effects on olefin epoxidation by cytochrome P450, Biochem. Pharmacol. 27: 1441–1444.PubMedCrossRefGoogle Scholar
  143. 143.
    Hanzlik, R. P., and Shearer, G. O., 1975, Transition state structure for peracid epoxidation: Secondary deuterium isotope effects, J. Am. Chem. Soc. 97: 5231–5233.CrossRefGoogle Scholar
  144. 144.
    Henschler, D., Hoos, W. R., Fetz, H., Dallmeier, E., and Metzler, M., 1979, Reactions of trichloroethylene epoxide in aqueous systems, Biochem. Pharmacol. 28: 543–548.PubMedCrossRefGoogle Scholar
  145. 145.
    Miller, R. E., and Guengerich, F. P., 1982, Oxidation of trichloroethylene by liver microsomal cytochrome P450: Evidence for chlorine migration in a transition state not involving trichloroethylene oxide, Biochemistry 21: 1090–1097.PubMedCrossRefGoogle Scholar
  146. 146.
    Liebler, D. C., and Guengerich, F. P., 1983, Olefin oxidation by cytochrome P450: Evidence for group migration in catalytic intermediates formed with vinylidene chloride and trans-l -phenyl-l-butene, Biochemistry 22: 5482–5489.PubMedCrossRefGoogle Scholar
  147. 147.
    Mansuy, D., Leclaire, J., Fontecave, M., and Momenteau, M., 1984, Oxidation of monosubstituted olefins by cytochromes P450 and heme models: Evidence for the formation of aldehydes in addition to epoxides and allylic alcohols, Biochem. Biophys. Res. Commun. 119: 319–325.PubMedCrossRefGoogle Scholar
  148. 148.
    Miller, V. P., Fruetel, J. A., and Ortiz de Montellano, P. R., 1992, Cytochrome P450cam-catalyzed oxidation of a hypersensitive radical probe, Arch. Biochem. Biophys. 298: 697–702.PubMedCrossRefGoogle Scholar
  149. 149.
    Groves, J. T., Avaria-Neisser, G. E., Fish, K. M., Imachi, M., and Kuczkowski, R. L., 1986, Hydrogen—deuterium exchange during propylene epoxidation by cytochrome P-450, J. Am. Chem. Soc. 108: 3837–3838.CrossRefGoogle Scholar
  150. 150.
    Bäckvall, J.-E., Bökman, F., and Blomberg, M. R. A., 1992, Metallaoxetanes as possible intermediates in metal-promoted deoxygenation of epoxides and epoxidation of olefins, J. Am. Chem. Soc. 114: 534–538.CrossRefGoogle Scholar
  151. 151.
    Ortiz de Montellano, P. R., and Kunze, K. L., 1981, Shift of the acetylenic hydrogen during chemical and enzymatic oxidation of the biphenylacetylene triple bond, Arch. Biochem. Biophys. 209: 710–712.CrossRefGoogle Scholar
  152. 152.
    Ortiz de Montellano, P. R., 1985, Alkenes and alkynes, in: Bioactivation of Foreign Compounds ( M. W. Anders, ed.), Academic Press, New York, pp. 121–155.Google Scholar
  153. 153.
    McMahon, R. E., Turner, J. C., Whitaker, G. W., and Sullivan, H. R., 1981, Deuterium isotope effect in the biotransformation of 4-ethynylbiphenyls to 4-biphenylacetic acids by rat hepatic microsomes, Biochem. Biophys. Res. Commun. 99: 662–667.PubMedCrossRefGoogle Scholar
  154. 154.
    Ortiz de Montellano, P. R., and Komives, E. A., 1985, Branchpoint for heure alkylation and metabolite formation in the oxidation of aryl acetylenes by cytochrome P450, J. Biol. Chem. 260: 3330–3336.Google Scholar
  155. 155.
    Ostovic, D., and Bruice, T. C., 1992, Mechanism of alkene epoxidation by iron, chromium, and manganese higher valent oxo-metalloporphyrins, Acc. Chem. Res. 25: 314–320.CrossRefGoogle Scholar
  156. 156.
    Jerina, D. M., and Daly, J. W., 1974, Arene oxides: A new aspect of drug metabolism, Science 185: 573–582.PubMedCrossRefGoogle Scholar
  157. 157.
    Riley, P., and Hanzlik, R. P., 1994, Electron transfer in P450 mechanisms. Microsomal metabolism of cyclopropylbenzene and p-cyclopropylanisole, Xenobiotica 24: 1–16.PubMedCrossRefGoogle Scholar
  158. 158.
    Tomaszewski, J. E., Jerina, D. M., and Daly, J. W., 1975, Deuterium isotope effects during formation of phenols by hepatic monooxygenases: Evidence for an alternative to the arene oxide pathway, Biochemistry 14: 2024–2030.PubMedCrossRefGoogle Scholar
  159. 159.
    Preston, B. D., Miller, J. A., and Miller, E. C., 1983, Non-arene oxide aromatic ring hydroxylation of 2,2’,5,5’-tetrachlorobiphenyl as the major metabolic pathway catalyzed by phenobarbital-induced rat liver microsomes, J. Biol. Chem. 258: 8304–8311.PubMedGoogle Scholar
  160. 160.
    Hanzlik, R. P., Hogberg, K., and Judson, C. M., 1984, Microsomal hydroxylation of specifically deuterated monosubstituted benzenes: Evidence for direct aromatic hydroxylation, Biochemistry 23: 3048–3055.PubMedCrossRefGoogle Scholar
  161. 161.
    Korzekwa, K. R., Swinney, D. C., and Trager, W. F., 1989, Isotopically labeled chlorobenzenes as probes for the mechanism of cytochrome P-450 catalyzed aromatic hydroxylation, Biochemistry 28: 9019–9027.PubMedCrossRefGoogle Scholar
  162. 162.
    Rietjens, I. M. C. M., Soffers, A. E. M. F., Veeger, C., and Vervoort, J., 1993, Regioselectivity of cytochrome P-450 catalyzed hydroxylation of fluorobenzenes predicted by calculated frontier orbital substrate characteristics, Biochemistry 32: 4801–4812.PubMedCrossRefGoogle Scholar
  163. 163.
    Hinson, J. A., Nelson, S. D., and Mitchell, J. R., 1977, Studies on the microsomal formation of arylating metabolites of acetaminophen and phenacetin, Mol. Pharmacol. 13: 625–633.PubMedGoogle Scholar
  164. 164.
    Hinson, J. A., Nelson, S. D., and Gillette, J. R., 1979, Metabolism of [p-18O]-phenacetin: The mechanism of activation of phenacetin to reactive metabolites in hamsters, Mol. Pharmacol. 15: 419427.Google Scholar
  165. 165.
    Koymans, L., Lenthe, J. H. V., Den Kelder, G. M. D., and Vermeulen, N. P. E., 1990, Mechanisms of activation of phenacetin to reactive metabolites by cytochrome P-450: A theoretical study involving radical intermediates, Mol. Pharmacol. 37: 452–460.PubMedGoogle Scholar
  166. 166.
    Veronese, M. E., McLean, S., D’Souze, C. A., and Davies, N. W., 1985, Formation of reactive metabolites of phenacetin in humans and rats, Xenobiotica 15: 929–940.PubMedCrossRefGoogle Scholar
  167. 167.
    Rietjens, I. M. C. M., Tyrakowska, B., Veeger, C., and Vervoort, J., 1990, Reaction pathways for biodehalogenation of fluorinated anilines, Eur. J. Biochem. 194: 945–954.Google Scholar
  168. 168.
    den Besten, C., van Bladeren, P. J., Duizer, E., Vervoort, J., and Rietjens, I. M. C. M., 1993, Cytochrome P450-mediated-oxidation of pentafluorophenol to tetrafluorobenzoquinone as the primary reaction product, Chem. Res. Toxicol. 6: 674–680.CrossRefGoogle Scholar
  169. 169.
    Morgan, P., Maggs, J. L., Page, P. C. B., and Park, B. K., 1992, Oxidative dehalogenation of 2-fluoro-17a-ethynyloestradiol in vivo. A distal structure-metabolism relationship of 17a-ethynylation, Biochem. Phannacol. 44: 1717–1724.CrossRefGoogle Scholar
  170. 170.
    Ohe, T., Mashino, T., and Hirobe, M., 1994, Novel metabolic pathway of arylethers by cytochrome P450: Cleavage of the oxygen-aromatic ring bond accompanying ipso-substitution by the oxygen atom of the active species in cytochrome P450 models and cytochrome P450, Arch. Biochem. Biophys. 310: 402–409.PubMedCrossRefGoogle Scholar
  171. 171.
    Rietjens, I. M. C., and Vervoort, J., 1992, A new hypothesis for the mechanism for cytochrome P-450 dependent aerobic conversion of hexahalogenated benzenes to pentahalogenated phenols, Chem. Res. Toxicol. 5: 10–19.PubMedCrossRefGoogle Scholar
  172. 172.
    Stadler, R., and Zenk, M. H., 1993, The purification and characterization of a unique cytochrome P-450 enzyme from Berberis stolonifera plant cell cultures, J. Biol. Chem. 268: 823–831.PubMedGoogle Scholar
  173. 173.
    Amann, T., and Zenk, M. H., 1991, Formation of the morphine precursor salutaridine is catalyzed by a cytochrome P-450 enzyme in mammalian liver, Tetrahedron Lett. 32: 3675–3678.CrossRefGoogle Scholar
  174. 174.
    Zenk, M. H., Gerardy, R., and Stadler, R., 1989, Phenol oxidative coupling of benzylisoquinoline alkaloids is catalyzed by regio-and stereo-selective cytochrome P-450 linked plant enzymes: Salutaridine and berbamunine, J. Chem. Soc. Chem. Commun. 1989: 1725–1727.CrossRefGoogle Scholar
  175. 175.
    Cavalieri, E. L., and Rogan, E. G., 1992, The approach to understanding aromatic hydrocarbon carcinogenesis. The central role of radical cations in metabolic activation, Pharmacol. Thee 55: 183–199.CrossRefGoogle Scholar
  176. 176.
    Cavalieri, E., Rogan, E., Roth, R. W., Saugier, R. K., and Hakam, A., 1983, The relationship between ionization potential and horseradish peroxidase/hydrogen peroxide-catalyzed binding of aromatic hydrocarbons to DNA, Chem. Biol. Interact. 47: 87–109.PubMedCrossRefGoogle Scholar
  177. 177.
    Devanesan, P., Rogan, E., and Cavalieri, E., 1987, The relationship between ionization potential and prostaglandin H synthase-catalyzed binding of aromatic hydrocarbons to DNA, Chem. Biol. Interact. 61: 89–95.PubMedCrossRefGoogle Scholar
  178. 178.
    Khandwala, A. S., and Kasper, C. B., 1973, Preferential induction of aryl hydroxylase activity in rat liver nuclear envelope by 3-methylcholanthrene, Biochem. Biophys. Res. Commun. 54: 1241–1246.PubMedCrossRefGoogle Scholar
  179. 179.
    Cavalieri, E. L., Rogan, E. G., Devanesan, P. D., Cremonesi, P., Cerny, R. L., Gross, M. L., and Bodell, W. J., 1990, Binding of benzo[a]pyrene to DNA by cytochrome P450-catalyzed one-electron oxidation in rat liver microsomes and nuclei, Biochemistry 29: 4820–4827.PubMedCrossRefGoogle Scholar
  180. 180.
    Rogan, E. G., Devanesan, P. D., RamaKrishna, N. V. S., Higginbotham, S., Padmavathi, N. S., Chapman, K., Cavalieri, E. L., Jeong, H., Jankowiak, R., and Small, G. J., 1993, Identification and quantitation of benzo[a]pyrene-DNA adducts formed in mouse skin, Chem. Res. Toxicol. 6: 356–363.PubMedCrossRefGoogle Scholar
  181. 181.
    Cavalieri, E. L., Rogan, E. G., Cremonesi, P., and Devanesan, P. D., 1988, Radical cations as precursors in the metabolic formation of quinones from benzo[a]pyrene and 6-fluorobenzo[a]pyrene. Fluoro substitution as a probe for one-electron oxidation in aromatic substrates, Biochem. Pharmacol. 37: 2173–2182.PubMedCrossRefGoogle Scholar
  182. 182.
    Tolbert, L. M., Khanna, R. K., Popp, A. E., Gelbaum, L., and Bottomley, L. A., 1990, Stereoelectronic effects in the deprotonation of arylalkyl radical cations: meso-ethylanthracenes, J. Am. Chem. Soc. 112: 2373–2378.CrossRefGoogle Scholar
  183. 183.
    Guengerich, F. P., Niwa, T., Anzenbacher, P., Sirrimane, S., and Tolbert, L. M., 1994, Oxidation of 9-alkyl anthracene derivatives by cytochrome P450 and peroxidases, FASEB J. 8: A1380.Google Scholar
  184. 184.
    Hlavica, P., and Kiinzel-Mulas, U., 1993, Metabolic N-oxide formation by rabbit liver microsomal cytochrome P-4502B4: Involvement of superoxide in the NADPH-dependent N-oxygenation of N,N-dimethylaniline, Biochim. Biophys. Acta 1158: 83–90.PubMedCrossRefGoogle Scholar
  185. 185.
    Guengerich, F. P., 1984, Oxidation of sparteines by cytochrome P-450: Evidence against the formation of N-oxides, J. Med. Chem. 27: 1101–1103.PubMedCrossRefGoogle Scholar
  186. 186.
    Kurebayashi, H., 1989, Kinetic deuterium isotope effects on deamination and N-hydroxylation of cyclohexylamine by rabbit liver microsomes, Arch. Biochem. Biophys. 270: 320–329.PubMedCrossRefGoogle Scholar
  187. 187.
    Augusto, O., Beilan, H. S., and Ortiz de Montellano, P. R., 1982, The catalytic mechanism of cytochrome P450: Spin-trapping evidence for one electron substrate oxidation, J. Biol. Chem. 257: 11288–11295.PubMedGoogle Scholar
  188. 188.
    Kennedy, C. H., and Mason, R. P., 1990, A reexamination of the cytochrome P-450-catalyzed free radical production from dihydropyridine: Evidence of trace transition metal catalysis, J. Biol. Chen. 265: 11425–11428.Google Scholar
  189. 189.
    Abdel-Monem, M. M., 1975, Isotope effects in enzymatic N-demethylation of tertiary amines, J. Med. Chem. 18: 427–430.PubMedCrossRefGoogle Scholar
  190. 190.
    Miwa, G. T., Garland, W. A., Hodshon, B. J., Lu, A. Y. H., and Northrop, D. B., 1980, Kinetic isotope effects in cytochrome P450-catalyzed oxidation reactions: Intermolecular and intramolecular deuterium isotope effects during the N-demethylation of N,N-dimethylphentermine, J. Biol. Chem. 255: 6049–6054.PubMedGoogle Scholar
  191. 191.
    Miwa, G. T., Walsh, J. S., Kedderis, G. L., and Hollenberg, P. F., 1983, The use of intramolecular isotope effects to distinguish between deprotonation and hydrogen atom abstraction mechanisms in cytochrome P450- and peroxidase-catalyzed N-demethylation reactions, J. Biol. Chem. 258: 1444514449.Google Scholar
  192. 192.
    Dopp, D., and Heufer, J., 1982, N-Demethylation of N,N-dimethylaniline by photoexcited 3-nitrochlorobenzene, Tetrahedron Lett. 23: 1553–1556.CrossRefGoogle Scholar
  193. 193.
    Shono, T., Toda, T., and Oshino, N., 1982, Electron transfer from nitrogen in microsomal oxidation of amine and amide: Simulation of microsomal oxidation by anodic oxidation, J. Am. Chem. Soc. 104: 2639–2641.CrossRefGoogle Scholar
  194. 194.
    Galliani, G., Nali, M., Rindone, B., Tollari, S., Rocchetti, M., and Salmona, M., 1986, The rate of N-demethylation of N,N-dimethylanilines and N-methylanilines by rat-liver microsomes is related to their ionization potential, their lipophilicity and to a steric bulk factor, Xenobiotica 16: 511–517.PubMedCrossRefGoogle Scholar
  195. 195.
    Burstyn, J. N., Iskandar, M., Brady, J. F., Fukuto, J. M., and Cho, A. K., 1991, Comparative studies of N-hydroxylation and N-demethylation by microsomal cytochrome P-450, Chem. Res. Toxicol. 4: 70–76.PubMedCrossRefGoogle Scholar
  196. 196.
    Macdonald, T. L., Gutheim, W. G., Martin, R. B., and Guengerich, E. P., 1989, Oxidation of substituted N,N-dimethylanilines by cytochrome P-450: Estimation of the effective oxidation—reduction potential of cytochrome P-450, Biochemistry 28: 2071–2077.PubMedCrossRefGoogle Scholar
  197. 197.
    Burka, L. T., Guengerich, E P., Willard, R. J., and Macdonald, T. L., 1985, Mechanism of cytochrome P-450 catalysis. Mechanism of N-dealkylation and amine oxide deoxygenation, J. Am. Chem. Soc. 107: 2549–2551.CrossRefGoogle Scholar
  198. 198.
    Hall, L. R., and Hanzlik, R. P., 1989, Kinetic deuterium isotope effects on the N-demethylation of tertiary amides by cytochrome P-450, J. Biol. Chem. 264: 12349–12355.Google Scholar
  199. 199.
    Constantino, L., Rosa, E., and Iley, J., 1992, The microsomal demethylation of N,N-dimethylbenzamides. Substituent and kinetic deuterium isotope effects, Biochem. Pharmacol. 44: 651–658.PubMedCrossRefGoogle Scholar
  200. 200.
    Iley, J., Constantino, L., Norberto, F., and Rosa, E., 1990, Oxidation of the methyl groups of N,N-dimethylbenzamides by a cytochrome P450 mono-oxygenase model system, Tetrahedron Lett. 31: 4921–4922.CrossRefGoogle Scholar
  201. 201.
    Hall, L. R., Iwamoto, R. T., and Hanzlik, R. P., 1989, Electrochemical models for cytochrome P-450. N-Demethylation of tertiary amides by anodic oxidation, J. Org. Chem. 54: 2446–2451.CrossRefGoogle Scholar
  202. 202.
    Dinnocenzo, J. P., Karki, S. B., and Jones, J. R, 1993, On isotope effects for the cytochrome P-450 oxidation of substituted N,N-dimethylanilines, J. Am. Chem. Soc. 115: 7111–7116.CrossRefGoogle Scholar
  203. 203.
    Dinnocenzo, J. R, and Banach, T. E., 1989, Deprotonation of tertiary amine cation radicals. A direct experimental approach, J. Am. Chem. Soc. 111: 8646–8653.CrossRefGoogle Scholar
  204. 204.
    Nelsen, S. F., and Ippoliti, J. T., 1986, On the deprotonation of trialkylamine cation radicals by amines, J. Am. Chem. Soc. 108: 4879–4881.CrossRefGoogle Scholar
  205. 205.
    Okazaki, O., and Guengerich, F. P., 1993, Evidence for specific base catalysis in dealkylation reactions catalyzed by cytochrome P450 and chloroperoxidase. Differences in rates of deprotonation of aminium radicals as an explanation for high kinetic hydrogen isotope effects observed with peroxidases, J. Biol. Chem. 268: 1546–1552.PubMedGoogle Scholar
  206. 206.
    Ichinose, R., and Kurihara, N., 1987, Intramolecular deuterium isotope effect and enantiotopic differentiation in oxidative demethylation of chiral [monomethyl-D3]methoxychlor in rat liver microsomes, Biochem. Pharmacol. 36: 3751–3756.PubMedCrossRefGoogle Scholar
  207. 207.
    Hanzlik, R. R, and Tullman, R. H., 1982, Suicidal inactivation of cytochrome P450 by cyclopropylamines: Evidence for cation-radical intermediates, J. Am. Chem. Soc. 104: 2048–2050.CrossRefGoogle Scholar
  208. 208.
    Macdonald, T. L., Zirvi, K., Burka, L. T., Peyman, P., and Guengerich, F. P., 1982, Mechanism of cytochrome P450 inhibition by cyclopropylamines, J. Am. Chem. Soc. 104: 2050–2052.CrossRefGoogle Scholar
  209. 209.
    Tullman, R. H., and Hanzlik, R. P., 1984, Inactivation of cytochrome P450 and monoamine oxidase by cyclopropylamines, Drug Metab. Dispos. 15: 1163–1182.Google Scholar
  210. 210.
    Guengerich, F. R., Willard, R. J., Shea, J. P., Richards, L. E., and Macdonald, T. L., 1984, Mechanism-based inactivation of cytochrome P450 by heteroatom-substituted cyclopropanes and formation of ring opened products, J. Am. Chem. Soc. 106: 6446–6447.CrossRefGoogle Scholar
  211. 211.
    Bondon, A., Macdonald, T. L., Harris, T. M., and Guengerich, F. P., 1989, Oxidation of cycloalkylamines by cytochrome P-450. Mechanism-based inactivation, adduct formation, ring expansion, and nitrone formation, J. Biol. Chem. 264: 1988–1997.PubMedGoogle Scholar
  212. 212.
    Watanabe, Y., Iyanagi, T., and Oae, S., 1982, One electron transfer mechanism in the enzymatic oxygenation of sulfoxide to sulfone promoted by a reconstituted system with purified cytochrome P450, Tetrahedron Lett. 23: 533–536.CrossRefGoogle Scholar
  213. 213.
    Powell, M. F., Wu, J. C., and Bruice, T. C., 1984, Ferricyanide oxidation of dihydropyridines and analogues, J. Am. Chem. Soc. 106: 3850–3856.CrossRefGoogle Scholar
  214. 214.
    Alvarez, J. C., and Ortiz de Montellano, P. R., 1992, Thianthrene-5-oxide as a probe of the electrophilicity of hemoprotein oxidizing species, Biochemistry 31: 8315–8322.PubMedCrossRefGoogle Scholar
  215. 215.
    Rettie, A. E., Rettenmeier, A. W., Howald, W. N., and Baillie, T. A., 1987, Cytochrome P-450-catalyzed formation of Δ4-VPA, a toxic metabolite of valproic acid, Science 235: 890–893.PubMedCrossRefGoogle Scholar
  216. 216.
    Rettie, A. E., Boberg, M., Rettenmeier, A. W., and Baillie, T. A., 1988, Cytochrome P-450-catalyzed desaturation of valproic acid in vitro. Species differences, induction effects, and mechanistic studies, J. Biol. Chem. 263: 13733–13738.PubMedGoogle Scholar
  217. 217.
    Porubeck, D. J., Barnes, H., Meier, G. P., Theodore, L. J., and Baillie, T. A., 1989, Enantiotopic differentiation during the biotransformation of valproic acid to the hepatotoxic olefin 2-n-propyl-4pentenoic acid, Chem. Res. Toxicol. 2: 35–40.CrossRefGoogle Scholar
  218. 218.
    Kassahun, K., and Baillie, T. A., 1993, Cytochrome P-450-mediated dehydrogenation of 2-n-propyl2(E)-pentenoic acid, a pharmacologically-active metabolite of valproic acid, in rat liver microsomal preparations, Drug Metab. Dispos. 21: 242–248.PubMedGoogle Scholar
  219. 219.
    Nagata, K., Liberato, D. J., Gillette, J. R., and Sasame, H. A., 1986, An unusual metabolite of testosterone: 1713-hydroxy-4,6-androstadiene-3-one, Drug Metab. Dispos. 14: 559–565.PubMedGoogle Scholar
  220. 220.
    Aoyama, T., Korzekwa, K., Nagata, K., Gillette, J., Gelboin, H. V., and Gonzalez, F. J., 1989, cDNA-directed expression of rat testosterone 7α-hydroxylase using the modified vaccinia virus, T7-RNA-polymerase system and evidence for 6α-hydroxylation and Δ6-testosterone formation, Eur. J. Biochem. 181: 331–336.PubMedCrossRefGoogle Scholar
  221. 221.
    Korzekwa, K. R., Trager, W. E, Nagata, K., Parkinson, A., and Gillette, J. R., 1990, Isotope effect studies on the mechanism of the cytochrome P-45011A1-catalyzed formation of Δ6-testosterone from testosterone, Drug Metab. Dispos. 18: 974–979.PubMedGoogle Scholar
  222. 222.
    Chadwick, R. W., Chuang, L. T., and Williams, K., 1975, Dehydrogenation: A previously unreported pathway of lindane metabolism in mammals, Pestic. Biochem. Physiol. 5:575–586.CrossRefGoogle Scholar
  223. 223.
    Hata, S., Nishino, T., Katsuki, H., Aoyama, Y., and Yoshida, Y., 1983, Two species of cytochrome P-450 involved in ergosterol biosynthesis of yeast, Biochem. Biophys. Res. Commun. 116: 162–166.PubMedCrossRefGoogle Scholar
  224. 224.
    Mochizuki, H., Suhara, K., and Katagiri, M., 1992, Steroid 6β-hydroxylase and 6-desaturase reactions catalyzed by adrenocortical mitochondria] P-450, J. Steroid Biochem. Mol. Biol. 42: 95–101.PubMedCrossRefGoogle Scholar
  225. 225.
    Boyd, D. R., Sharma, N. D., Agarwal, R., McMordie, R. A. S., Bessems, J. G. M., van Ommen, B., and van Bladeren, P. J., 1993, Biotransformation of 1,2-dihydronaphthalene and 1,2-dihydroanthracene by rat liver microsomes and purified cytochromes P-450. Formation of arene hydrates of naphthalene and anthracene, Chem. Res. Toxicol. 6: 808–812.PubMedCrossRefGoogle Scholar
  226. 226.
    Kaminsky, L. S., Fasco, M. J., and Guengerich, E R, 1980, Comparison of different forms of purified cytochrome P-450 from rat liver by immunological inhibition of regio-and stereoselective metabolism of warfarin, J. Biol. Chem. 255: 85–91.PubMedGoogle Scholar
  227. 227.
    Vyas, K. P., Kari, R. H., Prakash, S. R., and Duggan, D. E., 1990, Biotransformation of lovastatin. II. In vitro metabolism by rat and mouse liver microsomes and involvement of cytochrome P-450 in dehydrogenation of lovastatin, Drug Metab. Dispos. 18: 218–222.PubMedGoogle Scholar
  228. 228.
    Wang, R. W., Kari, R H., Lu, A. Y. H., Thomas, R. E., Guengerich, F. R, and Vyas, K. P., 1991, Biotransformation of lovostatin. IV. Identification of cytochrome P450 3A proteins as the major enzymes responsible for the oxidative metabolism of lovostatin in rat and human liver microsomes, Arch. Biochem. Biophys. 290: 355–361.PubMedCrossRefGoogle Scholar
  229. 229.
    Vickers, S., and Duncan, C. A., 1991, Studies on the metabolic inversion of the 6’ chiral center of simvastatin, Biochem. Biophys. Res. Commun. 181: 1508–1515.PubMedCrossRefGoogle Scholar
  230. 230.
    Watanabe, Y., and Ishimura, Y., 1989, Aromatization of tetralone derivatives by FeIIIPFP(C1)/PhIO and cytochrome P-450cam: A model study on aromatase cytochrome P-450 reaction, J. Am. Chem. Soc. 111: 410–411.CrossRefGoogle Scholar
  231. 231.
    Lee, J. S., Jacobsen, N. E., and Ortiz de Montellano, R R., 1988, 4-Alkyl radical extrusion in the cytochrome P-450-catalyzed oxidation of 4-alkyl-1,4-dihydropyridines, Biochemistry 27: 7703–7710.Google Scholar
  232. 232.
    Guengerich, F. R, Brian, W. R., Iwasaki, M., Sari, M.-A., Bäärnhielm, C., and Berntsson, R, 1991, Oxidation of dihydropyridine calcium channel blockers and analogues by human liver cytochrome P-450 I1IA4, J. Med. Chem. 34: 1838–1844.PubMedCrossRefGoogle Scholar
  233. 233.
    Nelson, S. D., Forte, A. J., and Dhalin, D. C., 1980, Lack of evidence for N-hydroxyacetaminophen as a reactive metabolite of acetaminophen in vitro, Biochem. Pharmacol. 29: 1617–1620.CrossRefGoogle Scholar
  234. 234.
    Wood, A. W., Swinney, D. C., Thomas, R. E., Ryan, D. E., Hall, P. F., Levin, W., and Garland, W. A., 1988, Mechanism of androstenedione formation from testosterone and epitestosterone catalyzed by purified cytochrome P-450b, J. Biol. Chem. 263: 17322–17332.PubMedGoogle Scholar
  235. 235.
    Swinney, D. C., Ryan, D. E., Thomas, R E., and Levin, W., 1988, Evidence for concerted kinetic oxidation of progesterone by purified rat hepatic cytochrome P-450g, Biochemistry 27: 5461–5470.PubMedCrossRefGoogle Scholar
  236. 236.
    Terelius, Y., Norsten-Höög, C., Cronholm, T., and Ingelman-Sundberg, M., 1991, Acetaldehyde as a substrate for ethanol-inducible cytochrome P450 (CYP2E1), Biochem. Biophys. Res. Commun. 179:689–694Google Scholar
  237. 237.
    Tornita, S., Tsujita, M., Matsuo, Y., Yubisui, T., and Ichikawa, Y., 1993, Identification of a microsomal retinoic acid synthase as a microsomal cytochrome P-450-linked monooxygenase system, Int. J. Biochem. 25: 1775–1784.Google Scholar
  238. 238.
    Dahlbäck, H., and Holmberg, I., 1990, Oxidation of 513-cholestane-3a,7a,12a-triol into 3a,7a,12atrihydroxy-5(3-cholestanoic acid by cytochrome P-45026 from rabbit liver mitochondria, Biochem. Biophys. Res. Commun. 167: 391–395.PubMedCrossRefGoogle Scholar
  239. 239.
    Watanabe, K., Narimatsu, S., Yamamoto, I., and Yoshimura, H., 1991, Oxygenation mechanism in conversion of aldehyde to carboxylic acid catalyzed by a cytochrome P-450 isozyme, J. Biol. Chem. 266: 2709–2711.PubMedGoogle Scholar
  240. 240.
    Matsunaga, T., Watanabe, K., Yamamoto, I., Negishi, M., Gonzalez, F. J., and Yoshimura, H., 1994, cDNA cloning and sequence of CYP2C29 encoding P-450 MUT-2, a microsomal aldehyde oxygenase, Biochim. Biophys. Acta 1184: 299–301.Google Scholar
  241. 241.
    Watanabe, K., Matsunaga, T., Narimatsu, S., Yamamoto, I., and Yoshimura, H., 1992, Mouse hepatic microsomal oxidation of aliphatic aldehydes (Cs to CIO to carboxylic acids, Biochem. Biophys. Res. Commun. 188: 114–119.PubMedCrossRefGoogle Scholar
  242. 242.
    Watanabe, K., Narimatsu, S., Matsunaga, T., Yamamoto, I., and Yoshimura, H., 1993, A cytochrome P450 isozyme having aldehyde oxygenase activity plays a major role in metabolizing cannabinoids by mouse hepatic microsomes, Biochem. Pharmacol. 46: 405–411.PubMedCrossRefGoogle Scholar
  243. 243.
    Davis, S. C., Sui, Z., Peterson, J. A., and Ortiz de Montellano, P. R., 1995, Oxidation of fatty acid aldehydes by cytochrome P450BM-3 (CYP102), FASEB J. 9: A1490.Google Scholar
  244. 244.
    Matsunaga, T., Iwawaki, Y., Watanabe, K., Narimatsu, S., Yamamoto, I., Imaoka, S., Funae, Y., and Yoshimura, H., 1993, Cytochrome P450 isozymes catalyzing the hepatic microsomal oxidation of 9-anthraldehyde to 9-anthracene carboxylic acid in adult male rats, Biol. Pharm. Bull. 16: 866–869.PubMedCrossRefGoogle Scholar
  245. 245.
    Vaz, A. D. N., Roberts, E. S., and Coon, M. J., 1991, Olefin formation in the oxidative deformylation of aldehydes by cytochrome P-450. Mechanistic implications for catalysis by oxygen-derived peroxide, J. Am. Chem. Soc. 113: 5886–5887.CrossRefGoogle Scholar
  246. 246.
    Roberts, E. S., Vaz, A. D. N., and Coon, M. J., 1991, Catalysis by cytochrome P-450 of an oxidative reaction in xenobiotic aldehyde metabolism: Deformylation with olefin formation, Proc. Natl. Acad. Sci. USA 88: 8963–8966.PubMedCrossRefGoogle Scholar
  247. 247.
    Vaz, A. D. N., Kessell, K. J., and Coon, M. J., 1994, Aromatization of a bicyclic steroid analog, 3-oxodecalin-4-ene-10-carboxaldehyde, by liver microsomal cytochrome P450 2B4, Biochemistry 33: 13651–13661.PubMedCrossRefGoogle Scholar
  248. 248.
    Watanabe, Y., Takehira, K., Shimizu, M., Hayakawa, T., and Orita, H., 1990, Oxidation of aldehydes by an iron(III) porphyrin complex-m-chloroperbenzoic acid system, J. Chem. Soc. Chem. Commun. 1990: 927–928.CrossRefGoogle Scholar
  249. 249.
    Wada, A., Okamoto, M., Nonaka, Y., and Yamano, T., 1984, Aldosterone biosynthesis by a reconstituted cytochrome P450110 system, Biochem. Biophys. Res. Commun. 119: 365–371.PubMedCrossRefGoogle Scholar
  250. 250.
    Lambeth, J. D., Kitchen, S. E., Farooqui, A. A., Tuckey, R., and Kamin, H., 1982, Cytochrome P450scc-substrate interactions: Studies of binding and catalytic activity using hydroxycholesterols, J. Biol. Chem. 257: 1876–1884.PubMedGoogle Scholar
  251. 251.
    Tuckey, R. C., and Kamin, H., 1983, Kinetics of 02 and CO binding to adrenal cytochrome P450scc: Effect of cholesterol, intermediates, and phosphatidylcholine vesicles, J. Biol. Chem. 258: 4232–4237.PubMedGoogle Scholar
  252. 252.
    Tuckey, R. C., and Kamin, H., 1982, The oxyferro complex of adrenal cytochrome P450scc: Effect of cholesterol and intermediates on its stability and optical characteristics, J. Biol. Chem. 257: 9309–9314.PubMedGoogle Scholar
  253. 253.
    Byon, C.-Y., and Gut, M., 1980, Steric considerations regarding the biodegradation of cholesterol to pregnenolone: Exclusion of (22S)-22-hydroxycholesterol and 22-ketocholesterol as intermediates, Biochem. Biophys. Res. Commun. 94: 549–552.PubMedCrossRefGoogle Scholar
  254. 254.
    Burstein, S., Middleditch, B. S., and Gut, M., 1975, Mass spectrometric study of the enzymatic conversion of cholesterol to (22R)-22-hydroxycholesterol, (20R,22R)-20,22-dihydroxycholesterol, and pregnenolone, and of (22R)-22-hydroxycholesterol to the glycol and pregnenolone in bovine adrenocortical preparations, J. Biol. Chem. 250: 9028–9037.PubMedGoogle Scholar
  255. 255.
    Okamoto, T., Sasaki, K., and Oka, S., 1988, Biomimetic oxidation with molecular oxygen. Selective carbon—carbon bond cleavage of 1,2-diols by molecular oxygen and dihydropyridine in the presence of iron—porphyrin catalysts, J. Am. Chem. Soc. 110: 1187–1196.CrossRefGoogle Scholar
  256. 256.
    Fishman, J., 1982, Biochemical mechanisms of aromatization, Cancer Res. 42: 3277s–3280s.PubMedGoogle Scholar
  257. 257.
    Thompson, E. A., and Siiteri, P. K., 1974, Utilization of oxygen and reduced nicotinamide adenine dinucleotide phosphate by human placental microsomes during aromatization of androstenedione, J. Biol. Chem. 249: 5364–5372.PubMedGoogle Scholar
  258. 258.
    Hagerman, D. D., 1987, Human placenta estrogen synthetase (aromatase) purified by affinity chromatography, J. Biol. Chem. 262: 2398–2400.PubMedGoogle Scholar
  259. 259.
    Nakajin, S., Shinoda, M., and Hall, P. F., 1986, Purification to homogeneity of aromatase from human placenta, Biochem. Biophys. Res. Commun. 134: 704–710.PubMedCrossRefGoogle Scholar
  260. 260.
    Kellis, J. T., and Vickery, L. E., 1987, Purification and characterization of human placental aromatase cytochrome P-450, J. Biol. Chem. 262: 4413–4420.PubMedGoogle Scholar
  261. 261.
    Caspi, E., Arunachalam, T., and Nelson, R A., 1983, Biosynthesis of estrogens: The steric mode of the initial C-19 hydroxylation of androgens by human placental aromatase, J. Am. Chem. Soc. 105: 6987–6989.CrossRefGoogle Scholar
  262. 262.
    Caspi, E., Arunachalam, T., and Nelson, R A., 1986, Biosynthesis of estrogens: Aromatization of (19R)-, (19S)-, and (19RS)-[19= H,-H, H]-3(3-hydroxyandrost-5-en-17-ones by human placental aromatase, J. Am. Chem. Soc. 108: 1847–1852.CrossRefGoogle Scholar
  263. 263.
    Osawa, Y., Shibata, K., Rohrer, D., Weeks, C., and Duax, W. L., 1975, Reassignment of the absolute configuration of 19-substituted 19-hydroxysteroids and stereomechanism of estrogen biosynthesis, J. Am. Chem. Soc. 97: 4400–4402.PubMedCrossRefGoogle Scholar
  264. 264.
    Arigoni, D., Battaglia, R., Akhtar, M., and Smith, T., 1975, Stereospecificity of oxidation at C-19 in oestrogen biosynthesis, J. Chem. Soc. Chem. Commun. 1975: 185–186.CrossRefGoogle Scholar
  265. 265.
    Miyairi, S., and Fishman, J., 1983, Novel method of evaluating biological 19-hydroxylation and aromatization of androgens, Biochem. Biophys. Res. Commun. 117: 392–398.PubMedCrossRefGoogle Scholar
  266. 266.
    Miyairi, S., and Fishman, J., 1985, Radiometric analysis of oxidative reactions in aromatization by placental microsomes: Presence of differential isotope effects, J. Biol. Chem. 260: 320–325.PubMedGoogle Scholar
  267. 267.
    Numazawa, M., Midzuhashi, K., and Nagaoka, M., 1994, Metabolic aspects of the 113-proton and the 19-methyl group of androst-4-ene-3,6,17-trione during aromatization by placental microsomes and inactivation of aromatase, Biochem. Pharmacol. 47: 717–726.PubMedCrossRefGoogle Scholar
  268. 268.
    Brodie, H. J., Kripalani, K. J., and Possanza, G., 1969, Studies on the mechanisms of estrogen biosynthesis. VI. The stereochemistry of hydrogen elimination at C-2 during aromatization, J. Am. Chem. Soc. 91: 1241–1242.PubMedCrossRefGoogle Scholar
  269. 269.
    Fishman, J., and Guzik, H., 1969, Stereochemistry of estrogen biosynthesis, J. Am. Chem. Soc. 91: 2805–2806.PubMedCrossRefGoogle Scholar
  270. 270.
    Fishman, J., Guzik, H., and Dixon, D., 1969, Stereochemistry of estrogen biosynthesis, Biochemistry 8: 4304–4309.PubMedCrossRefGoogle Scholar
  271. 271.
    Fishman, J., and Raju, M. S., 1981, Mechanism of estrogen biosynthesis: Stereochemistry of C-1 hydrogen elimination in the aromatization of 213-hydroxy-19-oxoandrostenedione, J. Biol. Chem. 256: 4472–4477.PubMedGoogle Scholar
  272. 272.
    Townsley, J. D., and Brodie, H. J., 1968, Studies on the mechanism of estrogen biosynthesis. III. The stereochemistry of aromatization of C19 and Cis steroids, Biochemistry 7: 33–40.PubMedCrossRefGoogle Scholar
  273. 273.
    Osawa, Y., Yoshida, N., Fronckowiak, M., and Kitawaki, J., 1987, Immunoaffinity purification of aromatase cytochrome P450 from human placental microsomes, metabolic switching from aromatization to 1[3 and 2(3-monohydroxylation, and recognition of aromatase isozymes, Steroids 50:11–28.Google Scholar
  274. 274.
    Hosoda, H., and Fishman, J.,1974, Usually facile aromatization of 213-hydroxy-19-oxo-4-androstene3,17-dione to estrone: Implications in estrogen biosynthesis, J. Am. Chem. Soc. 96: 7325–7329.Google Scholar
  275. 275.
    Goto, J., and Fishman, J., 1977, Participation of a nonenzymatic transformation in the biosynthesis of estrogens from androgens, Science 195: 80–81.PubMedCrossRefGoogle Scholar
  276. 276.
    Hahn, E. F., and Fishman, J., 1984, Immunological probe of estrogen biosynthesis: Evidence for the 41-hydroxylative pathway in aromatization of androgens, J. Biol. Chem. 259: 1689–1694.PubMedGoogle Scholar
  277. 277.
    Akhtar, M., Calder, M. R., Corina, D. L., and Wright, J. N., 1982, Mechanistic studies on C-19 demethylation in oestrogen biosynthesis, Biochem. J. 201: 569–580.PubMedGoogle Scholar
  278. 278.
    Caspi, E., Wicha, J., Arunachalam, T., Nelson, P., and Spiteller, G., 1984, Estrogen biosynthesis: Concerning the obligatory intermediacy of 2(3-hydroxy-10(3-formylandrost-4-ene-3,17-dione, J. Am. Chem. Soc. 106: 7282–7283.CrossRefGoogle Scholar
  279. 279.
    Cole, P. A., and Robinson, C. H., 1990, Conversion of 19-oxo[213–2H]androgens into oestrogens by human placental aromatase. An unexpected stereochemical outcome, Biochem. J. 268: 553–561.PubMedGoogle Scholar
  280. 280.
    Morand, P., Williamson, D. G., Layne, D. S., Lompa-Krzymien, L., and Salvador, J., 1975, Conversion of an androgen epoxide into 1713-estradiol by human placental microsomes, Biochemistry 14: 635–638.PubMedCrossRefGoogle Scholar
  281. 281.
    Covey, D. E, and Hood, W. F., 1982, A new hypothesis based on suicide substrate inhibitor studies for the mechanism of action of aromatase, Cancer Res. 42: 3327s–3333s.PubMedGoogle Scholar
  282. 282.
    Beusen, D. D., and Covey, D. F., 1984, Study of the role of Schiff base formation in the aromatization of androgen substrates by human placenta, Fed. Proc. 43: 330.Google Scholar
  283. 283.
    Akhtar, M., Corina, D., Pratt, J., and Smith, T., 1976, Studies on the removal of C-19 in oestrogen biosynthesis using 18O2, J. Chem. Soc. Chem. Commun. 1976: 854–856.CrossRefGoogle Scholar
  284. 284.
    Stevenson, D. E., Wright, J. N., and Akhtar, M., 1988, Mechanistic consideration of P450 dependent enzymic reactions: Studies on oestriol biosynthesis, J. Chem. Soc. Perkin Trans. I 1988: 2043–2052.CrossRefGoogle Scholar
  285. 285.
    Akhtar, M., Njar, V. C. O., and Wright, J. N., 1993, Mechanistic studies on aromatase and related C—C bond cleaving enzymes, J. Steroid Biochem. Mol. Biol. 44: 375–387.PubMedCrossRefGoogle Scholar
  286. 286.
    Akhtar, M., Corina, D., Miller, S., Shyadehi, A. Z., and Wright, J. N., 1994, Mechanism of the acyl-carbon cleavage and related reactions catalyzed by multifunctional P450s: Studies on cytochrome P45017a, Biochemistry 33: 4410–1118.PubMedCrossRefGoogle Scholar
  287. 287.
    Cole, P. A., and Robinson, C. H., 1988, A peroxide model reaction for placental aromatase, J. Am. Chem. Soc. 110: 1284–1285.CrossRefGoogle Scholar
  288. 288.
    Alexander, K., Akhtar, M., Boar, R. B., McGhie, J. F., and Barton, D. H. R., 1972, The removal of the 32-carbon atom as formic acid in cholesterol biosynthesis, J. Chem. Soc. Chem. Commun. 1972: 383–385.CrossRefGoogle Scholar
  289. 289.
    Mitropoulos, K. A., Gibbons, G. F., and Reeves, E. A., 1976, Lanosterol 14α-demethylase: Similarity of the enzyme system from yeast and rat liver, Steroids 27: 821–829.PubMedCrossRefGoogle Scholar
  290. 290.
    Canonica, L., Fiecchi, A., Galli Kienle, M., Scala, A., Galli, G., Grossi Paoletti, E., and Paoletti, R., 1968, Evidence for the biological conversion of Δ8,14 sterol dienes into cholesterol, J. Am. Chem. Soc. 90: 6532–6534.PubMedCrossRefGoogle Scholar
  291. 291.
    Gibbons, G. F., Goad, L. J., and Goodwin, T. W., 1968. The stereochemistry of hydrogen elimination from C-15 during cholesterol biosynthesis, J. Chem. Soc. Chem. Commun. 1968: 1458–1460.Google Scholar
  292. 292.
    Watkinson, I. A., Wilton, D. C., Munday, K. A., and Akhtar, M., 1971, The formation and reduction of the 14,15-double bond in cholesterol biosynthesis, Biochem. J. 121: 131–137.PubMedGoogle Scholar
  293. 293.
    Shafiee, A., Trzaskos, J. M., Paik, Y-K., and Gaylor, J. L., 1986, Oxidative demethylation of lanosterol in cholesterol biosynthesis: Accumulation of sterol intermediates, J. Lipid Res. 27: 1–10.PubMedGoogle Scholar
  294. 294.
    Trzaskos, J. M., Fischer, R. T., and Favata, M. F., 1986, Mechanistic studies of lanosterol C-32 demethylation. Conditions which promote oxysterol intermediate accumulation during the demethylation process, J. Biol. Chem. 261: 16937–16942.PubMedGoogle Scholar
  295. 295.
    Saucier, S. E., Kandutsch, A. A., Phirwa, S., and Spencer, T. A., 1987, Accumulation of regulatory oxysterols, 32-oxolanosterol and 32-hydroxylanosterol in mevalonate-treated cell cultures, J. Biol. Chem. 262: 14056–14062.PubMedGoogle Scholar
  296. 296.
    Aoyama, Y., Yoshida, Y., Sonoda, Y., and Sato, Y., 1987, Metabolism of 32-hydroxy-24,25-dihydrolanosterol by purified cytochrome P45014DM from yeast. Evidence for contribution of the cytochrome to whole process of lanosterol demethylation, J. Biol. Chem. 262: 1239–1243.PubMedGoogle Scholar
  297. 297.
    Aoyama, Y., Yoshida, Y., Sonoda, Y., and Sato, Y., 1989, Deformylation of 32-oxo-24,25-dihydrolanosterol by the purified cytochrome P45014DM (lanosterol 14α-demethylase) from yeast. Evidence confirming the intermediate step of lanosterol 14α-demethylation, J. Biol. Chem. 264: 18502–18505.PubMedGoogle Scholar
  298. 298.
    Trzaskos, J., Kawata, S., and Gaylor, J. L., 1986, Microsomal enzymes of cholesterol biosynthesis. Purification of lanosterol 14α-methyl demethylase cytochrome P450 from hepatic microsomes, J. Biol. Chem. 261: 14651–14657.PubMedGoogle Scholar
  299. 299.
    Sono, H., Sonoda, Y., and Sato, Y., 1991, Purification and characterization of cytochrome P45014DM (lanosterol 14α-demethylase) from pig liver microsomes, Biochim. Biophys. Acta 1078: 388–394.PubMedCrossRefGoogle Scholar
  300. 300.
    Sonoda, Y., Endo, M., Ishida, K., Sato, Y., Fukusen, N., and Fukuhara, M., 1993, Purification of a human cytochrome P450 isozyme catalyzing lanosterol 14α-demethylation, Biochim. Biophys. Acta 1170:92–97.PubMedCrossRefGoogle Scholar
  301. 301.
    Yoshida, Y., and Aoyama, Y., 1984, Yeast cytochrome P450 catalyzing lanosterol 14α-demethylation. I. Purification and spectral properties, J. Biol. Chem. 259: 1655–1660.PubMedGoogle Scholar
  302. 302.
    Aoyama, Y., Yoshida, Y., and Sato, R., 1984, Yeast cytochrome P450 catalyzing lanosterol 14α-demethylati on. II. Lanosterol metabolism by purified P450 14DM and by intact microsomes, J. Biol. Chem. 259: 1661–1666.PubMedGoogle Scholar
  303. 303.
    Sloane, D. L., So, O.-Y., Leung, R., Scarafia, L. E., Saldou, N., Jarnagin, K., and Swinney, D. C., 1995, Molecular cloning and functional expression of rat lanosterol 14α-demethylase, Gene in press.Google Scholar
  304. 304.
    Alexander, K. T. W., Akhtar, M., Boar, R. B., McGhie, J. F., and Barton, D.H. R., 1971, The pathway for the removal of C-32 in cholesterol biosynthesis, J. Chem. Soc. Chem. Commun. 1971: 1479–1481.Google Scholar
  305. 305.
    Akhtar, M., Freeman, C. W., Wilton, D. C., Boar, R. B., and Copsey, D. B., 1977, The pathway for the removal of the 14α-methyl group of lanosterol: The role of lanost-8-ene-3β,32-diol in cholesterol biosynthesis, Bioorg. Chem. 6: 473–481.CrossRefGoogle Scholar
  306. 306.
    Akhtar, M., Alexander, K., Boar, R. B., McGhie, J. F., and Barton, D. H. R., 1978, Chemical and enzymic studies on the characterization of intermediates during the removal of the 14α-methyl group in cholesterol biosynthesis: The use of 32-functionalized lanostan derivatives, Biochem. J. 169: 449463.Google Scholar
  307. 307.
    Ramm, P. J., and Caspi, E., 1969, The stereochemistry of tritium at carbon atoms 1, 7, and 15 in cholesterol derived from (3R,2R)-(2–3H)-mevalonic acid, J. Biol. Chem. 244: 6064–6073.PubMedGoogle Scholar
  308. 308.
    Akhtar, M., Rahimtula, A. D., Watkinson, I. A., Wilton, D. C., and Munday, K. A., 1969, The status of C-6, C-7, C-15, and C-16 hydrogen atoms in cholesterol biosynthesis, Eur. J. Biochem. 9: 107–111.PubMedCrossRefGoogle Scholar
  309. 309.
    Fischer, R. T., Trzaskos, J. M., Magolda, R. L., Lo, S. S., Brosz, C. S., and Larsen, B., 1991, Lanosterol 14α-methyl demethylase: Isolation and characterization of the third metabolically generated oxidative demethylation intermediate, J. Biol. Chem. 266: 6124–6132.PubMedGoogle Scholar
  310. 310.
    Spike, T. E., Wang, A. H.-J., Paul, I. C., and Schroepfer, G. J., 1974, Structure of a potential intermediate in cholesterol biosynthesis, J. Chem. Soc. Chem. Commun. 1974: 477–478.CrossRefGoogle Scholar
  311. 311.
    Zuber, M. X., Simpson, E. R., and Waterman, M. R., 1986, Expression of bovine 17a-hydroxylase cytochrome P450 cDNA in nonsteroidogenic (COS 1) cells, Science 234: 1258–1261.PubMedCrossRefGoogle Scholar
  312. 312.
    Barnes, H. J., Arlotto, M. P., and Waterman, M. R., 1991, Expression and enzymatic activity of recombinant cytochrome P450 17a-hydroxylase in Escherichia coli, Proc. Natl. Acad. Sci. USA 88: 5597–5601.CrossRefGoogle Scholar
  313. 313.
    Nakajin, S., Takahashi, M., Shinoda, M., and Hall, P. F., 1985, Cytochrome b5 promotes the synthesis of 416-C19 steroids by homogeneous cytochrome P-450 C21 side-chain cleavage enzyme from pig testis, Biochem. Biophys. Res. Commun. 132: 708–713.PubMedCrossRefGoogle Scholar
  314. 314.
    Shimizu, K., 1978, Formation of S-[1713–2H]androstene-311,17a-diol from 3ß-hydroxy-S[17,21,21,21 2H]pregnen-20-one by the microsomal fraction of boar testis, J. Biol. Chem. 253: 42374241.Google Scholar
  315. 315.
    Corina, D. L., Miller, S. L., Wright, J. N., and Akhtar, M., 1991, The mechanism of cytochrome P-450 dependent C—C bond cleavage: Studies on 17a-hydroxylase-17,20-lyase, J. Chem. Soc. Chem. Commun. 1991: 782–783.CrossRefGoogle Scholar
  316. 316.
    Akhtar, M., Corina, D. L., Miller, S. L., Shyadehi, A. Z., and Wright, J. N., 1994, Incorporation of label from 1802 into acetate during side-chain cleavage catalyzed by cytochrome P45017a (17a-hydroxylase-17,20-lyase), J. Chem. Soc. Perkin Trans. 1994: 263–267.CrossRefGoogle Scholar
  317. 317.
    Akhtar, M., Corina, D., Miller, S., Shyadehi, A. Z., and Wright, J. N., 1994, Mechanism of the acyl-carbon cleavage and related reactions catalyzed by multifunctional P450s: Studies on cytochrome P45017a, Biochemistry 33: 4410–4418.PubMedCrossRefGoogle Scholar
  318. 318.
    Mak, A. Y., and Swinney, D. C., 1992, 17–0-Acetyltestosterone formation from progesterone in microsomes from pig testes; evidence for the Baeyer—Villiger rearrangement in androgen formation catalyzed by CYP17, J. Am. Chem. Soc. 114: 8309–8310.CrossRefGoogle Scholar
  319. 319.
    Swinney, D. C., and Mak, A. Y., 1994, Androgen formation by cytochrome CYP17. Solvent isotope effect and pH studies suggest a role for protons in the regulation of oxene versus peroxide chemistry, Biochemistry 33: 2185–2190.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Paul R. Ortiz de Montellano
    • 1
  1. 1.Department of Pharmaceutical Chemistry, School of PharmacyUniversity of California, San FranciscoSan FranciscoUSA

Personalised recommendations