Twenty-five Years of P450cam Research

Mechanistic Insights into Oxygenase Catalysis
  • Ernest J. Mueller
  • Paul J. Loida
  • Stephen G. Sligar


It has been nearly 25 years since the discovery of the first microbial cytochrome P450 system by the Gunsalus laboratory. Since that initial discovery, seminal breakthroughs have been made in mammalian P450s through work with microsomal fractions1,2 and the astounding tour de force accomplishments in the purification of membrane-bound P450 systems originally initiated by Coon and his colleagues.3,4 However, it was generally realized by the early 1980s that the availability of a purified cytochrome P450 and its redox transfer partners offered an unparalleled opportunity for detailed structure-function studies of this important class of hemoproteins. Through the research efforts of numerous laboratories over the last 25 years we have reached a point where essentially every spectroscopy currently known has been applied to the first of these bacterial P450s, cytochrome P450cam.


Electron Transfer Substrate Binding Pseudomonas Putida Heme Iron Substrate Access 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Capdevila, J. H., Falck, J. R., and Estabrook, R. W., 1992, Cytochrome P450 and the arachidonate cascade, FASEB J. 6: 731–736.PubMedGoogle Scholar
  2. 2.
    Guengerich, E P., 1991, Reactions and significance of cytochrome P-450 enzymes, J. Biol. Chem. 266: 10019–10022.PubMedGoogle Scholar
  3. 3.
    Coon, M. J., Ding, X., Pernecky, S. J., and Vaz, A. D. N., 1992, Cytochrome P450: Progress and predictions, FASEB J. 6: 669–673.PubMedGoogle Scholar
  4. 4.
    Porter, T. D., and Coon, M. J., 1991, Cytochrome P-450: Multiplicity of isoforms, substrates, and catalytic and regulatory mechanisms, J. Biol. Chem. 266: 13469–13472.PubMedGoogle Scholar
  5. 5.
    Klingenberg, M., 1958, Pigments of rat liver microsomes, Arch. Biochem. Biophys. 75: 376–386.PubMedCrossRefGoogle Scholar
  6. 6.
    Garfinkel, D., 1957, Isolation and properties of cytochrome b5 from pig liver, Arch. Biochem. Biophys. 71: 111–120.PubMedCrossRefGoogle Scholar
  7. 7.
    Hashimoto, Y., Yamano, T., and Mason, H. S., 1962, An electron spin resonance study of microsomal electron transport, J. Biol. Chem. 237: 3843–3844.PubMedGoogle Scholar
  8. 8.
    Omura, T., and Sato, R., 1962, A new cytochrome in liver microsomes, J. Biol. Chem. 237: 1375–1376.PubMedGoogle Scholar
  9. 9.
    Muramaki, K., and Mason, H. S., 1967, An electron spin resonance study of microsomal Fex, J. Biol. Chem. 242: 1102–1110.Google Scholar
  10. 10.
    Bangcharoenpaurpong, O., Champion, P. M., Hall, K. S., and Hager, L. P., 1986, Resonance Raman studies of isotopically labelled chloroperoxidase, Biochemistry 25: 2374–2378.PubMedCrossRefGoogle Scholar
  11. 11.
    Poulos, T. L., Finzel, B. C., Gunsalus, I. C., Wagner, G. C., and Kraut, J., 1985, The 2.6 A crystal structure of Pseudomonas putida cytochrome P-450, J. Biol. Chem. 260: 16122–16130.PubMedGoogle Scholar
  12. 12.
    Vickery, L., Salmon, A., and Sauer, K., 1975, Magnetic circular dichroism studies on microsomal aryl hydrocarbon hydroxylase: Comparison with cytochrome b5 and cytochrome P-450cam, Biochim. Biophys. Acta 386: 87–98.PubMedCrossRefGoogle Scholar
  13. 13.
    Cramer, S. P., Dawson, J. H., Hodgson, K. O., and Hager, L. P., 1978, Studies on the ferric forms of cytochrome P-450 and chloroperoxidase by extended X-ray absorption fine structure. Characterization of the Fe—N and Fe—S distances, J. Am. Chem. Soc. 100: 7282–7290.CrossRefGoogle Scholar
  14. 14.
    Hasemann, C. A., Ravichandran, K. G., Peterson, J. A., and Diesenhofer, J., 1994, Crystal structure and refinement of cytochrome P450terp at 2.3Â resolution, J. Mol. Biol. 236: 1169–1185.PubMedCrossRefGoogle Scholar
  15. 15.
    Ravichandran, K. G., Boddupalli, S. S., and Hasemann, C. A., 1993, Crystal structure of hemoprotein domain of P450BM-3, a prototype for microsomal P450’s, Science 261: 731–736.PubMedCrossRefGoogle Scholar
  16. 16.
    Koga, H., Rauchfuss, B., and Gunsalus, I. C., 1985, P-450cam gene: Cloning and expression in Pseudomonas putida and Escherichia coli, Biochem. Biophys. Res. Commun. 130: 412–417.PubMedCrossRefGoogle Scholar
  17. 17.
    Ropp, J. D., Gunsalus, I. C., and Sligar, S. G., 1992, Cloning and expression of a member of a new cytochrome P-450 family: P-4501ín from Pseudomonas putida (incognita), J. Bacteriol. 175: 6028–6037.Google Scholar
  18. 18.
    Shimizu, T., Sogawa, K., Fujii-Kuriyama, Y., Takahashi, M., Ogoma, Y., and Hatano, M., 1986, Expression of cytochrome P-450d by Saccharomyces cerevisiae, FEBS Lett. 207: 217–221.PubMedCrossRefGoogle Scholar
  19. 19.
    Trower, M. K., Lenstra, R., Orner, C., Buchholz, S. E., and Sariaslani, F. S., 1992, Cloning, nucleotide sequence, determination and expression of the genes encoding cytochrome P-450soy (soyC) and ferredoxin-soy (soyB) from Streptomyces griseus, Mol. Microbiol. 6: 21–25.CrossRefGoogle Scholar
  20. 20.
    Unger, B. P., 1988, Sequence, expression and mutagenesis of the Pseudomonas putida cytochrome P-450cam gene in Escherichia coli, Ph.D. thesis, University of Illinois.Google Scholar
  21. 21.
    Zhou, D., Pompon, D., and Chen, S., 1991, Structure—function studies of human aromatase by site-directed mutagenesis: Kinetic properties of mutants Pro-308—Phe, Tyr-361-Phe, Tyr361Leu, and Phe-406— Arg, Proc. Natl. Acad. Sci. USA 88: 410–414.PubMedCrossRefGoogle Scholar
  22. 22.
    Atkins, W. M., and Sligar, S. G., 1988, The roles of active site hydrogen bonding in cytochrome P-450cam as revealed by site-directed mutagenesis, J. Biol. Chem. 263: 18842–18849.PubMedGoogle Scholar
  23. 23.
    Atkins, W. M., and Sligar, S. G., 1989, Molecular recognition in cytochrome P-450: Alteration of regioselective alkane hydroxylation via protein engineering, J. Am. Chem. Soc. 111: 2715–2717.CrossRefGoogle Scholar
  24. 24.
    Imai, Y., and Nakamura, M., 1988, The importance of threonine-301 from cytochromes P-450 (laurate (w-1)-hydroxylase and testosterone 16-alphahydroxylase) in substrate binding as demonstrated by site-directed mutagenesis, FEBS Lett. 234: 313–315.PubMedCrossRefGoogle Scholar
  25. 25.
    Imai, M., Shimada, H., Watanabe, Y., Matsushima-Hibiya, Y., Makino, R., Koga, H., Horiuchi, T., and Ishimura, Y., 1989, Uncoupling of the cytochrome P-450cam monooxygenase reaction by a single mutation, threonine-252 to alanine or valine: A possible role of the hydroxy amino acid in oxygen activation, Proc. Natl. Acad. Sci. USA 86: 7823–7827.PubMedCrossRefGoogle Scholar
  26. 26.
    Ishida, N., Aoyama, Y., Hatanaka, R., Oyama, Y., Imajo, S., Ishiguro, M. Oshima, T., Nakazato, H., Naguchi, T., Maitra, U. S., Mohan, V. P., Sprinson, D. B., and Yoshida, Y., 1988, A single amino acid substitution converts cytochrome P-450cam to an inactive form, cytochrome P-450SG1: Complete primary structures deduced from cloned DNAs, Biochem. Biophys. Res. Commun. 155: 317–323.Google Scholar
  27. 27.
    Shimizu, T., Hirano, K., Takahashi, M., Hatana, M., and Fuji-Kuriyama, Y., 1988, Site-directed mutagenesis of rat liver cytochrome P-450d: Axial ligand and heure incorporation, Biochemistry 27: 4138–4141.PubMedCrossRefGoogle Scholar
  28. 28.
    Martinis, S. A., Atkins, W. M., Stayton, P. S., and Sligar, S. G., 1989, A conserved residue of cytochrome P-450 is involved in heme—oxygen stability and activation, J. Am. Chem. Soc. 111: 9252–9253.CrossRefGoogle Scholar
  29. 29.
    Nebert, D. W., and Gonzales, F. J., 1987, P450 genes: Structure, evolution, and regulation, Annu. Rev. Biochem. 56: 945–993.PubMedCrossRefGoogle Scholar
  30. 30.
    Tyson, C. A., Lipscomb, J. D., and Gunsalus, I. C., 1972, The roles of putidaredoxin and P-450cam in methylene hydroxylation, J. Biol. Chem. 247: 5777–5784.PubMedGoogle Scholar
  31. 31.
    Roberts, E. S., Vaz, A. D. N., and Coon, M. J., 1991, Catalysis by cytochrome P-450 of an oxidative reaction in xenobiotic aldehyde metabolism: Deformylation with olefin formation, Proc. Natl. Acad. Sci. USA 88: 8963–8966.PubMedCrossRefGoogle Scholar
  32. 32.
    Sugar, S. G., and Gunsalus, I. C., 1976, A thermodynamic model of regulation: Modulation of redox equilibria in camphor monoxygenase, Proc. Natl. Acad. Sci. USA 73: 1078–1082.CrossRefGoogle Scholar
  33. 33.
    Black, S. D., and Coon, M. J., 1987, P-450 cytochromes: Structure and function, Adv. Enzymol. Relat. Areas Mol. Biol. 60: 35–87.PubMedGoogle Scholar
  34. 34.
    Dawson, J. H., and Sono, M., 1987, Cytochrome P-450 and chloroperoxidase: Thiolate-ligated heure enzymes. Spectroscopic determination of their active site structures and mechanistic implications of thiolate ligation, Chem. Rev. 87: 1255–1276.CrossRefGoogle Scholar
  35. 35.
    Poulos, T. L., and Finzel, B. C, 1984, in: Peptide and Protein Reviews (M. T. W. Hearn, ed.), Dekker, New York, Vol. IV, pp. 115–171.Google Scholar
  36. 36.
    Paine, A. J., 1991, The cytochrome-P450 gene superfamily, Int. J. Exp. Pathol. 72: 349–363.PubMedGoogle Scholar
  37. 37.
    Sligar, S. G., 1976, Coupling of spin, substrate and redox equilibria in cytochrome P-450, Biochemistry 15: 5399–5406.PubMedCrossRefGoogle Scholar
  38. 38.
    Harris, D., and Loew, G., 1993, Determinants of the spin state of the resting state of cytochrome P450cam, J. Am. Chem. Soc. 115: 8775–8779.CrossRefGoogle Scholar
  39. 39.
    Sligar, S. G., Lipscomb, J. D., Debrunner, P. G., and Gunsalus, I. C., 1974 Superoxide anion production by the autoxidation of cytochrome P-450c am, Biochem. Biophys. Res. Commun. 61: 290–296.PubMedCrossRefGoogle Scholar
  40. 40.
    White, R. E., and Coon, M. J., 1980, Oxygen activation by cytochrome P-450, Annu. Rev. Biochem. 49: 315–356.PubMedCrossRefGoogle Scholar
  41. 41.
    Groves, J. T., and McCluskey, G. A., 1976, Aliphatic hydroxylation via oxygen rebound. Oxygen transfer catalyzed by iron, J. Am. Chem. Soc. 98: 859–861.CrossRefGoogle Scholar
  42. 42.
    Poulos, T. L., Finzel, B. C., and Howard, A. J., 1986, Crystal structure of substrate-free Pseudomonas putida cytochrome P-450, Biochemistry 25: 5314–5322.PubMedCrossRefGoogle Scholar
  43. 43.
    Raag, R., Li, H., Jones, B. C., and Poulos, T. L., 1993, Inhibitor induced conformational change in cytochrome P-450cam, Biochemistry 32: 4571–4578.PubMedCrossRefGoogle Scholar
  44. 44.
    Wells, A. V., Li, P., Champion, P. M., Martinis, S. A., and Sligar, S. G., 1992, Resonance Raman investigations of Escherichia coli cytochrome P450 and P420, Biochemistry 31: 4384–4393.PubMedCrossRefGoogle Scholar
  45. 45.
    DiPrimo, C., Hui Bon Hoa, G., Deprez, E., Douzou, P., and Sligar, S. G., 1993, Conformational dynamics of cytochrome P-450cam as monitored by photo-acoustic calorimetry, Biochemistry 32: 3671–3676.CrossRefGoogle Scholar
  46. 46.
    Deprez, E., Gerber, N. C., Di Primo, C., Douzou, P., Sligar, S. G., and Hui Bon Hoa, G., 1994, Electrostatic control of the substrate access channel in cytochrome P-450cam, Biochemistry 33: 14464–14468.PubMedCrossRefGoogle Scholar
  47. 47.
    Gerber, N. C., 1994, Bioorganic activation of cytochrome P-450cam, Ph.D. thesis, University of Illinois, Urbana.Google Scholar
  48. 48.
    Peterson, J. A., 1971, Camphor binding by Pseudomonas putida cytochrome P-450, Arch. Biochem. Biophys. 144: 678–693.CrossRefGoogle Scholar
  49. 49.
    Tsai, R., Yu, C.-A., Gunsalus, I. C., Peisach, J. Blumberg, W. E., Orme-Johnson, W. H., and Beinert, H., 1970, Spin-state changes in cytochrome P-450cam on binding specific substrates, Proc. Natl. Acad. Sci. USA 66: 1157–1163.Google Scholar
  50. 50.
    Sligar, S. G., and Murray, R. I., 1986, in: Cytochrome P-450: Structure, Mechanism, and Biochemistry (P. R. Ortiz de Montellano, ed.), Plenum Press, New York, pp. 429–503.Google Scholar
  51. 51.
    Fisher, M. T., and Sligar, S. G., 1987, Temperature jump relaxation kinetics of the P-450cam spin equilibrium, Biochemistry 26: 4797–4803.PubMedCrossRefGoogle Scholar
  52. 52.
    Loew, G. H., Collins, J., Luke, B., Waleh, A., and Pudzianowski, A., 1986, Theoretical studies of cytochrome P450: Characterizations of stable and transient active states, reaction mechanisms and substrate-enzyme interactions, Enzyme 36: 54–78.PubMedGoogle Scholar
  53. 53.
    Poulos, T. L., Finzel, B. C., and Howard, A. J., 1987, High-resolution crystal structure of cytochrome P-450cam, J. Mol. Biol. 195: 687–700.PubMedCrossRefGoogle Scholar
  54. 54.
    Wade, R. C., 1990, Solvation of the active site of cytochrome P450-cam, J. Comp. Aided Mol. Des. 4: 199–204.CrossRefGoogle Scholar
  55. 55.
    Di Primo, C., Sligar, S. G., Hui Bon Hoa, G., and Douzou, P., 1992, A critical role of protein-bound water in the catalytic cycle of cytochrome P-450 camphor, FEBS Len. 312: 252–254.CrossRefGoogle Scholar
  56. 56.
    Deprez, E., Di Primo, C., Hui Bon Hoa, G., Sligar, S. G., and Douzou, P., 1995, Effects of monovalent cations on cytochrome P-450 camphor: Evidence for preferential binding of potassium, manuscript in preparation.Google Scholar
  57. 57.
    Di Primo, C., Hui Bon Hoa, G., Douzou, P., and Sligar, S., 1990, Mutagenesis of a single hydrogen bond in cytochrome P-450 alters cation binding and heure solvation, J. Biol. Chem. 265: 5361–5363.PubMedGoogle Scholar
  58. 58.
    Yoshikawa, K., Noguti, T., Tsujimura, M., Koga, H., Yasukochi, T., Horiuchi, T., and Go, M., 1992, Hydrogen bond network of cytochrome P-450cam: A network connecting the heure group with helix K, Biochim. Biophys Acta 1122: 41–44.PubMedCrossRefGoogle Scholar
  59. 59.
    Raag, R., and Poulos, T. L., 1991, Crystal structures of cytochrome P-450cam complexed with camphane, thiocamphor, and adamantane: Factors controlling P-450 substrate hydroxylation, Biochemistry 30: 2674–2684.PubMedCrossRefGoogle Scholar
  60. 60.
    Gunsalus, I. C., Pederson, T. C., and Sligar, S. G., 1975, Oxygenase-catalyzed biological hydroxylations, Annu. Rev. Biochem. 44: 377.PubMedCrossRefGoogle Scholar
  61. 61.
    Gunsalus, I. C., Meeks, J. R., Lipscomb, J. D., Debrunner, P., and Munck, E., 1974, in: Molecular Mechanisms of Oxygen Activation (O. Hayaishi, ed.), Academic Press, New York.Google Scholar
  62. 62.
    Duppel, W., Poensgen, J., Ullrich, V., and Dahl, G., 1978, in Microsomes and Drug Oxidations (V. Ullrich, I. Roots, A. Hildebrandt, R. W. Estabrook, and A. H. Conney, eds.), Pergamon Press, Elmsford, NY, pp. 31–38.Google Scholar
  63. 63.
    Lambeth, J. D., and Kamin, H., 1979, Adrenodoxin reductase—adrenodoxin complex: Flavin to iron—sulfur electron transfer as the rate-limiting step in the NADPH-cytochrome c reductase reaction, J. Biol. Chem. 254: 2766–2774.PubMedGoogle Scholar
  64. 64.
    Lambeth, J. D., and Kriengsiri, S., 1985, Cytochrome P-450scc—adrenodoxin interactions: Ionic effects on binding, and regulation of cytochrome reduction by bound steroid substrates, J. Biol. Chem. 260: 8810–8816.PubMedGoogle Scholar
  65. 65.
    Geren, L. M., O’Brien, P., Stonehuerner, J., and Millen, E.,1984, Identification of specific carboxyl ate groups on adrenodoxin that are involved in the interaction with adrenodoxin reductase, J. Biol. Chem. 259: 2155–2160.Google Scholar
  66. 66.
    Miura, S., Tomita, S., and Ichikawa, Y., 1991, Modification of histidine 56 in adrenodoxin with diethyl pyrocarbonate inhibited the interaction with cytochrome P-450scc and adrenodoxin reductase, J. Biol. Chem. 266: 19212–19216.PubMedGoogle Scholar
  67. 67.
    Tsubaki, M., Iwamoto, Y., Hiwatashi, A., and Ichikawa, Y., 1989, Inhibition of electron transfer from adrenodoxin to cytochrome P-450scc by chemical modification with pyridoxal 5’-phosphate: Identification of adrenodoxin-binding site of cytochrome P-450scc, Biochemistry 28: 6899–6907.PubMedCrossRefGoogle Scholar
  68. 68.
    Tuls, J., Geren, L., and Millett, F., 1989, Fluorescein isothiocyanate specifically modifies lysine 338 of cytochrome P-450scc and inhibits adrenodoxin binding, J. Biol. Chem. 264: 16421–16428.PubMedGoogle Scholar
  69. 69.
    Beckert, V., Dettmer, R., and Bernhardt, R., 1994, Mutations of tyrosine 82 in bovine adrenodoxin that affect binding to cytochromes P45011 A 1 and P45011 B 1 but not electron transfer, J. Biol. Chem. 269: 2568–2573.PubMedGoogle Scholar
  70. 70.
    Wada, A., and Waterman, M. R., 1992, Identification by site-directed mutagenesis of two lysine residues in cholesterol side chain cleavage cytochrome P450 that are essential for adrenodoxin binding, J. Biol. Chem. 267: 22877–22882.PubMedGoogle Scholar
  71. 71.
    Marg, A. Kuban, R. J., and Behlke, J., 1992, Crystallization and x-ray examination of bovine adrenodoxin, J. Mol. Biol. 227: 945–947.Google Scholar
  72. 72.
    Kuban, R. J., Marg, A., and Resch, M., 1993, Crystallization of bovine adrenodoxin reductase in a new unit cell and its crystallographic characterization, J. Mol. Biol. 234: 245–248.PubMedCrossRefGoogle Scholar
  73. 73.
    Lin, D., Shi, Y., and Miller, W. L., 1990, Cloning and sequence of the human adrenodoxin reductase gene, Proc. Natl. Acad. Sci. USA 87: 8516–8520.PubMedCrossRefGoogle Scholar
  74. 74.
    Geren, L., Tuls, J., O’Brien, P., Millen, F., and Peterson, J. A., 1986, The involvement of carboxylate groups of putidaredoxin in the reaction with putidaredoxin reductase, J. Biol. Chem. 261: 15491–15495.PubMedGoogle Scholar
  75. 75.
    Coghan, V. M., Cupp, J. R., and Vickery, L. G., 1988, Purification and characterization of human placental ferredoxin, Arch. Bioch. Biophys. 264: 376–382.CrossRefGoogle Scholar
  76. 76.
    Lipscomb, J. D., Sligar, S. G., Namtvedt, M. J., and Gunsalus, I. C., 1976, Autoxidation and hydroxylation reactions of oxygenated cytochrome P-450cam, J. Biol. Chem. 251: 1116–1124.PubMedGoogle Scholar
  77. 77.
    Turko, I. B., Adamovich, T. B., Krilliova, N. M., Usanov, S. A., and Chashchin, V. L., 1989, Cross-linking studies of the cholesterol hydroxylation systems from bovine adrenocortical mitochondria, Biochim. Biophys. Acta 996: 37–42.PubMedCrossRefGoogle Scholar
  78. 78.
    Kido, T., and Kimura, T., 1979, The formation of binary and ternary complexes of cytochrome P-450scc with adrenodoxin and adrenodoxin reductase-adrenodoxin complex, J. Biol. Chem. 254: 11806–11815.PubMedGoogle Scholar
  79. 79.
    Lambeth, J. D., and Pember, S. O., 1983, Cytochrome P-450scc-adrenodoxin complex. Reduction properties of the substrate-associated cytochrome and relation of the reduction states of heure and iron-sulfur centers to association of the proteins, J. Biol. Chem. 258: 5596–5602.PubMedGoogle Scholar
  80. 80.
    Hanukoglu, I., and Gutfinger, T., 1989, cDNA sequence of adrenodoxin reductase: Identification of NADP-binding sites in oxidoreductases, Eur: J. Biochem. 180: 479–484.Google Scholar
  81. 81.
    Roome, P. W., Philley, J. C., and Peterson, J. A., 1983, Purification and properties of putidaredoxin reductase, J. Biol. Chem. 258: 2593–2598.PubMedGoogle Scholar
  82. 82.
    Roome, P. W., and Peterson, J. A., 1988, The oxidation of reduced putidaredoxin reductase by oxidized putidaredoxin, Arch. Biochem. Biophys. 266: 41–50.PubMedCrossRefGoogle Scholar
  83. 83.
    Peterson, J. A., Lorence, M. C., and Amarneh, B., 1990, Putidaredoxin reductase and putidaredoxin: Cloning, sequence determination, and heterologous expression of the proteins, J. Biol. Chem. 265: 6066–6073.PubMedGoogle Scholar
  84. 84.
    Gunsalus, I. C., Tyson, C. A., and Lipscomb, J. D., 1973, in: Oxidases and Related Redox Systems (T. E. King, H. S. Mason, and M. Morrison, ed.), University Park Press, Baltimore, Vol. 2, pp. 583–603.Google Scholar
  85. 85.
    Tyson, C. A., Tsai, R., and Gunsalus, I. C., 1970, Fast reaction studies on the camphor P-450 hydroxylase system, J. Am. Oil Chem. Soc. 74: 343A - 344A.Google Scholar
  86. 86.
    Pederson, T. C., Austin, R. H., and Gunsalus, I. C., 1977 in: Microsomes and Drug Oxidations (V. Ullrich, ed.), Pergamon Press, Elmsford, NY, pp. 275–283.Google Scholar
  87. 87.
    Hintz, M. J., and Peterson, J. A., 1981, The kinetics of reduction of cytochrome P-450cam by reduced putidaredoxin, J. Biol. Chem. 256: 6721–6728.PubMedGoogle Scholar
  88. 88.
    Hintz, M. J., Mock, D. M., Peterson, L. L., Tuttle, K., and Peterson, J. A., 1982, Equilibrium and kinetic studies of the interaction of cytochrome P-450cam and putidaredoxin, J. Biol. Chem. 257: 14324–14332.PubMedGoogle Scholar
  89. 89.
    Brewer, C. B., and Peterson, J. A., 1986, Single turnover studies with oxycytochrome P-450cam, Arch. Biochem. Biophys 249: 515–521.PubMedCrossRefGoogle Scholar
  90. 90.
    Brewer, C. B., and Peterson, J. A., 1988, Single turnover kinetics of the reaction between oxycytochrome P-450cam and reduced putidaredoxin, J. Biol. Chem. 263: 791–798.PubMedGoogle Scholar
  91. 91.
    Sligar, S. G., 1975, A kinetic and equilibrium description of camphor hydroxylation by the P-450cam monoxygenase system, Ph.D. thesis, University of Illinois, Urbana.Google Scholar
  92. 92.
    Sligar, S. G., Debrunner, P. G., Lipscomb, J. D., Namtvedt, M. J., and Gunsalus, I. C., 1974, A role for putidaredoxin COOH-terminus in P-450cam (cytochrome m) hydroxylations, Proc. Nad. Acad. Sci. USA 71: 10.CrossRefGoogle Scholar
  93. 93.
    Davies, M. D., Qin, L., Beck, J. L., Suslick, K. S., Koga, H., Horiuchi, T., and Sligar, S. G., 1990, Putidaredoxin reduction of cytochrome P-450cam: Dependence of electron transfer on the identity of putidaredoxin’s C-terminal amino acid, J. Am. Chem. Soc. 112: 7396–7398.CrossRefGoogle Scholar
  94. 94.
    Davies, M. D., and Sligar, S. G., 1992, Genetic variants in the putidaredoxin-cytochrome P-450cam electron transfer complex: Identification of the residue responsible for redox-state-dependent conformers, Biochemistry 31: 11383–11389.PubMedCrossRefGoogle Scholar
  95. 95.
    Stayton, P. S., and Sligar, S. G., 1991, Structural microheterogeneity of a tryptophan residue required for efficient biological electron transfer between putidaredoxin and cytochrome P-450cam, Biochemistry 30: 1845–1851.PubMedCrossRefGoogle Scholar
  96. 96.
    Baldwin, J. E., Morris, G. M., and Richards, W. G., 1991, Electron transport in cytochromes-P-450 by covalent switching, Proc. R. Soc. Lond. Ser. B 245: 43–51.CrossRefGoogle Scholar
  97. 97.
    Salemme, F. R., 1976, An hypothetical structure for an intermolecular electron transfer complex of cytochromes c and b5, J. Mol. Biol. 102: 563–568.PubMedCrossRefGoogle Scholar
  98. 98.
    Stayton, P. S., Fisher, M. T., and Sligar, S. G., 1988, Determination of cytochrome b5 association reactions: Characterization of metmyoglobin and cytochrome P450cam binding to genetically engineered cytochrome b5, J. Biol. Chem. 263: 13544–13548.PubMedGoogle Scholar
  99. 99.
    Stayton, P. S., Poulos, T. L., and Sligar, S. G., 1989, Putidaredoxin competitively inhibits cytochrome b5—cytochrome P-450cam association: A proposed molecular model for a cytochrome P-450cam electron-transfer complex, Biochemistry 28: 8201–8205.PubMedCrossRefGoogle Scholar
  100. 100.
    Stayton, P. S., and Sligar, S. G., 1990, The cytochrome P-450cam binding surface as defined by site-directed mutagenesis and electrostatic modeling, Biochemistry 29: 7381–7386.PubMedCrossRefGoogle Scholar
  101. 101.
    Koga, H., Sagara, Y., Yaoi, T., Tsujimura, M., Nakamura, K., Sekimizu, K., Makino, R., Shimada, H., Ishimura, Y., Yura, K., Go, M., Ikeguchi, M., and Horiuchi, T., 1993, Essential role of the Arg112 residue of cytochrome P450cam for electron transfer from reduced putidaredoxin, FEBS Lett. 331: 109–113.PubMedCrossRefGoogle Scholar
  102. 102.
    Gerber, N. C., Horiuchi, T., Koga, H., and Sligar, S. G., 1990, Identification of 2Fe2S cysteine ligands in putidaredoxin, Biochem. Biophys. Res. Commun. 169: 1016–1020.PubMedCrossRefGoogle Scholar
  103. 103.
    Tuls, J., Geren, L., Lambeth, J. D., and Milieu, F., 1987, The use of a specific fluorescence probe to study the interaction of adrenodoxin with adrenodoxin reductase and cytochrome P-450scc, J. Biol. Chem. 262: 10020–10025.PubMedGoogle Scholar
  104. 104.
    Cupp, J. R., and Vickery, L. E., 1988, Identification of free and [Fe2S2]-bound cysteine residues of adrenodoxin, J. Biol. Chem. 263: 17418–17421.PubMedGoogle Scholar
  105. 105.
    Pochapsky, T. C., and Ye, X. M., 1991, 1H NMR identification of a ß-sheet structure and description of folding topology in putidaredoxin, Biochemistry 30: 3850–3856.Google Scholar
  106. 106.
    Pochapsky, T. C., Ye, X. M., Ratnaswamy, G., and Lyons, T. A., 1994, An NMR-derived model for the solution structure of oxidized putidaredoxin, a 2-Fe 2-S ferredoxin from Pseudomonas, Biochemistry 33: 6424–6432.PubMedCrossRefGoogle Scholar
  107. 107.
    Ratnaswamy, G., and Pochapsky, T. C., 1993, Characterization of hyperfine-shifted 1H resonances in oxidized and reduced putidaredoxin, an Fe2S2 ferredoxin from P putida, Magn. Reson. Chem. 31: S73 - S77.CrossRefGoogle Scholar
  108. 108.
    Pochapsky, T. C., Ratnaswamy, G., and Patera, A., 1994, Redox dependent 1H NMR spectral features and tertiary structural constraints on the C-terminal region of putidaredoxin, Biochemistry 33: 6433–6441.PubMedCrossRefGoogle Scholar
  109. 109.
    McLendon, G., Pardue, K., and Bak, P., 1987, Electron transfer in the cytochrome c/cytochrome b2 complex: Evidence for “conformational gating,” J. Am. Chem. Soc. 109: 7540–7541.CrossRefGoogle Scholar
  110. 110.
    Liang, N., Mauk, A. G., Pielak, G. J., Johnson, J. A., Smith, M., and Hoffman, B. M., 1988, Regulation of interprotein electron transfer by residue 82 of yeast cytochrome c, Science 240: 311–313.PubMedCrossRefGoogle Scholar
  111. 111.
    Gunsalus, E. C., Meeks, J., Lipscomb, J., Debrunner, P., and Munck, E., 1979, in: Molecular Mechanisms of Oxygen Activation (O. Hayaishi, ed.), Academic Press, New York, pp. 559–613.Google Scholar
  112. 112.
    Raag, R., and Poulos, T. L., 1989, Crystal structure of the carbon monoxide—substrate—cytochrome P-450cam ternary complex, Biochemistry 28: 7586–7592.PubMedCrossRefGoogle Scholar
  113. 113.
    Bangcharoenpaurpong, O., Rizos, A., Champion, P., Jollie, D., and Sligar, S., 1986, Resonance Raman detection of bound dioxygen in cytochrome P-450cam, J. Biol. Chem. 261: 8089–8090.PubMedGoogle Scholar
  114. 114.
    Sharrock, M., Munck, E., Debrunner, P. G., Marshall, V., Lipscomb, J. D., and Gunsalus, I. C., 1973, Mossbauer studies of cytochrome P-450c am, Biochemistry 12: 258–265.PubMedCrossRefGoogle Scholar
  115. 115.
    Egawa, T., Ogura, T., Makino, R., Ishimura, Y., and Kitagawa, T., 1991, Observation of the O-O stretching Raman band for cytochrome-P-450cam under catalytic conditions, J. Biol. Chem. 266: 10246–10248.PubMedGoogle Scholar
  116. 116.
    Raag, R., Martinis, S. A., Sligar, S. G., and Poulos, T. L., 1991, Crystal structure of the cytochrome P-450cam active site mutant Thr252Ala, Biochemistry 30: 11420–11429.PubMedCrossRefGoogle Scholar
  117. 117.
    O’Keefe, D. H., Ebel, R. E., Peterson, J. A., Maxwell, J. C., and Caughey, W. S., 1978, An infrared spectroscopic study of CO bonding to ferrous cytochrome P-450, Biochemistry 17: 5845–5852.PubMedCrossRefGoogle Scholar
  118. 118.
    Jung, C., and Marlow, F., 1987, Dynamic behavior of the active site structure in bacterial cytochrome P-450, Stud. Biophys. 120: 241–251.Google Scholar
  119. 119.
    Raag, R., and Poulos, T. L., 1989, The structural basis for substrate-induced changes in redox potential and spin equilibrium in cytochrome P-450cam, Biochemistry 28: 917–922.PubMedCrossRefGoogle Scholar
  120. 120.
    Jung, C., Hui Bon Hoa, G., Schroeder, K.-L., Simon, M., and Doucet, J. P., 1992, Substrate analogue induced changes of the CO-stretching mode in the cytochrome P450cam-carbon monoxide complex, Biochemistry 31: 12855–12862.PubMedCrossRefGoogle Scholar
  121. 121.
    Guengerich, F. P., and MacDonald, T. M., 1990, Mechanisms of cytochrome P-450 catalysis (review), FASEB J. 4: 2453–2459.PubMedGoogle Scholar
  122. 122.
    White, R. E., 1991, The involvement of free radicals in the mechanisms of monooxygenases, Pharmacol. Ther. 49: 21–42.PubMedCrossRefGoogle Scholar
  123. 123.
    Sariaslani, F. S., 1991, Microbial cytochromes P-450 and xenobiotic metabolism, Adv App. Microbiol. 36: 133–178.CrossRefGoogle Scholar
  124. 124.
    Guengerich, F. P., 1990, Enzymatic oxidation of xenobiotic chemicals, CRC Crit. Rev. Biochem. 25: 97–153.CrossRefGoogle Scholar
  125. 125.
    Gunsalus, I. C., 1968, A soluble methylene hydroxylase system: Structure and role of cytochrome P-450 and iron—sulfur protein components, Hoppe-Seylers. Physiol. Chem. 349: 1610–1613.Google Scholar
  126. 126.
    Gunsalus, I. C., and Lipscomb, J. D., 1973, in: Iron—Sulfur Proteins (W. Lovenberg, ed.), Academic Press, New York, Vol. 1, pp. 151–171.Google Scholar
  127. 127.
    Ishimura, Y., Ullrich, V., and Peterson, J. A., 1971, Oxygenated cytochrome P-450 as reaction intermediate in enzymatic hydroxylation of d-camphor, Fed. Proc. 30: 1092.Google Scholar
  128. 128.
    Peterson, J. A., Ishimura, Y., and Griffin, B. W., 1972, Pseudomonas putida cytochrome P-450: Characterization of an oxygenated form of the hemoprotein, Arch. Biochem. Biophys. 149: 197–208.Google Scholar
  129. 129.
    Hui Bon Hoa, G., Begard, E., Debey, P., and Gunsalus, I. C., 1978, Two univalent electron transfers from putidaredoxin to bacterial cytochrome P-450cam at subzero temperature, Biochemistry 17: 2835–2839.PubMedCrossRefGoogle Scholar
  130. 130.
    Guengerich, F. P., 1992, Human cytochrome P-450 enzymes, Life Sci. 50: 1471–1478.PubMedCrossRefGoogle Scholar
  131. 131.
    Coon, M. J., and Koop, D. R., 1983, in: The Enzymes (P. D. Boyer, ed.), Academic Press, New York, Vol. 14, pp. 645–677.Google Scholar
  132. 132.
    Jefcoate, C. R., 1986, Cytochrome P-450 Enzymes in Sterol Biosynthesis and Metabolism, Plenum Press, New York, pp. 387–428.Google Scholar
  133. 133.
    Miwa, G. T., and Lu, A. Y. H., 1986, in: Cytochrome P-450: Structure, Mechanism, and Biochemistry (P. R. Ortiz de Montellano, ed.), Plenum Press, New York, pp. 77–88.Google Scholar
  134. 134.
    Poulos, T. L., 1986 in: Cytochrome P-450: Structure, Mechanism, and Biochemistry (P. R. Ortiz de Montellano, ed.), Plenum Press, New York, pp. 505–523.Google Scholar
  135. 135.
    Gunter, M. J., and Turner, P., 1991, Metalloporphyrins as models for the cytochromes P-450, Coord. Chem. Rev. 108: 115–161.CrossRefGoogle Scholar
  136. 136.
    White, P. W., 1990, Mechanistic studies and selective catalysis with cytochrome P-450 model systems, Bioorg. Chem. 18: 440–456.CrossRefGoogle Scholar
  137. 137.
    Lee, W. A., and Bruice, T., 1985, Homolytic and heterolytic oxygen—oxygen bond scissions accompanying oxygen transfer to iron (III) porphyrins by percarboxylic acids and hydroperoxides. A mechanistic criterion for peroxidase and cytochrome P-450, J. Am. Chem Soc. 107: 513–514.CrossRefGoogle Scholar
  138. 138.
    Atkins, W. M., and Sligar, S. G., 1987, Metabolic switching in cytochrome P-450cam: Deuterium isotope effects on regiospecificity and the monooxygenase/oxygenase ratio, J. Am. Chem. Soc. 109: 3754–3760.CrossRefGoogle Scholar
  139. 139.
    Atkins, W. M., and Sligar, S. G., 1988, Deuterium isotope effects in norcamphor metabolism by cytochrome P-450cam: Kinetic evidence for the two-electron reduction of a high-valent iron-oxo intermediate, Biochemistry 27: 1610–1616.PubMedCrossRefGoogle Scholar
  140. 140.
    Zhukov, A. A., and Arachov, A. I., 1982, Complete stoichiometry of free NADPH oxidation in liver microsomes, Biochem. Biophys. Res. Commun. 109: 813–818.PubMedCrossRefGoogle Scholar
  141. 141.
    Kuthan, H., and Ullrich, V., 1982, Oxidase and oxygenase function of the microsomal cytochrome P-450 monooxygenase system, Eur. J. Biochem. 126: 583–588.PubMedCrossRefGoogle Scholar
  142. 142.
    Gorsky, L. D., Koop, D. R., and Coon, M. J., 1984, On the stoichiometry of the oxidase and monooxygenase reactions catalyzed by liver microsomal cytochrome P-450: Products of oxygen reduction, J. Biol. Chem. 259: 6812–6817.PubMedGoogle Scholar
  143. 143.
    Blake, R. C., and Coon, M. J., 1989, On the mechanism of action of cytochrome P-450: Spectral intermediates in the reaction with iodosobenzene and its derivatives, J. Biol. Chem. 264: 3694–3701.PubMedGoogle Scholar
  144. 144.
    Larroque, C., Lange, R., Maurin, L., Bienvenue, A., and van Lier, J. E., 1990, On the nature of the cytochrome P450scc “ultimate oxidant”: Characterization of a productive radical intermediate, Arch. Biochem. Biophys. 282: 198–201.PubMedCrossRefGoogle Scholar
  145. 145.
    Sligar, S. G., and Gunsalus, I. C., 1979, Proton coupling in the cytochrome P-450 spin and redox equilibria, Biochemistry 18: 2290–2295.PubMedCrossRefGoogle Scholar
  146. 146.
    Nelson, D. R., and Strobel, H. W., 1987, Evolution of cytochrome P-450 proteins, Mol. Biol. Evol. 4: 572–593.PubMedGoogle Scholar
  147. 147.
    Gerber, N. C., and Sligar, S. G., 1992, Catalytic mechanism of cytochrome P-450: Evidence for a distal charge relay, J. Am. Chem. Soc. 114: 8742–8743.CrossRefGoogle Scholar
  148. 148.
    Shimada, H., Makino, R., Imai, M., Horiuchi, T., and Ishimura, Y., 1990, in: International Symposium on Oxygenases and Oxygen Activation,Yamada Science Foundation, pp. 133–136.Google Scholar
  149. 149.
    Gerber, N. C., and Sligar, S. G., 1994, A role for Asp-251 in cytochrome P-450cam oxygen activation, J. Biol. Chem. 269: 4260–4266.PubMedGoogle Scholar
  150. 150.
    Ishigooka, M., Shimizu, T., Hiroya, K., and Hatano, M., 1992, Role of G1u318 at the putative distal site in the catalytic function of cytochrome P450d, Biochemistry 31: 1528–1531.PubMedCrossRefGoogle Scholar
  151. 151.
    Zhou, D., Korzekwa, K. R., Poulos, T., and Chen, S., 1992, A site-directed mutagenesis study of human placental aromatase, J. Biol. Chem. 267: 762–768.PubMedGoogle Scholar
  152. 152.
    Shimada, H., Makino, R., Horiuchi, T., and Ishimura, Y., 1993, in: Second International Symposium on Cytochrome P450 of Microorganisms and Plants, Hachioji, Tokyo.Google Scholar
  153. 153.
    Aikens, J., and Sligar, S. G., 1994, Kinetic solvent isotope effects during oxygen activation by cytochrome P-450cam, J. Am. Chem. Soc. 116: 1143–1144.CrossRefGoogle Scholar
  154. 154.
    Groves, J. T., McCluskey, G. A., White, R. E., and Coon, M. J., 1978, Aliphatic hydroxylation by highly purified liver microsomal cytochrome P-450: Evidence for a carbon radical intermediate, Biochem. Biophys. Res. Commun. 81: 154–160.PubMedCrossRefGoogle Scholar
  155. 155.
    White, R. E., Miller, J. P., Faureau, C. V., and Bhattacharyya, A. J., 1986, Stereochemical dynamics of aliphatic hydroxylation by cytochrome P-450, J. Am. Chem. Soc. 108: 6024–6029.PubMedCrossRefGoogle Scholar
  156. 156.
    Gelb, M. H., Heimbrook, D.C., Mälkönen, P., and Sligar, S. G., 1982, Stereochemistry and deuterium isotope effects in camphor hydroxylation by the cytochrome P-450cam monooxygenase system, Biochemistry 21: 370–377.PubMedCrossRefGoogle Scholar
  157. 157.
    Groves, J. T., 1985, Key elements of the chemistry of cytochrome P-450: The oxygen rebound mechanism, J. Chem. Educ. 62: 928–931.CrossRefGoogle Scholar
  158. 158.
    Sligar, S. G., Gelb, M. H., and Heimbrook, D. C., 1982, in: Microsomes, Drug Oxidations and Drug Toxicity (R. Sato and R. Kato, eds.), Wiley-Interscience, New York, pp. 155–161.Google Scholar
  159. 159.
    White, R. E., Groves, J. T., and McClusky, G. A., 1979, Electronic and steric factors in regioselective hydroxylation catalyzed by purified cytochrome P-450, Acta Biol. Med. Germ. 38: 475–482.PubMedGoogle Scholar
  160. White, R. E., McCarthy, M. B., Egeberg, K. D., and Sligar, S. G., 1984, Regioselectivity in the cytochromes P-450: Control by protein constraints and by chemical reactivities,Arch. Bioch. Biophys. 228:493–502.Google Scholar
  161. 161.
    Maryniak, D. M., Kadkhodayan, S., Crull, G. B., Bryson, T. A., and Dawson, J. H., 1993, The synthesis of IR- and 1S-5-methylenylcamphor and their epoxidation by cytochrome P-450cam, Tetrahedron 49: 9373–9384.CrossRefGoogle Scholar
  162. 162.
    Eble, K. S., and Dawson, J. H., 1984, Novel reactivity of cytochrome P450cam: Methyl hydroxylation 4of 5,5-difluorocamphor, J. Biol. Chem. 259: 14389–14393.PubMedGoogle Scholar
  163. 163.
    Loida, P. J., and Sligar, S. G., 1993, Engineering cytochrome P-450cam to increase the stereospecificity and coupling of aliphatic hydroxylation, Prot. Eng. 2: 207–212.Google Scholar
  164. 164.
    Loida, P. J., Paulsen, M. D., Arnold, G. E., Ornstein, R. L., and Sligar, S G., 1994, Stereoselective hydroxylation of norcamphor by cytochrome P-450cam: Experimental verification of molecular dynamics simulations, J. Biol. Chem. 270: 5326–5330.Google Scholar
  165. 165.
    Loida, P. J., and Sligar, S. G., 1993, Molecular recognition in cytochrome P-450cam: Mechanism for the control of uncoupling reactions, Biochemistry 32: 11530–11538.PubMedCrossRefGoogle Scholar
  166. 166.
    Staudt, H., Lichtenberger, E, and Ullrich, V., 1974, The role of NADH in uncoupled microsomal monoxygenations, Eur. J. Biochem. 46: 99–106.PubMedCrossRefGoogle Scholar
  167. 167.
    Springer, B. A., Egeberg, K. S., Sligar, S. G., Rohlfs, R. J., Mathews, A. J., and Olson, J. S., 1989, Discrimination between oxygen and carbon monoxide inhibition of autooxidation by myoglobin, J. Biol. Chem. 264: 3057–3060.PubMedGoogle Scholar
  168. 168.
    Carver, T. E., Brontley, R. E., Singleton, E. W., Arduini, R. M., Quillin, M. L., Phillios, G. N., and Olson, J. S., 1992, A novel site-directed mutant of myoglobin with an unusually high oxygen affinity and low auto-oxidation rate, J. Biol. Chem. 267: 14443–14450.PubMedGoogle Scholar
  169. 169.
    Gould, P., Gelb, M. H., and Sligar, S. G., 1981, Interaction of 5-bromocamphor with cytochrome P-450cam, J. Biol. Chem. 256: 6686–6691.PubMedGoogle Scholar
  170. 170.
    Castro, C. E., Wade, R. S., and Belser, N. 0., 1983, Biodehalogenation: The metabolism of chloropicron by Pseudomonas sp., J. Agric. Food Chem. 31: 1184–1187.Google Scholar
  171. 171.
    Castro, C. E., Wade, R. S., and Belser, N. 0., 1985, Biodehalogenation: Reactions of cytochrome P-450 with polyhalomethanes, Biochemistry 24: 204–210.Google Scholar
  172. 172.
    Castro, C. E., Wade, R. S., and Belser, N. 0., 1988, Dehalogenation: Reductive reactivities of microbial and mammalian cytochromes P-450 compared with heure and whole-cell models, J. Agric. Food Chem. 36: 915–919.Google Scholar
  173. 173.
    Logan, M. S. P, Newman, L. M., Schanke, C. A., and Wackett, L. P., 1993, Cosubstrate effects in reductive dehalogenation by Pseudomonas putida G786 expressing cytochrome P450cam, Biodegradation 4: 39–50.PubMedCrossRefGoogle Scholar
  174. 174.
    Wackett, L. P., Logan, M. S. P., Blocki, E A., and Bao-li, C., 1992, A mechanistic perspective on bacterial metabolism of chlorinated methanes, Biodegradation 3: 19–36.CrossRefGoogle Scholar
  175. 175.
    Li, S., and Wackett, L. P., 1993, Reductive dehalogenation by cytochrome P450cam: Substrate binding and catalysis, Biochemistry 32: 9355–9361.PubMedCrossRefGoogle Scholar
  176. 176.
    Lefever, M. R., and Wackett, L. P., 1994, Oxidation of low molecular weight chloroalkanes by cytochrome P-450cam, Biochem. Biophys. Res. Commun. 201: 373–378.PubMedCrossRefGoogle Scholar
  177. 177.
    Koe, G. S., and Viler, V. L., 1993, Dehalogenation by cytochrome P-450cam: Effect of oxygen levels on the decomposition of 1,2-dibromo-3-chloropropane, Biotech. Prog. 9: 608–614.CrossRefGoogle Scholar
  178. 178.
    Thompson, J. A., Ho, B., and Mastovich, S. L., 1985, Dynamic headspace analysis of volatile metabolites from the reductive dehalogenation of trichloro-and tetrachloroethanes by hepatic microsomes, Anal. Biochem. 145: 376–384.PubMedCrossRefGoogle Scholar
  179. 179.
    Filipovic, D., Paulsen, M. D., Loida, P. L., Sligar, S. G., and Ornstein, R. L., 1992, Ethylbenzene hydroxylation by cytochrome P-450cam, Biochem. Biophys. Res. Commun. 189: 488–495.PubMedCrossRefGoogle Scholar
  180. 180.
    Paulsen, M. D., and Ornstein, R. L., 1991, A 175 psec molecular dynamics simulation of camphor-bound cytochrome P-450cam, Proteins Struct. Funct. Genet. 11: 184–204.PubMedCrossRefGoogle Scholar
  181. 181.
    Paulsen, M. D., Bass, M. B., and Ornstein, R. L., 1991, Analysis of active site motions from a 175 picosecond molecular dynamics simulation of cytochrome P-450cam, J. Biomol. Struct. Dyn. 9: 187–203.PubMedCrossRefGoogle Scholar
  182. 182.
    Fruetel, J. A., Collins, J. R., Camper, D. L., Loew, G. H., and Ortiz de Montellano, P. R., 1992, Calculated and experimental absolute stereochemistry of the styrene and beta-methylstyrene epoxides formed by cytochrome P450 cam, J. Am. Chem. Soc. 114: 6987–6993.CrossRefGoogle Scholar
  183. 183.
    Collins, J. R., and Loew, G. H., 1988, Theoretical study of the product specificity in the hydroxylation of camphor, norcamphor, 5,5-difluorocamphor, and pericyclocamphor by cytochrome P-450cam, J. Biol. Chem. 263: 3164–3170.PubMedGoogle Scholar
  184. 184.
    Jones, J. P., Trager, W. F., and Carlson, T., 1993, The binding and regiospecificity of reaction of (R)-and (S)-nicotine with cytochrome P-450cam: Parallel experimental and theoretical studies, J. Am. Chem. Soc. 115: 381–387.CrossRefGoogle Scholar
  185. 185.
    Bass, M. B., Paulsen, M. D., and Ornstein, R. L., 1992, Substrate mobility in a deeply buried active site: Analysis of norcamphor bound to cytochrome P-450cam as determined by a 201 psec molecular dynamics simulation, Proteins Struct. Funct. Gene. 13: 26–37.CrossRefGoogle Scholar
  186. 186.
    Paulsen, M. D., and Ornstein, R. L., 1992, Predicting the product specificity and coupling of cytochrome P450cam, J. Comput. Aided Mol. Des. 6: 449–460.PubMedCrossRefGoogle Scholar
  187. 187.
    Paulsen, M. D., and Ornstein, R. L., 1994, Active site mobility inhibits reductive dehalogenation of 1,1,1-trichloroethane by cytochrome P450cam, J. Comput. Aided Mol. Des. in press.Google Scholar
  188. 188.
    Collins, J. R., Camper, D. L., and Loew, G. H., 1991, Valproic acid metabolism by, cytochrome-P450: A theoretical study of stereoelectronic modulators of product distribution, J. Am. Chem. Soc. 113: 2736–2743.CrossRefGoogle Scholar
  189. 189.
    Bass, M. B., and Ornstein, R. L., 1993, Substrate specificity of cytochrome P450cam for 1- d-norcamphor as studied by molecular dynamics simulations, J. Comp. Chem. 14: 541–548.CrossRefGoogle Scholar
  190. 190.
    Wackett, L. P., Sadowsky, M. J., Newman, L. M., Hur, H., and Shuying, L., 1994, Metabolism of polyhalogenated compounds by a genetically engineered bacterium, Nature 368: 627–629.PubMedCrossRefGoogle Scholar
  191. 191.
    Kulisch, G. P., and Vilker, V. L., 1991, Application of Pseudomonas putida pPG 786 containing P-450 cytochrome monooxygenase for removal of trace naphthalene concentrations, Biotechnol. Prog. 7: 93–98.CrossRefGoogle Scholar
  192. 192.
    Loida, P. L., and Sligar, S. G., 1995, Molecular recognition in cytochrome P-450cam: Engineering a hydrogen bond switch, in preparation.Google Scholar
  193. 193.
    DiPrimo, C., Hui Bon Hoa, G., Douzou, P., and Sligar, S. G., 1992, Heme-pocket-hydration change during the inactivation of cytochrome P-450camphor by hydrostatic pressure, Eur. J. Biochem. 209: 583–588.CrossRefGoogle Scholar
  194. 194.
    Pochapsky, T. C., Lyons, T., Ratnaswamy, G., Kazanis, S., Ye, X.-M., and Arakaki, T., 1995, Structure-activity relationships in putidaredoxin reduction of cytochrome P-450cam. 9th International Conference on Cytochrome 450, Zurich, Switzerland, July 23–27, 1995, p. 161.Google Scholar
  195. 195.
    Yeom, H., Sligar, S. G., Li, H., Poulos, T., and Fulco, A., 1995, The role of Thr268 in oxygen activation of cytochrome P450BM-3, Biochemistry,in press.Google Scholar
  196. 196.
    Peterson, J. A„ 1995, personal communication.Google Scholar
  197. 197.
    Kimata, Y., Shimada, H., Hirose, T., and Ishimura, Y., 1995, Role of Thr-252 in cytochrome P450cam: A study with unnatural amino acid mutagenesis, Biochem. Biophys. Res. Commun. 208: 96–102.PubMedCrossRefGoogle Scholar
  198. 198.
    Newcomb, M., Le Tadic, M-H., Pitt, D. A., and Hollenberg, P. E, 1995, An incredibly fast apparent oxygen rebound rate constant for hydrocarbon hydroxylation by cytochrome P-450 enzymes, J. Am. Chem. Soc. 117: 3312–3313.CrossRefGoogle Scholar
  199. 199.
    Dawson, J. H., Coulter, E. D., Maryniak, D., Kadhodayam, S., and Bryson, T. A., 1995, Two modes of uncoupling electron transfer and oxygen transfer in the metabolism of “slow” substrates by cytochrome P450-cam, 9th International Conference on Cytochrome 450, Zurich, Switzerland, July 23–27, 1995, p. 195.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Ernest J. Mueller
    • 1
  • Paul J. Loida
    • 1
  • Stephen G. Sligar
    • 1
  1. 1.Department of Biochemistry and Beckman Institute for Advanced Science and TechnologyUniversity of IllinoisUrbanaUSA

Personalised recommendations