Bacterial P450s

Structural Similarities and Functional Differences
  • Julian A. Peterson
  • Sandra E. Graham-Lorence


Our understanding of the role in intermediary metabolism of the gene superfamily of proteins called P450 has changed with the cloning and sequencing of greater than 300 genes that encode unique forms of this protein.1 While P450s have been thought of as being primarily located in the liver and endocrine organs of mammals where they catalyze the detoxification of drugs and the synthesis of steroid hormones,2 P450s are found in essentially all mammalian tissues including brain,3 skin,4 and intestine.5 Additionally, with the continued identification of unique P450s, which catalyze biosynthetic and biodegradative reactions in mammals as well as in plants, fungi, and bacteria, it has been realized that the role of P450s is much more diverse than had been previously suspected. (For example, the role of P450s in phytoalexin,6 anthocyanidin,7 isoflavanoid,8 and jasmonic acid9 synthesis in plants is well documented.) Thus, scientists have become interested in the mechanisms of disease states resulting from mutations in P450s, and in alternative substrates metabolized and new products formed by the engineering of known P450 proteins. Only through an understanding of the structures of these proteins can this be accomplished.


Secondary Structural Element Heme Iron Redox Partner Proximal Face Heme Propionate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nelson, D. R., Kamataki, T., Waxman, D. J., Guengerich, F. P., Estabrook, R. W., Feyereisen, R., Gonzalez, F. J., Coon, M. J., Gunsalus, I. C., Gotoh, O., Okuda, K., and Nebert, D. W., 1993, The P450 superfamily: Update on new sequences, gene mapping, accession numbers, early trivial names of enzymes, and nomenclature, DNA Cell Biol. 12: 1–51.PubMedCrossRefGoogle Scholar
  2. 2.
    Guengerich, E P., 1991, Reactions and significance of cytochrome P-450 enzymes, J. Biol. Chem. 266: 10019–10022.PubMedGoogle Scholar
  3. 3.
    Foidart, A., de Clerck, A., Harada, N., and Balthazart, J., 1994, Aromatase-immunoreactive cells in the quail brain: Effects of testosterone and sex dimorphism, Physiol. Behay. 55: 453–464.CrossRefGoogle Scholar
  4. 4.
    Jugert, F. K., Agarwal, R., Kuhn, A., Bickers, D. R., Merk, H. F., and Mukhtar, H., 1994, Multiple cytochrome P450 isozymes in murine skin: Induction of P450 1A, 2B, 2E, and 3A by dexamethasone, J. Invest. Dermatol. 102: 970–975.PubMedCrossRefGoogle Scholar
  5. 5.
    Macica, C., Balazy, M., Falck, J. R., Mioskowski, C., and Carroll, M. A., 1993, Characterization of cytochrome P-450-dependent arachidonic acid metabolism in rabbit intestine, Ant. J. Physiol. 265: G735 — G741.Google Scholar
  6. 6.
    Kochs, G., Werck-Reichhart, D., and Grisebach, H., 1992, Further characterization of cytochrome P450 involved in phytoalexin synthesis in soybean: Cytochrome P450 cinnamate 4-hydroxylase and 3,9-dihydroxypterocarpan 6a-hydroxylase, Arch. Biochem. Biophys. 293: 187–194.PubMedCrossRefGoogle Scholar
  7. 7.
    Holton, T. A., Brugliera, F., Lester, D. R., Tanaka, Y., Hyland, C. D., Menting, J. G., Lu, C.-Y., Farcy, E., Stevenson, T. W., and Cornish, E. C., 1993, Cloning and expression of cytochrome P450 genes controlling flower colour, Nature 366: 276–279.PubMedCrossRefGoogle Scholar
  8. 8.
    Kochs, G., and Grisebach, H., 1989, Phytoalexin synthesis in soybean: Purification and reconstitution of cytochrome P450 3,9-dihydroxypterocarpan 6a-hydroxylase and separation from cytochrome P450 cinnamate 4-hydroxylase, Arch. Biochem. Biophys. 273: 543–553.PubMedCrossRefGoogle Scholar
  9. 9.
    Song, W. C., Funk, C. D., and Brash, A. R., 1993, Molecular cloning of an allene oxide synthase: A cytochrome P450 specialized for the metabolism of fatty acid hydroperoxides, Proc. Natl. Acad. Sci. USA 90: 8519–8523.PubMedCrossRefGoogle Scholar
  10. 10.
    White, R. E., and Coon, M. J., 1980, Oxygen activation by cytochrome P-450, Annu. Rev. Biochem. 49: 315–356.PubMedCrossRefGoogle Scholar
  11. 11.
    Narhi, L. O., and Fulco, A. J., 1986, Characterization of a catalytically self-sufficient 119,000-dalton cytochrome P-450 monooxygenase induced by barbiturates in Bacillus megaterium, J. Biol. Chem. 261: 7160–7169.PubMedGoogle Scholar
  12. 12.
    Hecker, M., Haurand, M., Ullrich, V., and Terao, S., 1986, Spectral studies on structure—activity relationships of thromboxane synthase inhibitors, Eur. J. Biochem. 157: 217–223.PubMedCrossRefGoogle Scholar
  13. 13.
    Miyata, A., Hara, S., Yokoyama, C., Inoue, H., Ullrich, V., and Tanabe, T., 1994, Molecular cloning and expression of human prostacyclin synthase, Biochem. Biophys. Res. Commun. 200: 1728–1734.PubMedCrossRefGoogle Scholar
  14. 14.
    Katagiri, M., Ganguli, B. N., and Gunsalus, I. C., 1968, A soluble cytochrome P-450 functional in methylene hydroxylation, J. Biol. Chem. 243: 3543–3546.PubMedGoogle Scholar
  15. 15.
    Unger, B. P., Gunsalus, I. C., and Sligar, S. G., 1986, Nucleotide sequence of the Pseudomonas putida cytochrome P-450cam gene and its expression in Escherichia coli, J. Biol. Chem. 261: 1158–1163.PubMedGoogle Scholar
  16. 16.
    Gunsalus, I. C., and Sligar, S. G., 1978, Oxygen reduction by the P450 monoxygenase systems, Adv. Enzymol. Relat. Areas Mol. Biol. 47: 1–44.PubMedGoogle Scholar
  17. 17.
    Estabrook, R. W., Hildebrandt, A. G., Remmer, H., Schenkman, J. B., Rosenthal, O., and Cooper, D. Y., 1968, Role of cytochrome P-450 in microsomal mixed function oxidation reactions, in: Biochemie des Sauerstoffs ( B. Hess and H. Staudinger, eds.), Springer-Verlag, Berlin, pp. 142–177.CrossRefGoogle Scholar
  18. 18.
    Peterson, J. A., 1971, Camphor binding by Pseudomonas putida cytochrome 450, Arch. Biochem. Biophys. 42: 140–146.Google Scholar
  19. 19.
    Griffin, B. W., and Peterson, J. A., 1975, Pseudomonas putida cytochrome P-450. The effect of complexes of the ferric hemeprotein on the relaxation of solvent water protons, J. Biol. Chem. 250: 6445–6451.PubMedGoogle Scholar
  20. 20.
    Griffin, B. W., and Peterson, J. A., 1972, Camphor binding by Pseudomonas putida cytochrome P-450. Kinetics and thermodynamics of the reaction, Biochemistry 11: 4740–4746.PubMedCrossRefGoogle Scholar
  21. 21.
    Sligar, S. G., and Gunsalus, I. C., 1976, A thermodynamic model of regulation: Modulation of redox equilibria in camphor monoxygenase, Proc. Natl. Acad. Sci. USA 73: 1078–1082.PubMedCrossRefGoogle Scholar
  22. 22.
    Sligar, S. G., and Gunsalus, I. C., 1979, Proton coupling in the cytochrome P-450 spin and redox equilibria, Biochemistry 18: 2290–2295.PubMedCrossRefGoogle Scholar
  23. 23.
    Hintz, M. J., Mock, D. M., Peterson, L. L., Tuttle, K., and Peterson, J. A., 1982, Equilibrium and kinetic studies of the interaction of cytochrome P-450cam and putidaredoxin, J. Biol. Chem. 257: 14324–14332.PubMedGoogle Scholar
  24. 24.
    Peterson, J. A., Ishimura, Y., and Griffin, B. W., 1972, Pseudomonas putida cytochrome P-450: Characterization of an oxygenated form of the hemoprotein, Arch. Biochem. Biophys. 149: 197–208.PubMedCrossRefGoogle Scholar
  25. 25.
    Ishimura, Y., Ullrich, V., and Peterson, J. A., 1971, Oxygenated cytochrome P-450 and its possible role in enzymic hydroxylation, Biochem. Biophys. Res. Commun. 42: 140–146.PubMedCrossRefGoogle Scholar
  26. 26.
    Brewer, C. B., and Peterson, J. A., 1988, Single turnover kinetics of the reaction between oxycytochrome P-450cam and reduced putidaredoxin, J. Biol. Chem. 263: 791–798.PubMedGoogle Scholar
  27. 27.
    Peterson, J. A., and Mock, D. M., 1975, Metabolic control of cytochrome P450cam, in: Cytochromes P450 and b5 ( D. Y. Cooper, O. Rosenthal, R. Snyder, and C. Witmer, eds.), Plenum Press, New York, pp. 311–324.CrossRefGoogle Scholar
  28. 28.
    Poulos, T. L., Finzel, B. C., Gunsalus, I. C., Wagner, G. C., and Kraut, J., 1985, The 2.6À crystal structure of Pseudomonas putida cytochrome P-450, J. Biol. Chem. 260: 16122–16130.PubMedGoogle Scholar
  29. 29.
    Poulos, T. L., Finzel, B. C., and Howard, A. J., 1987, High-resolution crystal structure of cytochrome P450cam, J. Mol. Biol. 195: 687–700.PubMedCrossRefGoogle Scholar
  30. 30.
    Groves, J. T., and McClusky, G. A., 1978, Aliphatic hydroxylation by highly purified liver microsomal cytochrome P-450. Evidence for a carbon radical intermediate, Biochem. Biophys. Res. Commun. 81: 154–160.PubMedCrossRefGoogle Scholar
  31. 31.
    Raag, R., Martinis, S. A., Sligar, S. G., and Poulos, T. L., 1991, Crystal structure of the cytochrome P-450CAM active site mutant Thr252Ala, Biochemistry 30: 11420–11429.PubMedCrossRefGoogle Scholar
  32. 32.
    Nelson, D. R., and Strobel, H. W., 1988, On the membrane topology of vertebrate cytochrome P-450 proteins, J. Biol. Chem. 263: 6038–6050.PubMedGoogle Scholar
  33. 33.
    Tretiakov, V. E., Degtyarenko, K. N., Uvarov, V. Y., and Archakov, A. I., 1989, Secondary structure and membrane topology of cytochrome P450s, Arch. Biochem. Biophys. 275: 429–439.PubMedCrossRefGoogle Scholar
  34. 34.
    Nelson, D. R., and Strobel, H. W., 1989, Secondary structure prediction of 52 membrane-bound cytochromes P450 shows a strong structural similarity to P450cam, Biochemistry 28: 656–660.PubMedCrossRefGoogle Scholar
  35. 35.
    Poulos, T. L., 1991, Modeling of mammalian P450s on basis of P450cam X-ray structure, Methods Enzymol. 206: 11–30.PubMedCrossRefGoogle Scholar
  36. 36.
    Fulco, A. J., Kim, B. H., Matson, R. S., Narhi, L. O., and Ruettinger, R. T., 1983, Nonsubstrate induction of a soluble bacterial cytochrome P-450 monooxygenase by phenobarbital and its analogs, Mol. Cell. Biochem. 53–54: 155–161.Google Scholar
  37. 37.
    Kim, B. H., and Fulco, A. J., 1983, Induction by barbiturates of a cytochrome P-450-dependent fatty acid monooxygenase in Bacillus megaterium: Relationship between barbiturate structure and inducer activity, Biochem. Biophys. Res. Commun. 116: 843–850.PubMedCrossRefGoogle Scholar
  38. 38.
    Fulco, A. J., 1991, P450BM-3 and other inducible bacterial P450 cytochromes: Biochemistry and regulation, Annu. Rev. Pharmacol. Toxico1. 31: 177–203.CrossRefGoogle Scholar
  39. 39.
    Narhi, L. O., and Fulco, A. J., 1987, Identification and characterization of two functional domains in cytochrome P-450BM-3, a catalytically self-sufficient monooxygenase induced by barbiturates in Bacillus megaterium, J. Biol. Chem. 262: 6683–6690.PubMedGoogle Scholar
  40. 40.
    Miura, Y., and Fulco, A. J., 1975, Omega-1, Omega-2 and Omega-3 hydroxylation of long-chain fatty acids, amides and alcohols by a soluble enzyme system from Bacillus megaterium, Biochim. Biophys. Acta 388: 305–317.PubMedCrossRefGoogle Scholar
  41. 41.
    Boddupalli, S. S., Estabrook, R. W., and Peterson, J. A., 1990, Fatty acid monooxygenation by cytochrome P-450BM-3, J. Biol. Chem. 265: 4233–4239.PubMedGoogle Scholar
  42. 42.
    Boddupalli, S. S., Pramanik, B.C., Slaughter, C. A., Estabrook, R. W., and Peterson, J. A., 1992, Fatty acid monooxygenation by P450BM-3: Product identification and proposed mechanisms for the sequential hydroxylation reactions, Arch. Biochem. Biophys. 292: 20–28.PubMedCrossRefGoogle Scholar
  43. 43.
    Peterson, J. A., and Lu, J. Y., 1991, Bacterial cytochromes P450: Isolation and identification, Methods Enzymol. 206: 612–620.PubMedCrossRefGoogle Scholar
  44. 44.
    Peterson, J. A., Lu, J. Y., Geisselsoder, J., Graham-Lorence, S., Carmona, C., Witney, F., and Lorence, M. C., 1992, Cytochrome P-450terp. Isolation and purification of the protein and cloning and sequencing of its operon, J. Biol. Chem. 267: 14193–14203.PubMedGoogle Scholar
  45. 45.
    Fruetel, J. A., Mackman, R. L., Peterson, J. A., and Ortiz de Montellano, P. R., 1994, Relationship of active site topology to substrate specificity for cytochrome P450terp (CYP108), J. Biol. Chem. 269: 28815–28821.PubMedGoogle Scholar
  46. 46.
    Boddupalli, S. S., Hasemann, C. A., Ravichandran, K. G., Lu, J. Y., Goldsmith, E. J., Deisenhofer, J., and Peterson, J. A., 1992, Crystallization and preliminary x-ray diffraction analysis of P450terp and the hemoprotein domain of P450BM-3, enzymes belonging to two distinct classes of the cytochrome P450 superfamily, Proc. Natl. Acad. Sci. USA 89: 5567–5571.PubMedCrossRefGoogle Scholar
  47. 47.
    Ravichandran, K. G., Boddupalli, S. S., Hasemann, C. A., Peterson, J. A., and Deisenhofer, J., 1993, Crystal structure of hemoprotein domain of P450BM-3, a prototype for microsomal P450’s, Science 261: 731–736.PubMedCrossRefGoogle Scholar
  48. 48.
    Hasemann, C. A., Ravichandran, K. G., Peterson, J. A., and Deisenhofer, J., 1994, Crystal structure and refinement of cytochrome P450terp at 2.3A resolution, J. Mol. Biol. 236: 1169–1185.PubMedCrossRefGoogle Scholar
  49. 49.
    Hasemann, C. A., Ravichandran, K. G., Boddupalli, S. S., Peterson, J. A., and Deisenhofer, J., 1995, Structure and function of cytochromes P450: A comparative analysis of the three-dimensional structures of P450terp, P450cam, and the hemoprotein domain of P450BM-3, Structure 3: 41–62.PubMedCrossRefGoogle Scholar
  50. 50.
    Jones, T. A., Bergdoll, M., and Kjeldgaard, M., 1990, 0: A macromolecule modeling environment, in: Crystallographic and Modeling Methods in Molecular Design (C. E. Bugg and S. E. Ealick, eds.), Springer-Verlag, Berlin, pp. 189–199.Google Scholar
  51. 51.
    Chothia, C., and Lesk, A. M., 1987, The evolution of protein structures, Cold Spring Harbor Symp. Quant. Biol. 52: 399–405.PubMedCrossRefGoogle Scholar
  52. 52.
    Presnell, S. R., and Cohen, F. E., 1989, Topological distribution of four-alpha-helix bundles, Proc. Natl. Acad. Sci. USA 86: 6592–6596.PubMedCrossRefGoogle Scholar
  53. 53.
    Ortiz de Montellano, P. R., Kunze, K. L., and Beilan, H. S., 1983, Chiral orientation of prosthetic heme in the cytochrome P-450 active site, J. Biol. Chem. 258: 45–47.Google Scholar
  54. 54.
    Chen, S., and Zhou, D., 1992, Functional domains of aromatase cytochrome P450 inferred from comparative analyses of amino acid sequences and substantiated by site-directed mutagenesis experiments, J. Biol. Chem. 267: 22587–22594.PubMedGoogle Scholar
  55. 55.
    Edwards, R. J., Murray, B. P., Boobis, A. R., and Davies, D. S., 1989, Identification and location of alpha-helices in mammalian cytochromes P450, Biochemistry 28: 3762–3770.PubMedCrossRefGoogle Scholar
  56. 56.
    Laughton, C. A., Neidle, S., Zvelebil, M. J., and Sternberg, M. J., 1990, A molecular model for the enzyme cytochrome P450(17 alpha), a major target for the chemotherapy of prostatic cancer, Biochem. Biophys. Res. Commun. 171: 1160–1167.PubMedCrossRefGoogle Scholar
  57. 57.
    Laughton, C. A., and Neidle, S., 1990, Inhibitors of the P450 enzymes aromatase and lyase. Crystallographic and molecular modeling studies suggest structural features of pyridylacetic acid derivatives responsible for differences in enzyme inhibitory activity, J. Med. Chem. 33: 3055–3060.PubMedCrossRefGoogle Scholar
  58. 58.
    Zvelebil, M. J., Wolf, C. R., and Sternberg, M. J., 1991, A predicted three-dimensional structure of human cytochrome P450: Implications for substrate specificity, Protein Eng. 4: 271–282.PubMedCrossRefGoogle Scholar
  59. 59.
    Lewis, D. F., and Moereels, H., 1992, The sequence homologies of cytochromes P-450 and active-site geometries, J. Comput. Aided Mol. Des. 6: 235–252.PubMedCrossRefGoogle Scholar
  60. 60.
    Zhou, D. J., Korzekwa, K. R., Poulos, T., and Chen, S. A., 1992, A site-directed mutagenesis study of human placental aromatase, J. Biol. Chem. 267: 762–768.PubMedGoogle Scholar
  61. 61.
    Amarneh, B., Corbin, C. J., Peterson, J. A., Simpson, E. R., and Graham-Lorence, S., 1993, Functional domains of human aromatase cytochrome P450 characterized by linear alignment and site-directed mutagenesis, Mol. Endocrino!. 7: 1617–1624.CrossRefGoogle Scholar
  62. 62.
    Gamier, J., Osguthorpe, D. J., and Robson, B., 1978, Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins, J. Mol. Biol. 120: 97–120.CrossRefGoogle Scholar
  63. 63.
    Rost, B., Sander, C., and Schneider, R., 1994, PHD—An automatic mail server for protein secondary structure prediction, Comput. Appl. Biosci. 10: 53–60.PubMedGoogle Scholar
  64. 64.
    Rost, B., Schneider, R., and Sander, C., 1993, Progress in protein structure prediction? Trends Biochem. Sci. 18: 120–123.PubMedCrossRefGoogle Scholar
  65. 65.
    Rost, B., and Sander, C., 1993, Prediction of protein secondary structure at better than 70% accuracy, J. Mol. Biol. 232: 584–599.PubMedCrossRefGoogle Scholar
  66. GCG Package. 7.575 Science Drive, Madison, WI 53711.Google Scholar
  67. 67.
    Poulos, T. L., Finzel, B. C., and Howard, A. J., 1986, Crystal structure of substrate-free Pseudomonas putida cytochrome P-450, Biochemistry 25: 5314–5322.PubMedCrossRefGoogle Scholar
  68. 68.
    Raag, R., Li, H., Jones, B. C., and Poulos, T. L., 1993, Inhibitor-induced conformational change in cytochrome P-450CAM, Biochemistry 32: 4571–4578.PubMedCrossRefGoogle Scholar
  69. 69.
    Graham-Lorence, S., Khalil, M. W., Lorence, M. C., Mendelson, C. R., and Simpson, E. R., 1991, Structure-function relationships of human aromatase cytochrome P-450 using molecular modeling and site-directed mutagenesis, J. Biol. Chem. 266: 11939–11946.PubMedGoogle Scholar
  70. 70.
    Laughton, C. A., McKenna, R., Neidle, S., Jarman, M., McCague, R., and Rowlands, M. G., 1990, Crystallographic and molecular modeling studies on 3-ethyl-3-(4-pyridyl)piperidine-2,6-dione and its butyl analogue, inhibitors of mammalian aromatase. Comparison with natural substrates: Prediction of enantioselectivity for N-alkyl derivatives, J Med. Chem. 33: 2673–2679.PubMedCrossRefGoogle Scholar
  71. 71.
    Vijayakumar, S., and Salerno, J. C., 1992, Molecular modeling of the 3-D structure of cytochrome P-450scc, Biochim. Biophys. Acta 1160: 281–286.PubMedCrossRefGoogle Scholar
  72. 72.
    Straub, P., Lloyd, M., Johnson, E. F., and Kemper, B., 1994, Differential effects of mutations in substrate recognition site 1 of cytochrome P450 2C2 on lauric acid and progesterone hydroxylation, Biochemistry 33: 8029–8034.PubMedCrossRefGoogle Scholar
  73. 73.
    Shen, S., and Strobel, H. W., 1993, Role of lysine and arginine residues of cytochrome P450 in the interaction between cytochrome P4502B1 and NADPH-cytochrome P450 reductase, Arch. Biochem. Biophys. 304: 257–265.PubMedCrossRefGoogle Scholar
  74. 74.
    Shen, S., and Strobel, H. W., 1992, The role of cytochrome P450 lysine residues in the interaction between cytochrome P450IA1 and NADPH-cytochrome P450 reductase, Arch. Biochem. Biophys. 294: 83–90.PubMedCrossRefGoogle Scholar
  75. 75.
    Voznesensky, A. I., and Schenkman, J. B., 1992, The cytochrome P450 2B4-NADPH cytochrome P450 reductase electron transfer complex is not formed by charge-pairing, J. Biol. Chem. 267: 1466914676.Google Scholar
  76. 76.
    Davies, M. D., and Sligar, S. G., 1992, Genetic variants in the putidaredoxin-cytochrome P-450cam electron-transfer complex: Identification of the residue responsible for redox-state-dependent conformers, Biochemistry 31: 11383–11389.PubMedCrossRefGoogle Scholar
  77. 77.
    Stayton, P. S., Poulos, T. L., and Sligar, S. G., 1989, Putidaredoxin competitively inhibits cytochrome b5-cytochrome P-450cam association: A proposed molecular model for a cytochrome P-450cam electron-transfer complex, Biochemistry 28: 8201–8205.PubMedCrossRefGoogle Scholar
  78. 78.
    Ullah, A. J., Murray, R. I., Bhattacharyya, P. K., Wagner, G. C., and Gunsalus, I. C., 1990, Protein components of a cytochrome P-450 linalool 8-methyl hydroxylase, J. Biol. Chem. 265: 1345–1351.PubMedGoogle Scholar
  79. 79.
    Porter, T. D., 1991, An unusual yet strongly conserved flavoprotein reductase in bacteria and mammals, Trends Biochem. Sci. 16: 154–158.PubMedCrossRefGoogle Scholar
  80. 80.
    Nicholls, A., and Honig, B., 1993, GRASP: Graphical Representation and Analysis of Surface Properties, Columbia University, New York.Google Scholar
  81. 81.
    Hecker, M., and Ullrich, V., 1989, On the mechanism of prostacyclin and thromboxane A2 biosynthesis, J. Biol. Chem. 264: 141–150.PubMedGoogle Scholar
  82. 82.
    Yokoyama, C., Miyata, A., Ihara, H., Ullrich, V., and Tanabe, T., 1991, Molecular cloning of human platelet thromboxane A synthase, Biochem. Biophys. Res. Commun. 178: 1479–1484.PubMedCrossRefGoogle Scholar
  83. 83.
    Gerber, N. C., and Sligar, S. G., 1992, Catalytic mechanism of cytochrome P450: Evidence for a distal charge relay, J. Am. Chem. Soc. 114: 8742–8743.CrossRefGoogle Scholar
  84. 84.
    Yamazaki, S., Sato, K., Suhara, K., Sakaguchi, M., Mihara, K., and Omura, T., 1993, Importance of the proline-rich region following signal-anchor sequence in the formation of correct conformation of microsomal cytochrome P-450s, J. Biochem. 114: 652–657.PubMedGoogle Scholar
  85. 85.
    Al-Gailany, K. A., Houston, J. B., and Bridges, J. W., 1978, The role of substrate lipophilicity in determining type 1 microsomal P450 binding characteristics, Biochem. Pharmacol. 27: 783–788.PubMedCrossRefGoogle Scholar
  86. 86.
    Ebel, R. E., O’Keeffe, D. H., and Peterson, J. A., 1978, Substrate binding to hepatic microsomal cytochrome P-450. Influence of the microsomal membrane, J. Biol. Chem. 253: 3888–3897.PubMedGoogle Scholar
  87. 87.
    Parry, G., Palmer, D. N., and Williams, D. J., 1976, Ligand partitioning into membranes: Its significance in determining Km and Ks values for cytochrome P-450 and other membrane bound receptors and enzymes, FEBS Lett. 67: 123–129.PubMedCrossRefGoogle Scholar
  88. 88.
    Centeno, F., and Gutierrez-Merino, C., 1992, Location of functional centers in the microsomal cytochrome P450 system, Biochemistry 31: 8473–8481.PubMedCrossRefGoogle Scholar
  89. 89.
    Edwards, R. J., Murray, B. P., Singleton, A. M., and Boobis, A. R., 1991, Orientation of cytochromes P450 in the endoplasmic reticulum, Biochemistry 30: 71–76.PubMedCrossRefGoogle Scholar
  90. 90.
    Edwards, R. J., Singleton, A. M., Murray, B. P., Murray, S., Boobis, A. R., and Davies, D. S., 1991, Identification of a functionally conserved surface region of rat cytochromes P450IA, Biochem. J. 278: 749–757.PubMedGoogle Scholar
  91. 91.
    Porter, T. D., Beck, T. W., and Kasper, C. B., 1990, NADPH-cytochrome P-450 oxidoreductase gene organization correlates with structural domains of the protein, Biochemistry 29: 9814–9818.PubMedCrossRefGoogle Scholar
  92. 92.
    Voznesensky, A. I., and Schenkman, J. B., 1994, Quantitative analyses of electrostatic interactions between NADPH-cytochrome P450 reductase and cytochrome P450 enzymes, J. Biol. Chem. 269: 15724–15731.PubMedGoogle Scholar
  93. 93.
    Wada, A., and Waterman, M. R., 1992, Identification by site-directed mutagenesis of two lysine residues in cholesterol side chain cleavage cytochrome P450 that are essential for adrenodoxin binding, J. Biol. Chem. 267: 22877–22882.PubMedGoogle Scholar
  94. 94.
    Kitamura, M., Buczko, E., and Dufau, M. L., 1991, Dissociation of hydroxylase and lyase activities by site-directed mutagenesis of the rat P45017 alpha, Mol. Endocrinol. 5: 1373–1380.PubMedCrossRefGoogle Scholar
  95. 95.
    Grogan, J., Shou, M., Zhou, D., Chen, S., and Korzekwa, K. R., 1993, Use of aromatase (CYP19) metabolite ratios to characterize electron transfer from NADPH-cytochrome P450 reductase, Biochemistry 32: 12007–12012.PubMedCrossRefGoogle Scholar
  96. 96.
    Nakahara, K., Shoun, H., Adachi, S., Iizuka, T., and Shiro, Y., 1994, Crystallization and preliminary X-ray diffraction studies of nitric oxide reductase cytochrome P450nor from Fusarium oxysporum, J. Mol. Biol. 239: 158–159.PubMedCrossRefGoogle Scholar
  97. 97.
    Cupp-Vickery, J. R., Li, H., and Poulos, T. L., 1994, Preliminary crystallographic analysis of an enzyme involved in erythromycin biosynthesis: Cytochrome P450eryF, Proteins 20: 197–201.PubMedCrossRefGoogle Scholar
  98. 98.
    Kraulis, J., 1991, MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures, J. Appl. Crystallogr. 24: 946–950.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Julian A. Peterson
    • 1
  • Sandra E. Graham-Lorence
    • 1
  1. 1.Department of BiochemistryThe University of Texas Southwestern Medical Center at DallasDallasUSA

Personalised recommendations